# Early LNG Experience in the US

Theodore Lemoff NFPA

# LNG in the U. S. Pre 1940

- First commercial use by the Bureau of Mines in Helium Production.
  - LNG produced was not stored but was regasified
- Hope Gas Company, a West Virginia gas utility
  - Built an LNG Pilot Plant in 1940 in Cornwell, W. Va

#### East Ohio Gas Company

- Purchased gas from West Virginia
  - Four 18" & 20" (450 500 mm) lines, 150 miles (240 kM) long
- Jan. 1940 cold wave gas shortages in the Eastern U. S.
  - Average high, 25° F (Normal 33° F)
  - Average low, 19° F, (Normal 20° F)
  - 15 days with no sunshine
  - Coldest winter in 20 years



- East Ohio Gas Co. considered:
  - Extending an existing pipeline to Cleveland (\$ 2,500,000)
  - LNG liquefaction and storage plant (\$ 750,000)
- LNG Plant built, Sept 1940 Jan 1941

# NY Central & Lake Shore & Michigan RR's Gas Holders LNG Spheres LNG Storage Tank #4 Residential Area

Plan view of No. 2 Works, East Ohio Gas Co, Cleveland, Ohio Source: Bureau of Mines Report

### The Plant

- Located at the No. 2 works, East Cleveland. Site contained:
  - Shops & buildings for the natural gas business
  - Buildings & equipment formerly used for manufactured gas
  - Site had been in use for 50 years



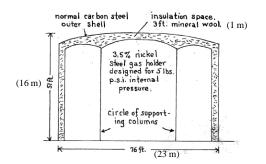
# The Plant

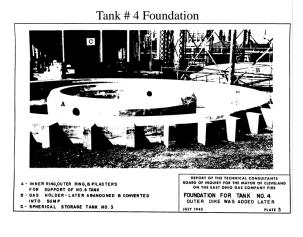
- The location practical
- Plant Capacity:
  - Liquefaction, 4,000,000 ft<sup>3</sup>/day
  - Vaporization, 3,000,000 ft<sup>3</sup>/day
  - Storage, 3 Spheres
    - **57** ft (17 m) Diameter, ~ **50,000,000** ft<sup>3</sup> each
    - ■Inner Tank, Low Carbon, 3½ % Nickei Steel\*
    - Outer Tank, Carbon Stee
    - Insulation, 3 ft. (1 m) cork Lower 1/3 Solid, rest granular

## **Inner Sphere Steel Selection**

- Selection of Steel for Sphere Shells recognized the importance of the Charpy Impact Test.
  - Materials considered to have an acceptable Charpy Impact Test at - 50° F (-46 ° C) were copper, bronze, Monel metal, red brass, stainless steel, and steel plate with < 0.09% carbon and >3.5% nickel
    - Oil and Gas Journal 1940 Article cited

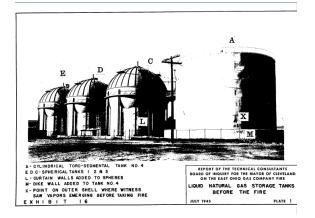



# Plant Expansion


- Additional Tank (# 4) added in 1943
   (2 ½ years later).
- One toro-segmental tank added, capacity 100,000,000 ft<sup>3</sup> (2,800,000 m<sup>3</sup>) natural gas
  - Twice the volume of each sphere
  - This type of tank was believed to superior for capacities ≥100,000,000 ft<sup>3</sup> (2,800,000 m<sup>3</sup>)
  - Cost was not a factor
  - Flexing of large spheres from filling & emptying was the concern



- The tank designers recognized that 3.5% Nickel Steel was brittle at - 260° F (-162° C)
  - "A sledge might be driven through it"
  - Other brittle materials had been used in construction successfully (i.e. the spheres)


#### Tank #4





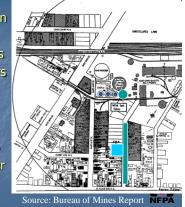
#### Tank Design

- Tank Dimensions:
  - Inner Tank: 42 ft (13 m) high, 70 ft (21 m). Diam.
  - Outer Tank: 51 ft (16 m) high, 76 ft. (23 m) Diam.
  - Insulation: 3 ft (1 m) Rockwool
- Tank Support:
  - Circular footings, 34 ft (10 m) & 70 ft (21 m) Diam
  - 30 12 in x 12 in (300 x 300 mm) Douglas fir posts



## Startup

- Initial cooling of Tank # 4 via fill line
- Resulted in a crack in the bottom
   Crack entirely in one plate
  - Repaired by cutting section of plate & replacement
- Added ¾ in. (19 mm) copper tubing rings
  - Holes to disperse liquid
  - Additional thermocouples for monitoring
- Second cool-down successful


# Leak Control

- Concrete dams added to spheres and tank # 4 for minor leaks
  - Spheres: 18 m diam, 1.4 m high;
     Skirt on Dam
  - Tank # 4: 26 m diam, 7 2.1 m high
    Skirt on Dam
- Overflow holding in old gas receiver
- Tank builder commented that dams & skirts could compromise tank design

## Friday October 20, 1944

- The LNG tanks were filled, and topping-off was in progress
  - At about 2:00 PM shut-down began
- At 2:40 PM tank # 4 failed
  - Observers at AGA Labs, 180 m S saw vapor/liquid prior to tank collapse
  - Slight earth tremor reported
  - Fire observed
- 1.1 Million gallons (4,800 m<sup>3</sup>) of LNG released

- Liquid ran down
   62nd St. –
   entered sewers
- Vapor in sewers mixed with air and ignited
- Innumerable sources of ignition nearby i.e., labs, meter shop, homes



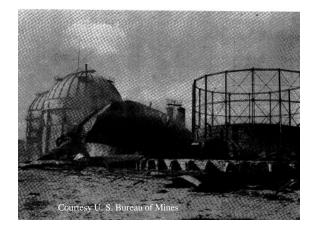
# The Fire

20 Minutes later, Sphere # 3 fails
Held about ½ the amount of LNG as Tank # 4
Major fire underway

- Area was industrial and residential
- Many homes exploded from gas entering from sewers
- Significant radiated heat reported.
- Panic was reported (newspaper)
- Extensive police, fire, & military response
   95 % of Cleveland's apparatus responded

#### The Fire

- An observer 1000 ft (300 m) away estimated flames at 2800 ft. (850 m)
- Injured taken to hospitals
  - 50 Ambulances incl. Army, Navy, Police, and Private
- Red Cross found shelter for the homeless










Source: International News Photo







### Clean-up

- Sunday October 22, 1944
  - Gas Co. employees and tank designer arrive.
  - $\blacksquare$  Spheres # 1 & 2 survived essentially intact
    - Vent line burning venting gas
    - Smoke issuing from top of Sphere # 2
  - Vent re-piped, and smoke attributed to burning cork.
  - Liquid and solid CO<sub>2</sub> smothered cork fire.
  - Steam from locomotives vaporize LNG in Spheres. 3 week process.

#### Analysis of Failure

- No evidence of metal fragments to indicate a pressure explosion
  - Small number found, probably from ammonia or ethylene cylinders
  - Four large sections of the bottom ring (1-2 tons each) found 200 – 300 ft (61 - 91 m) from Tank # 4
- Fragments from Tank # 4 typical of lowtemperature embrittlement
- Evidence of failure at welds

#### Possible Causes

- Event external to Tank # 4
   Gas leakage ignites
  - No evidence to support this
- Explosive shock from burst ammonia cylinder
  - Such explosion occurred, based on fragments found
  - Location indicates this occurred after Tank # 4 failed

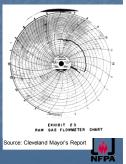
#### **Possible Causes**

- Abnormal shock from failure in liquefaction plant
  - Charts show increased pressure about time of failure
  - Pressure increases probably caused by intense heat in compressor building due to fire.
- Abnormal shock from sudden pressure release
  - Broken vent-gas line could have been source
  - Witness accounts do not validate this

# **Possible Causes**

#### Seismic shocks

- Vibrations: railroad trains & stamping plant
- Cork supported spheres would be somewhat protected from vibrations & shocks
- Impossible to prove or disprove


#### Crack, strain, or metal flaw

- Frost spots on Tank # 4 may have indicated a small leak
- Not believed to be probable



### **Possible Causes**

 Superheating of liquid
 Known as "rollover", due to temperature stratification
 No fluctuation in liquid



#### **Bureau of Mines Conclusions**

Definitive cause of disaster not possible

- No evidence of operating or personnel failure
- No evidence of gas-air explosion
- No evidence of other operations to cause disaster
- No evidence of sabotage

#### Contributing factors

- Improper design (wood support of inner tank)
- Use of steel subject to brittle failure
- Flaw in tank or welding

#### Observations

- Many reports explain the use of 3.5 % nickel steel to wartime shortages
  - Known to be brittle at LNG temperature
  - Bureau of Mines report does not mention this
  - It appears to have been recognized by tank designer and not considered a reason not to use 3.5 % nickel steel



# Major Recommendations

- LNG plants be isolated from other facilities
- Dikes must be provided
- Low temperature properties of metals be investigated and published

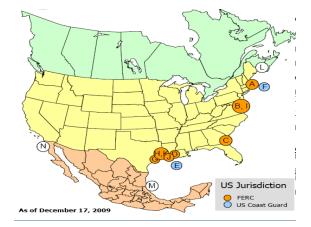


## Major Recommendations

- Cryogenic liquids Storage not be made of 3.5 % nickel steel unless brittle failure is determined not to be the cause of Tank # 4 failure
- Extreme caution be taken to prevent spilled LNG from entering sewers

# What Happened Next?

- Not much.
- No interest in LNG for 10 15 years
- Economics and supply considerations revive interest in peak shaving in the late 1950's.
- AGA forms committee in 1960 to develop draft LNG standard
  - Recommends NFPA issue standard in 1964


# NFPA 59A

- First edition in 1967
  - Required dikes
  - Required 9 % Nickel Steel, Aluminum, or Concrete
  - Separation



# The Next Wave

- A number of LNG peak shaving plants were built at points along the natural gas pipeline system
- Today, over 100 are operating.
- 4 LNG import terminals were built in the "first wave", and 7 additional in North America added recently



# What is the Long Term Forecast for LNG Worldwide?

#### Difficult to predict:

- The availability of Natural Gas
- The needs for Natural Gas



