

Wide Area Monitoring and Control

Schweitzer Engineering Laboratories

André du Plessis

SEL

- Headquarters: WA
- US Manufacturing: ID, IL, WA
- Invent, Design, Build, and Support the Systems That Protect and Control Power Systems
- 5600 employees
- Product in 161 countries
- Africa offices: South Africa, Ghana

We Provide End-to-End Solutions

- Protection and control
- Automation
- Computing
- Software
- Precise time
- Security for critical infrastructure
- Metering
- Communications
- Engineering services
- Training

A Household Name in the US Top U.S. Utilities Trust SEL

99% of top investor-owned utilities use SEL

Sustained Employee Growth

Content

- Challenges
- Solutions
- Case Studies

Problem

When the power went out, linemen had to physically search power lines for the problem

Solution

SEL introduced the world's first all-digital protective relay with fault-locating technology

Performance and Reliability Matter

- SEL 10 Year Warranty
- Mean Time Between Failure (MTBF)
- Life Cycle Costing
- Type Testing

Problems and Solutions

We learn from our mistakes to find solutions that work

2003 Northeast Blackout Lessons Learned

 Time synchronization for digital fault recorders (DFRs)

 Phasor measurement units (PMUs) for better system-level view

 Events time-tagged within 4 ms accuracy

Correlation of Time-Stamped Data Real-time as opposed to estimated time

SCADA Misses Information

What Is a Synchrophasor?

Event Reports for Detailed Analysis

Event Database for Analysis

Benefits

- Faster analysis of system events
- Better understanding of power system during disturbances
- Situational awareness for operations

Cost Effective Solutions

Wide area monitoring and control pays itself when it operates:

- Cost of a Blackout
- Social Implications
- Political Implications
- Better Power System

Which Power Systems?

- Weak power system
- Radial power systems with concentrated generation
- Intentionally or unintentionally created Islands
- Isolated power systems (MicroGrids)
 - Small populated areas with generation-load unbalance
 - Isolated Industries
 - Refineries
 - Floating Oil Platforms

Why Faster Trip Times Matter

- Better stability
- More energy transmitted
- Less loss of life and property
- Less damage from faults
- Less cascading
- Less stress from overloading
- Less stress on transformers
- Less stress on generators
- Less voltage sag
- We <u>can</u> because we have the technology

The Need for Speed

Moving Energy at the Speed of Light Safer • Less Damage • Improved Dynamics

Sub 40 ms Scalable Architectures

Fast SEL Products are the Fastest Systems in the World

Wide Area Monitoring & Control: Microgrids

- A form of Wide Area Monitoring and Control grid-tied microgrids
- Navigant 2018 Global Research Leaderboard for Microgrid Controls:
 - 15 vendors reviewed
 - SEL #1
- About performance (not only standards)

Wide Area Protection and Control Projects

Guatemala: Synchrophasor control Modal analysis (MA) – Electromechanical Instability

Republic of Georgia: Emergency Control System – Country Wide Mitigation

Uruguay: Over-Load and Stability Control – Country Wide Mitigation

Peru: Power Angle Control – Stability

Spain-France: HVDC Data for HVDC Link –Control

Idaho-USA: Generation Shedding – Stability

Central America and Its Link to Mexico

Guatemala SCS

July 28, 2012 – MA Trip: Frequencies

Control Center SCADA / Synchrophasors

Georgia Power System

Georgia Centralized Architecture Emergency Control System or

RAS/SPS

Crosspoint Switch Preloaded and Ready to Go

Contingency	Loads selected to Shed					
	Load 1	Load 2	Load 3	Load 4	Load 5	Load 6
Loss of G1		X	X			
Loss of G2	X					X
Loss of G3	X			X		
Loss of G4			X		X	X
Bus Tie		X		X	X	

Georgia Special Protection System Operations for 2014

Georgia Reliability Increases

- ECS operates country-wide between 30-40ms
- Georgia's GDP during this time was about \$1.95 million per hour. Assuming an average duration of 1 hour per blackout this solution has saved Georgia \$39 million. The solution cost about \$2 million.*
- Quality/robustness of equipment allows installation in the yard, not control room (Certified: -40 to +90 C, Margin testing included: -45 to +95 C). Philosophy of Quality. Not standards.

^{*} GSE statistics

USAID GSE Substation Project

- 12 Substations renovated
- Project finished 1 year ahead of schedule –
 USAID request
- Why mention of protection and wide area monitoring together?
 - In combination, protection rehabilitation and wide area monitoring we observed a significant increase in reliability

GSE 12 Substation Rehabilitation Project Relay Maloperation due to Complex Circuits

Georgia Reliability Increases

- Protection devices serve dual purpose: protection as well as wide area monitoring & control
 - Synchrophasors imbedded in conventional protection equipment such as relays, meters, etc.
 - Complex circuits reduced

Basic Monitoring and Control

CONCLUSIONS

WIDE AREA MONITORING PROTECTION AND CONTROL NEEDED

- Human control too slow and risky we get speed and automation
- Need power system visibility
- Angular Instability
- Electromechanical Oscillations
- Instantaneous load shedding of non-critical load
- Islanding
- Accurate <u>fault location</u>
- Reliability and revenue

Making Electric Power Safer, More Reliable, and More Economical for Over 30 Years

