Committee on Assessing the Risks of Unmanned Aircraft Systems (UAS) Integration

Unmanned Systems Certification

Wes Ryan, UAS Certification Policy Lead, Aircraft Certification

FAA Small Airplane Directorate

Guiding Principles

- FAA & Industry Shared Responsibility For Safety & Innovation
- Collaboration With Industry To Manage Risks From UAS Integration, But a "Zero Risk" Is Not the Expectation
- Traditional Means Of Risk Assessment & Mitigation May Or May Not Be Appropriate For UAS – Design and Operational Risks

Fear, Risk, and Reward

- Fear (risk aversion) Protection Mechanism
 - We fear what we cannot control or don't understand
- Some risk taking is healthy a means to grow, learn, improve society/technology
 - We learn by doing calculated risk leads to growth
 - Olympic athletes, Apollo Program, etc.
- Can't mitigate risks we don't understand or know about
 - Companies new to aviation are less risk averse
 - Must learn the real risks they are creating/facing

Consider the "Total Safety Equation"

- Not only "what could go wrong", but the net safety improvement from using UAS vs. manned aircraft
- Example: Infrastructure surveillance puts people at significant risk

Defining Risk For UAS

- Contributing Factors
 - Vehicle Design/Systems What is it?
 - Operational Risk How will it be used?
 - Area of Operation/Airspace Where will it be flown?
 - Airspace What's its Separation Strategy?
 - Human vs. Automation Have you Planned for Errors?
- We need a clear, documented Concept of Operation, and Operational Risk Assessment
 - Proposed Mission Drives Requirements and FAA Involvement
 - Main Issue is Safe Operational Integration
 - Level of Airworthiness Appropriate

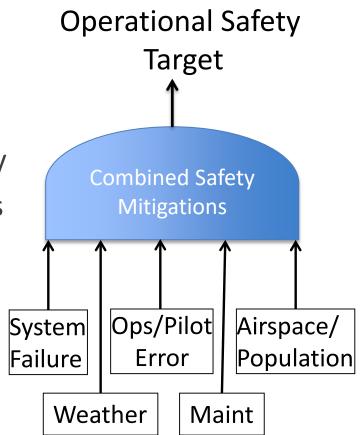
Managing Risk for UAS

- Manage Design & Operational Risk to Public
 - Apply FAA Resources/Rigor Based on Risk
- Certification manages risk through "Safety Assurance"
 - Confidence a proposed product or action will meet FAA safety expectations to protect the public
- Safety Does not Rely on Luck
 - Requires Active Risk Management and Risk Based
 Decision Making

"Safety Assurance" Risk Controls

- Comes from Combination of Established Processes/Factors
 - Airworthiness Condition for safe flight for its intended use
 - Design Verify design, engineering, construction, etc. meet applicable requirements in certification basis
 - Pilot Train for aircraft and level of risk
 - Maintenance Repair/replace prior to failure
 - Operation Limitations sufficient for the expected/acceptable level or risk
 - Airspace Level of Integration, Traffic Exposure, Controller Involvement, and Equipage

Challenges for Evolving UAS Integration


- Well Proven Design Techniques to Evaluate Risk for Manned Aircraft, but.....
 - May Not Translate Well to UAS Design or Operational Risk
 - We don't have models for UAS operational safety yet
 - Probabilistic analysis difficult due to accurate data on operational facets of the analysis & assumptions
- Key Mitigate Reasonably Foreseeable Failures/Issues
 - Design, Operations, Pilot Error, Weather, Maintenance,
 Geographic Area, Airspace all influence safety

Combined UAS Risk Controls

- Systems, airspace, ops, maintenance, & pilot error <u>all</u> feed into operational safety
- Typically Apply System Safety Techniques "XX.1309" for aircraft systems
- Some try to fix top level targets with increasing 10E^{-X} for system failures
- Not the right solution, we don't have data to model pilots, weather, etc.

What's Our Safety Target for UAS?

- Depends, but FAA Expectation Not the Same For All UAS, and 10e⁻⁹ May Not Be the Default
- We don't have one target for manned Aircraft
 - We have Scalable, Multi-Tiered Safety Targets
 - Experimental, Amateur Built, Part 23 fixed wing, and part 27 rotorcraft, Part 25 transports and part 29 rotorcraft
 - Also have Multiple levels of Operational Oversight
 - Part 91, 121, etc.

Where Did 10⁻⁹ System Design Come From?

Transport Category Airplanes

Fatal accident rate at time of XX.1309 rule:

10 -6

- + Data showed ~10% caused by system failures: 10⁻¹
- + Assume 100 catastrophic failure conditions: 10⁻²

Results in probability: 10⁻⁹

Small Single-engine Airplanes

Fatal accident rate at time of XX.1309 rule (IN IMC): 10⁻⁴

- + ~10% caused by system failures: 10⁻¹
- + Assume 10 catastrophic failure conditions: 10⁻¹

Results in probability: 10 -6

Tiered Risk Exposure Factors – Manned A/C

Aircraft/Ops	Passengers	Complex Parts/Systems	Annual Hours Flown
Small Single /Recreational	1's	10's	10's
Large Twin /Business Use	10's	100's	100's
Airliner /Commercial	100's	1000's	1000's

A Single Level of Safety for all Segments of Aviation Would Not Reflect Safety Continuum

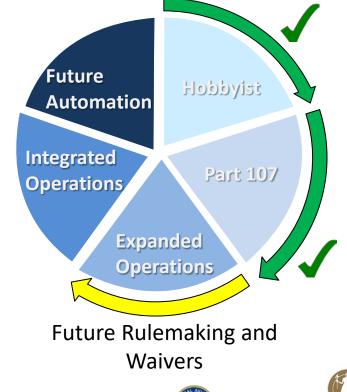
Resulting Logical System Safety Design Targets

Aircraft/Ops	Passengers	Complex Parts/Systems	Annual Hours Flown	Theoretical Target
Small Single /Recreational	1's	10's	10's	10E-6
Large Twin /Business Use	10's	100's	100's	10E-8
Airliner /Commercial	100's	1000's	1000's	10E-9

Created Tiered Approach to Theoretical Probability of Catastrophic Failure from Manned System Design

Certification Focus on Net Safety Gain

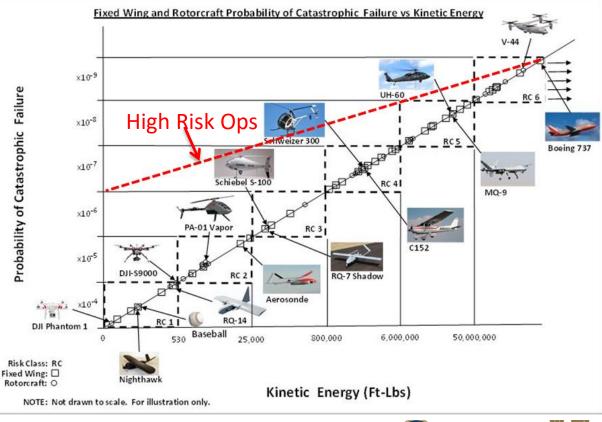
- New Technology Introduces Risk with its Benefits
- Example: Capstone Program in Alaska
 - Glass Displays for GA lower design assurance levels
 - Resulted in a 40% reduction in fatal accidents
 - Significant Initial resistance
- UAS
 - Will provide societal benefits
 - Risk-based, step-wise integration will manage risk



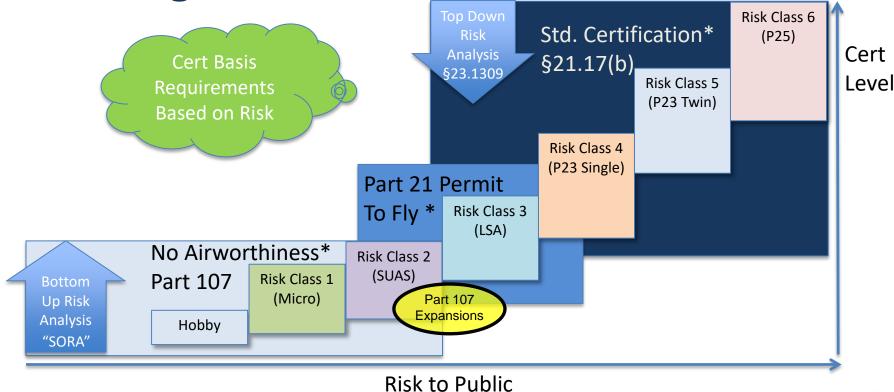
NATIONAL ACADEMY OF SCIENCES

Safety Assurance By Regulatory Buildup

- Hobbyist/Recreational Operations
- Low Altitude Small UAS (Part 107)
 - In line of sight of operator
- Operations Over People (107 Expansion)
 - Working Regulation Now
- Beyond Visual Line Of Sight (Permit to Fly)
 - Enable Low Risk, Small UAS First
- Integrated/Controlled UAS Ops (TC/PC)
 - Changes to ATM and Mature Technology
- Future Automation "Pilotless" Ops
 - Only as ATM and Automation Allow


UAS Regulatory Structure Increasing risk to public / mitigations / requirements **Risk Based Approach** 14 CFR 21.17(b) Special **Class Type Certification** Part 21 "Permit to Fly" Pending Rule Part 107, Small UAS **Airworthiness Certification** Production Approval/PC **Airworthiness Certification** Design Approval/TC **Industry Standards Customized Standards Operating Limitations Operating Limitations Operating Limitations** Size / Energy Size/Energy Size/Energy

UAS System Safety Targets – Initially Energy Based


- For Applicability of Airworthiness & Design Requirements
 - RC1 and RC2, Small UAS (Open, Part 107)
 - RC2 and RC3, Mid-Sized
 (Specific, PTF)
 - RC4 to RC6, Large UAS (Certified, Std. Cert)
- Does Not Set
 "Operational Safety""
 Target

Defining Scalable Safety Assurance Requirements

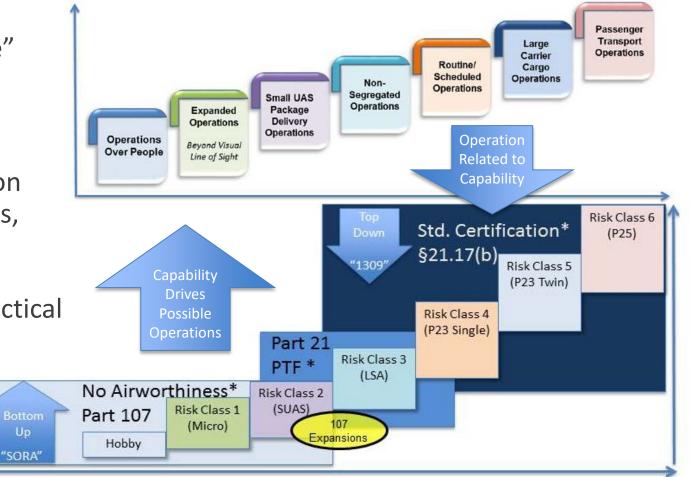
Resulting Risk-Classes Overlaid with Rules

* Dependent Upon Operational Integration

Risk-Based Operational Classification Strategy

For Applicability of Operational Requirements - Address
 Operational Risk Exposure While Avoiding a "Zero-Risk" Mentality

Increasing Level of Operational Integration


NATIONAL ACADEMY OF SCIENCES

Federal Aviation

Administration

The Two Classifications Are Notionally Related

- "Typical Use-Case" Related to Size, Capability, & Performance
- Level of Integration sets Requirements, Level of FAA
 Oversight, and
 Involvement in Tactical
 Operation

Evolution of Safety Analysis

- Societal Expectations Have Changed
- Safety Requirements Have Evolved
 - 1938 CAR 3 Does it work?
 - 1955 FAA What if it fails?
 - Am I still safe? Began evaluation of failures/malfunctions
 - 1968 FAA Fail Safe Designs Required
 - Started Initial "1309" Like Approach We Have Today
 - Mitigate Foreseeable Catastrophic Failures
- There are still no target probabilities in our regulations
- How can we safely enable UAS, and Future Transportation?

Risk Assessment Tools

- FAA SMS System
- Order 8040.4A Overarching Safety Risk Management Policy
- Safety Risk Management Guidance ATO SMS Manual
- Operational Safety Compliance Philosophy
- SAE Aerospace Recommended Practice (ARP) or best practices documents & AC 23.1309-1E
- JARUS SORA "Bottom Up" Approach to Risk/Mitigation
- Many More.....

Evaluating Risk Tolerance

- New Companies Will be Risk Takers or Risk Tolerant
 - Innovation/Market Advantage/Reward
- Established Companies Will be More Risk Averse or Cautious
 - Familiarity/Comfort/Established Process/Product
- Societies Behave Similarly
 - Look at how playgrounds/toys have evolved
- A Zero-risk, or risk-free society is a stagnant society
 - Uber Elevate concepts make UAS integration very important

Risk Analysis – Public Expectation

- The FAA is legally responsible for aviation safety we have the safest system in the world
 - FAA must safely manage the airspace
 civil operations, per Title 49 U.S. Code § 40103(a)(1)
- The public depends on competent risk assessment and risk mitigation
 - When risks are overlooked--public skepticism abounds.
- Balance is important overestimating risk can lead to high cost, complexity, and stagnation in innovation
 - New Transportation Concepts will challenge us all

Future Challenges for Risk Analysis

- UAS safely prototyping technology that will revolutionize flight
 - Automation & Flight Controls
 - Auto Collision Avoidance
 - Automation in Traffic Management
- Key to passenger carrying, highlyautomated aircraft
 - Requires early collaboration
 - FAA, NASA, industry, academia, municipalities

Summary – Safety From Experience

- We have a history of finding ways to bring new technology into the National Airspace System safely
- We are already using a well-proven risk-based approach to safety
- Society Recognizes a need for balance regarding FAA Rigor vs. Safety Improvement – Drives cost, time for project
- UAS Certification will lead to future technology benefits for manned aviation

Managed Risk Will Enable Future Flight

Questions? Wes Ryan, 816-329-4127 wes.ryan@faa.gov

