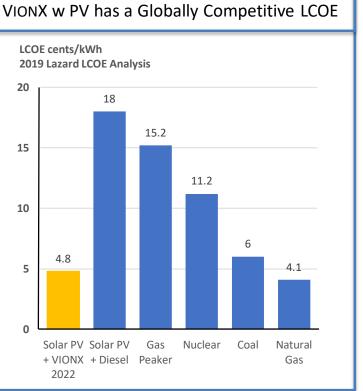
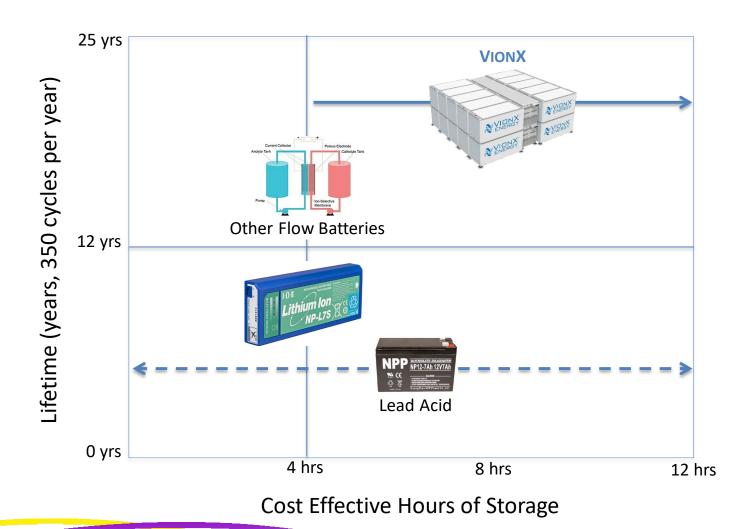

Long Duration Storage + Solar Microgrid Solution for Africa


December 3^{rd,} 2019

VIONX has a Solution for Africa's Pressing Energy Needs

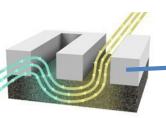
VIONX + PV has achieved cost parity with fossil fuels


- Plunging solar prices enable displacement of fossil fuel-based generation
- 24 X 7 baseload using solar + diesel genset remains highest cost
- VIONX Long Duration Storage + Solar PV delivers lowest cost baseload alternative

VIONX: Designed for 4 to 12 Hour Duration

Vanadium is the only solution that marries lifetime and cost efficiency

Patented Stack Design, Strong IP Protection

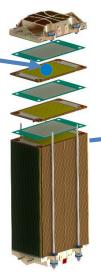

Disruptive VIONX Exclusive IP enables flow battery commercialization

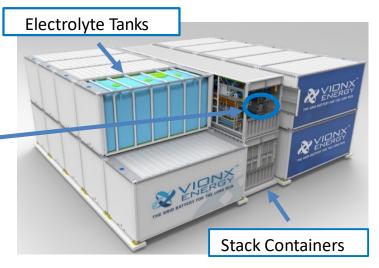
- 50+ Years of United Technologies R&D
- Over 50 patents filed
- Patented "interdigitated flow field" (X-Flow Field)
- Unique stack components
- Patented electrolyte process
 X-Flow Field
 UEA

- Unmatched power density
- 30+ year durability
- Long duration at high stack power

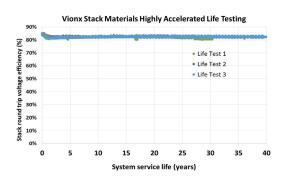
Stack

System

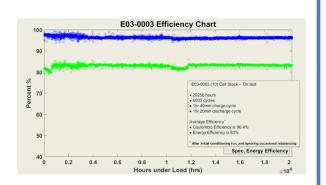


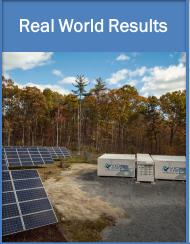

Low pressure flow

Unitized Electrode Assembly



No Degradation Confirmed by Lab/Real World Results

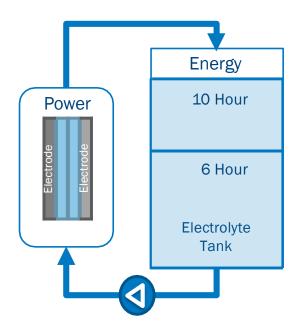

Proven durability



Stack Efficiency Maintained for 40 Years

20 Year Daily Usage w No Degradation

>20k Hours w 97% Availability



VIONX Advantage: Longer Duration = Lower Cost

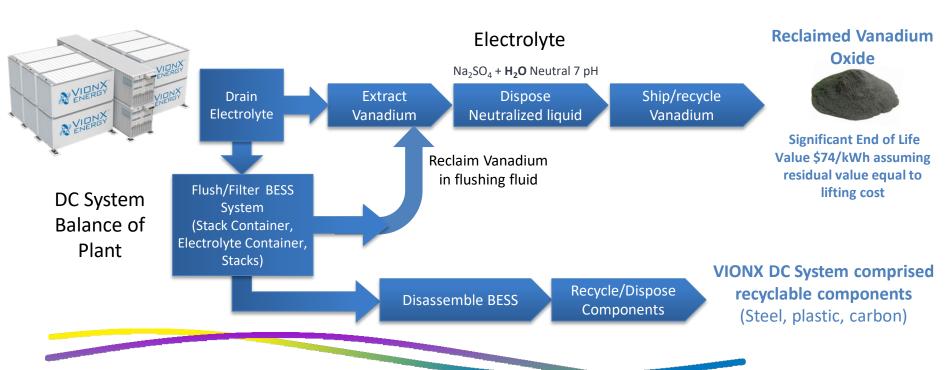
CAPEX advantage due to independent power and energy scaling

VIONX Open Architecture

- Power and energy are independent
- Duration increased by adding electrolyte
- No additional power components needed

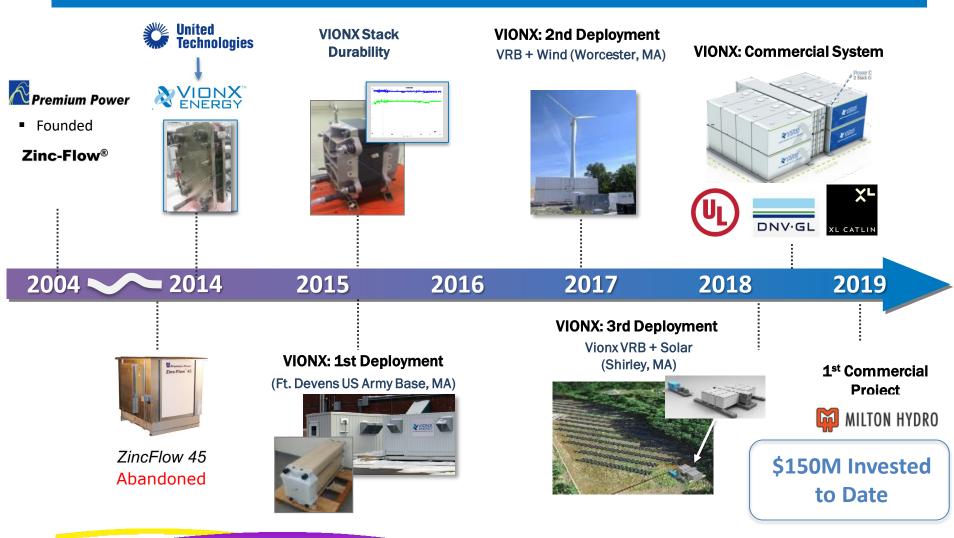
Li-ion Closed Architecture

- Power and energy are dependent.
- Duration increased by adding power and energy
- Power is added to achieve longer duration


8 Hour Li-ion = \$\$\$\$ Power + \$\$\$\$ Energy

VIONX VRFB is Fully Recyclable at End of Life

Vanadium residual value offsets disposal cost with significant net positive value


VIONX End of Life Recycling

- Vanadium electrolyte is completely recyclable with the following options:
 - Option 1: Vanadium is recovered and reused as liquid electrolyte in another Vanadium redox flow battery system
 - Option 2: Vanadium Oxide (V2O5) is reclaimed from the electrolyte by a simple process of precipitation. This final V2O5 product is the form of Vanadium openly traded in the market
- VIONX Flow battery systems components are fully recyclable (ex. steel, plastic, carbon)
- Vanadium residual value offsets end of life disposal cost with significant net positive value at end of life

VIONX History: How We Got Here

Commercial ready as a result of disruptive IP, investment and years of development

VIONX Has Grid-Scale Validation Systems Running

VIONX has live solar and wind grid integration and time shifting projects

160kW / 640 kWh System

- ✓ Micro-Grid Control Compatibility
- ✓ Time-of-Use Rate Reduction
- ✓ Demand Charge Reduction

6 Hours
Wind
Integration
Worcester, MA

500kW / 3,000 kWh System

- ✓ Wind Integration (600kW Wind)
- √ Time-of-Use Rate Reduction
- ✓ Demand Charge Reduction

Q3 2019 6 Hours
Solar
Integration
Shirley, MA

500kW / 3,000 kWh System

- ✓ PV Integration (1 MW Solar)
- ✓ Voltage Support
- ✓ Load Following

VIONX Commercial Product Design

VIONX architected with a scalable design that marries high performance + low cost

Modular Architecture

Makes supply chain flexible, and easy to outsource, while minimizing installed cost and complexity

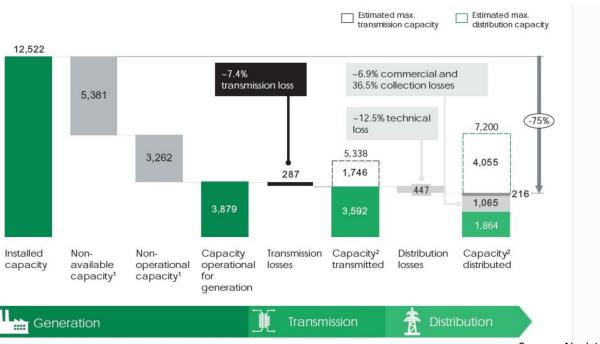
- Each component can be made by the optimal partner in the optimal location:
 - Core IP/stack technology in the US
 - Containers/BOP in Asia
 - Final assembly local
- Flexibility to add power or energy as project evolves
- Site cost and complexity minimized by centralization of power and control components to two containers

Designed to Maximize Uptime, Minimize O&M

Design improvements have lowered 0&M 70%

- Problems can be diagnosed/fixed without the high cost and extended downtime of draining the system
- Easy to swap in/out components
- Electrolyte 100% double walled/contained

VIONX VNX 1200 Battery (1.2 MW 10 hr)


Shown: 1.2 MW / 10 MWh DC System

Nigeria Case Study: Grid currently Insufficient to Meet Demand

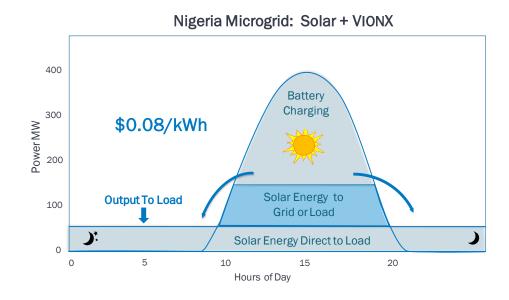
Exemplifies a need for an African energy solution to meet growing demand

- Nigeria has 12,500 MW of installed generation capacity grossly insufficient to meet demand
- An estimated 14-20 GW of businesses in the country possess and rely on standby generators for power
- Nigeria Federal Government plans to work towards adding 13GW of off-grid solar power by 2030 to meet the growing needs as per Intended Nationally Determined Contribution (INDC) to the United Nations Conference of Parties 21 (COP21)

Nigeria Power Sector Energy Flow (MW)

Source: Nesistats

Proposed Solution: Solar + VIONX Storage

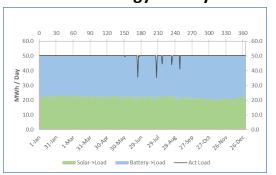

Safe, Clean, Economical Baseload enabled with VIONX's long duration storage

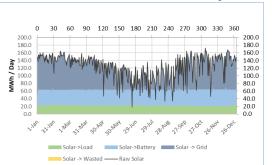
VIONX Storage + Solar key attributes:

- Enables complete transition away from fossil fuel-based generation
- Enables islanded microgrids that can't rely on their neighboring grids for power
- Provides supply to meet daily cyclic requirements and reserve capacity for a 'rainy day'
- Maximizes annual energy output with increasing duration when coupled with solar

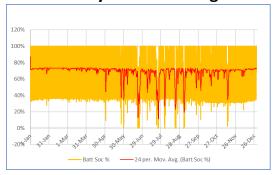
VIONX long duration storage enabling attributes:

- Lowest lifetime cost (LCOE) at long duration
- 30yr life with no degradation
- No cycling or calendar-based capacity fade
- Safe (Non-Flammable No thermal runaway)
- Fully recyclable with positive end of life residual value




Renewable Baseload Energy = Solar + VIONX

Solar + 7.5 MW VIONX In Nigeria in 2020


Load Energy vs. Day

Solar Allocation vs. Day

Battery State of Charge

- 7 F M/M/ Datton

\$166

80.1

• Charts represent 30MW solar case

Onitcha Nigeria

99.70%

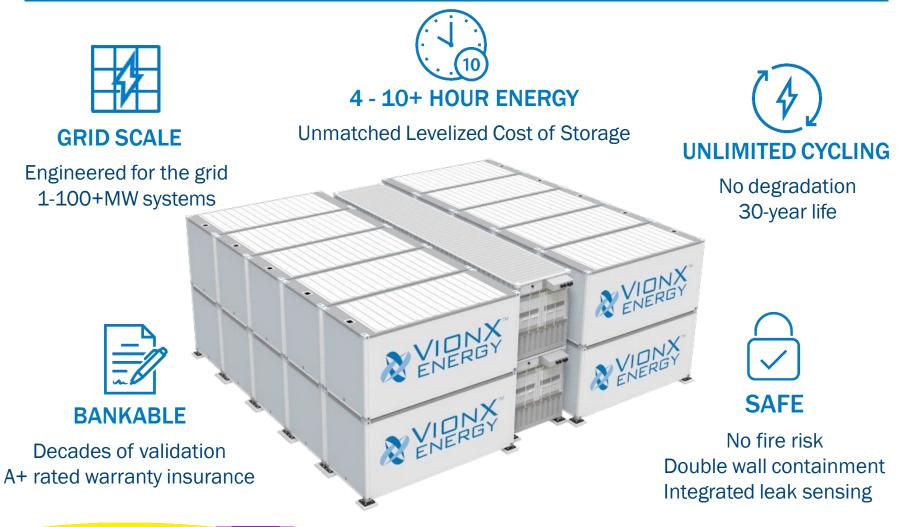
10

Site	(5)x1.5MW x 8.6MWH 2.1 MW		 VIONX 2020 pricing Purchased Elyte @ \$7/lb 25yr project life 		7.5 MW Battery,\$404/kW Installed solar\$313/kW Battery install cost		
System							
Load							
Solar Size (MW)	% Energy	Days Short/yr	Avg Excess Solar available if invertor upsized MWh/day	Solar + Diesel LCOE (54% diesel)	Solar + Storage LCOE without utilizing excess solar (\$/MWh)	Genset= 100%	LCOE with all available energy (\$/MWh)
15	91.40%	139	40	\$190	146	\$159	139
20	97.50%	52	52	\$186	146	\$150	110
25	99.20%	20	61	\$184	155	\$156	91.7

\$182

165

73


- MONV 2020 prining

30

Sita

VIONX – Energy Storage Unlimited

VIONX Flow Battery addresses the needs of storage for renewable integration

