Revised Discharge Standards and the Challenge of Treating Increasing Sewage Volumes

Asit Nema B.Engg. (Civil), M.Tech. (IIT Kanpur, 1985), M.Sc. (Netherlands, 1993)

Formerly with Indian Engg. Services, 1985 Foundation for Greentech Environmental Systems D-208 Sarita Vihar New Delhi 110 076

Structure of the presentation

Introduction

- Background
- Countrywide status of sewage treatment
- Capacity created under NRCP
- Status of the metros
- Diverse issues affecting sewage discharges
- Discharge standards for STPs national and international
- Diverse schools of thought.
- An alternate paradigm.

Introduction

Current status re sewage treatment capacity and discharge norms.

- The presentation is neither a critique nor a prescription.
- It is experience sharing, bringing out issue and highlighting challenges.

Background

- Okhla Sewage Treatment Plant, 1937!
- Water (Prevention and Control of Pollution) Act, 1974
 - Min. National Standards (MINAS) as recommendations from CPCB to SPCBs.
 - Ganga Project Directorate, 1984
 - Ganga Action Plan, 1985
 - Yamuna Action Plan, 1993

- The Environment (Protection) Act, 1986
- The Environment (Protection) Rules, 1986
 - General Standards, 1988
 - General Standards in 1993 (+ / few parameters).
 - Revised standards for selected parameters, 2017.

Country wide inventory of STPs

Particulars		Total
Existing STPs across the country		695
- Operational STPs	615	
- Non-operational STPs	80	
STPs under construction		154
STPs under planning		71
Total		920
Compliance with discharge quality		~ 40%

Source: CPCB, 2015

Countrywide status of sewage generation & treatment

	2004-5	2014-15
Sewage generation	38,250	62,000
Installed STP capacity	12,000	23,500
% installed capacity	~ 30%	~ 38%

- Capacity utilisation of existing STP : ~ 30%
- Actual sewage treated (2015) : ~ 7,000 mld (11% of total generation)
- STPs' discharge compliance: ~ 40%.
- Untreated sewage discharge: ~ 55,000 mld (89% of total generation)

Countrywide status of sewage generation & treatment

MH, TN, UP, NCT Delhi & Guj (5/36) account for:

- \sim 50% of total generation in the country, and
- \sim 67% of the total installed STP capacity.
- 7 støtes/UTs without an STP:

Chhattisgarh, Daman & Diu, Assam, Tripura, Arunachal Pradesh and Nagaland.

Only HP & Sikkim and Chandigarh (UT) have adequate STP capacity to deal with present sewage volume.

Capacity created under River Action Plans

Ganga Action Plan Ph-I

- States : UP (UK), Bihar (JH) and WB
- Number of towns: 25
- Original estimated flow: 1340 mld
- Number of STPs: 34
- Aggregate STP capacity: 870 mld
- Cost (1994) : Rs. 462 Crore
- Yamuna Action Plan
- States: Haryana, UP (and Delhi)
- Number of STPs: 42
- Aggregate STP capacity: 732 mld
- Cost (1993-2003) : Rs. 676 Crore

- National River Action Plan (excluding GAP & YAP)
 - 14 states (AP, Tel, JH, Guj, Goa, KR, MH, MP, Odisha, Punjab, TN, Kerala, Sikkim and Nagaland)
 - Number of towns: 75
 - Number of river stretches: 31
 - Aggregate STP capacity created : 2,446 mld

STP capacity in Metro Cities

Status in the 65 metro and capital cities (more than 10 Lac Population).

- Sewage generation : ~ 15,644 mld
- STP capacity : ~ 8,040 mld
- Coverage : ~ 51%.
- Delhi & Mumbai : 55% of the total metro capacity.
- Remaining 63 cities account for the balance 45% capacity.
- In most of these cities > 50% of the sewage is discharged untreated.

Sewage treatment capacity in Delhi

- Number of STPs : 36
- Sewage generation : 4155 mld
- Aggregate installed capacity: 3110 mld
- Operational capacity: 2755 mld
- Sewage collected and treated : 2065 mld (50% of generation)
- Untreated sewage discharged into river
 Yamuna: 2090 mld (50%)
- STP capacity utilization: 66%

- 318 mld STP to be commissioned in 2019.
- 564 mld STP is planned at Okhla.
- Over 150 decentralized STPs (1-4 mld) are planned all across NCT for rural settlements.

Discharge norms in Delhi

	Norms	Capex /mld
1 st generation	30 : 50	
2 nd generation	20:30	0.9 Cr
3 rd generation	10 : 10; N _{tot} < 10mg/l P < 2 mg/l	1.8 Cr.

Yamuna in Delhi

STP capacity in Kolkata

- Number of STPs : 5
- Sewage generation : ~ 2200 mld
- Aggregate installed capacity: ~ 180 mld
- Sewage collected and treated : ~ 170 mld (~100 % of generation)
- Untreated sewage discharged into East Kolkata
 Wetland System: 2030 mld (+90%)

STP capacity in Mumbai

Sewage generation: ~ 2700 mld

- Number of existing STPs: 7
 - Installed capacity: 2130 mld
 - Mainly primary treatment
- Present collection and Tr. : 1384 mld (~50%)
 - Untreated discharge: ~ 1300 mld (~50%)
- Proposed new STPs: 7
 - Aggregate capacity: ~ 1700 mld

Secondary and tertiary treatment for Re-N-Re!

STP capacity in Chennai

- Sewage generation: ~ 1800 mld
- Number of existing STPs: 12
 - Installed capacity: 764 mld

- Present collection and Tr. : 550 mld (~ 30%)
 - 36 mld treated sewage Re-N-Re in industries.
 - Untreated discharge: ~ 1250 mld (~70%)

Diverse issues affecting sewage treatment

- Non-existent or partial sewerage systems.
 - Limitations of trunk sewers.
 - Arbitrary diversions to open drains.
- Weak enforcement for house connection.
- Inadequate conveyance system.
 - Inadeguate pumping capacity.
 - Inoperative pumping machinery.
 - Inadequate back up capacity.
 - Unwillingness to operate generators.

- Lack of funds with ULBs for :
 - O&M of Sewage pumping stations.
 - O&M of STPs.
 - Replacement of worn-out equipment
- Limited technical expertise for operation.
- Rapid deterioration of plant and equipment.
- Lack of MIS and supervision.

- Lack of robust and systemic approach for continuous monitoring and evaluation at the program level.
- Inconsistent paradigms of (1) resource and energy recovery coupled with (2) cost, energy and footprint minimization.
- Lack of inputs towards capacity building.

Revised STP discharge standards

Parameter				andards STPs		EU	China
	Water bodies	Land					
рН	6.5 – 9.0	6.5 – 9.0	6.5 –	9.0	6.5 – 9.0	NA	6-9
BOD (mg/l)	30 3d@ 27°C	100 3d@ 27°C	10 3d@	27° C	20^{\$} / 30 3d@ 27°C	25 5d@ 20°C	30 5d@ 20°C
COD (mg/l)	250	NS	50		250	125	100
TSS (mg/l)	100	200	20		50 ^{\$} / 100	35 ^a / 60 ^b	30
NH4-N (mg/l, N)	50	NS	5		NS (50)#		
TKj-N (mg/l, N)	82 (100 as NH ₃)	NS	NS	;	NS (82)#		
Nitrate-N (mg/l, N)	10	NS	NS	;	NS (10)#		
Total-N (mg/l, N)	NS (~ 92)	NS	10		NS (~ 92) [#]	10 ^c / 15 ^d	
Phosp. (mg/l, P)	5^	NS	NS	;	NS (5)#	1 ^c / 2 ^d €	3
Faecal Coliform (MPN/100 ml)							
- Desirable	100)0 [*]	< 100		< 1000		40.000¥
- Max perm.	10,0	000*					10,000 [¥]
\$: Metro and state capitals ^: Dissolved Phosphorus #: Min. National Standards*: Recommended under N ¥: Total coliform			RCP.		a: > 10,000 PE c: > 100,000 PE €: Total (dissolved + s	b: 2,000-10,000 PE d: 10,000-100,000 suspended)	

WWTP effluent thresholds, EU Directive 91/271/EEC

_							
	Parameter	Unit	Maximum	Remarks			
			concentration				
	Biochemical oxygen demand	mg/l O ₂	25	Without nitrification			
	(BOD ₅)						
	Chemical oxygen demand (COD)	mg/l O ₂	125				
	Total suspended solids (TSS)	mg/l	35	60 (Discharge < 10,000			
				PE)			
	Total phosphorus (P _{tot.})	mg/l P	2	1 (Discharge > 100,000			
				PE)			
	Total nitrogen (N _{tot.})	COD : BOD rat	io = 5	00			

German Wastewater Directive (AbwV)

Sample according to size of WWTP	Population Eq.	COD	BOD ₅	NH4-N	Total Nitrogen (as N)	Total Phosphorou s (as P)
Class 1: < 60 kg/d BOD ₅ (raw)	1,000	150	40	-	-	-
Class 2: 60 to 300 kg/d BOD ₅	1,000-5,000	110	25	-	-	-
(raw)						
Class 3: 300 to 600 kg/d BOD ₅	5,000-10,000	90	20	10	-	-
(raw)						
Class 4: 600 to 6,000 kg/d BOD ₅ 1. Qualified sample or 2 h m (raw) 2. No specification for N and	-	90	<mark>OD ratio =</mark> 20	3.75 - 5 10	18	2
	100.000	75		40	40	4

Indian revised standards – few observations

Uniform standards for discharge into water bodies or on land for irrigation.

- Uniform standards for plants/ ULBs of all sizes.
 - 30:100 remains for all non-metro cities.
- MINAS apply for all other parameters not specified in the Oct 2017 Notification.
- Do not specify nature and duration of samples; permissible violations in a month/year.
- Appgrent resistance in lowering of standard for COD
 - COD: BOD ratio is between 8 12.5

The challenges of nitrogenous oxygen demand and phosphorus are yet to get consideration.

Correlation between Total-Nitrogen and Faecal Coliform is yet to be addressed.

Diverse schools of thought

Full treatment in one go - effluent quality at par with the best.

- Energy and resource recovery.
- Minimalist approach:
 - Minimising foot print.
 - Minimising energy requirement.
 - Minimising capital and operating costs.
 - Wøter resources diversion for productive uses.
 - Ecological discharge in rivers.
 - Zero discharge from STPs.

- Lessons from the past
 - There are no easy solutions.
 - Resources are limited.
 - Slow speed in capacity creation
 - Last 30 years average capacity

@ 750 mld/annum.

An alternate paradigm

- Can we keep things simple practicable and affordable?
- Wider geographical coverage over the watershed/ river basin versus few plants producing high effluent quality.
- To start with, aim for moderate effluent quality.
- Plant/upgradation in stages to achieve higher effluent quality.
 - Phase-I: Enhanced Primary Treatment.
 - Phase-II: Secondary Treatment.
 - Phase-III: Tertiary Treatment.

Comparative organic load reduction assessment

Particulars	Unit	Conventional approach	Enhanced Primary Treatment approach	Remarks
Sewage quantity	mld	62,000	62,000	
Quantity being treated	mld	7,000	43,400	11% v/s 70%
Raw BOD	mg/l	200	200	
Final BOD	mg/l	30	50	75% reduction
BOD reduction	mg/l	170	150	
BOD load reduced	Tonnes/day	1,190	6,510	
BOD load discharged	Tonnes/day	11,210	5,890	

