Presentation Goals

Common Gaps Observed; 2016-17

- Operational Readiness for EAPP Regional, Cross-Border Transmission Grid Operations

Mitigation Plan Implementation

- Capital Equipment
 - Plans & Procedures
 - Studies

Background - EAPP Interconnection Code Compliance

2012: EAPP Interconnection Codes (IC) Developed

 Technical rules necessary to ensure the East African region transmission grid is planned and operated in a reliable, secure and efficient manner.

2016: Council of Ministers Approve Implementation

"EAPP IC Compliance Program, Stage 1 Operations".

2016-17: Utilities Identified Gaps, Developed Mitigation Plans

- Self-assess current state of readiness for cross-border, interconnected operations utilizing IC Standard
- ² requirements.

() Nexant

Interconnection Code Objectives

- <u>Common standards</u> for operational security, reliability, and quality of supply in the Interconnected Transmission System of Eastern Africa
- Encourage integrated planning of generation capacity and transmission expansion
- Define responsibilities for the operation and management of the network
- Ensure that Operators are trained and authorized to take necessary actions to maintain reliable grid operation

Interconnection Code Compliance Criteria

- Transmission Systems
 - * Transmission voltages of 60kV and higher
- Generators

- * 30MW plants connected to transmission systems at voltages of 60kV or higher
- Distribution Systems
 - Connected to transmission systems of voltages 60kV or higher

EAPP Interconnection Code Sections

Code Sections

- General Conditions (GC)
 - Glossary and Definitions
- Connections Code
- Operations Code

- Interchange Scheduling and Balancing Code
- System Operator Training Code
- Planning Code
- Data Exchange Code
- Metering Code

* Legend: **Stage 1** & Stage 2

Standards and Measures

6

For each Code requirement, standards and measures are developed:

- Standards: describes the Code requirements
- Measures: describes what is required and the recommended evidence to demonstrate compliance

() Nexant

IC Standard Example

Code	Standard #	Standard	Measure	Phase
*	*	▼	▼	, T
05 OC	OC-123	Each TSO establishes plans for Automatic Load Shedding for underfrequency and undervoltage conditions.	 i) Each TSO has plans for Automatic Load Shedding for underfrequency and undervoltage conditionsii) Controls and instrumentation are installed and tested to enable automatic load shedding plans when needediii) Details of the Automatic Load Shedding plans and any constraints to their implementation are documented and communicated to EAPP CC 	1

EAPP Interconnection Code Guidelines

Supplement to the Interconnection Codes to clarify the standard's requirements and measures:

- Off-Nominal Frequency Planning
- Governor Response Settings
- Automatic Generation Control Requirements
- Emergency Plans for Capacity or Energy Shortages
- Emergency Manual Load Shedding Plan
- Operational Planning Procedures
- Synchronization Capability
- Power System Stabilizer Capability
- Out-of-Step Protection Capability
- System Restoration and Black Start

Stage I - Standards Needed for Initial Cross-Border Operations

A. Monitor and Control Frequency

A1. Off Nominal Frequency PlanA2. Primary Response and GovernorsA3. Secondary, Tertiary Response and AGC

B. Monitor and Control Voltage

9

C. System Protection Requirements & Coordination

Stage I - Standards Needed for Initial Cross-Border Operations

D. Operational Planning, Coordination & Communication

- D1. Interchange Schedules
- D2. Transfer Capabilities
- D3. Outage Planning
- E. Emergency Plans

- F. Lines of Communications; Neighboring TSO's
- G. Operator Training

Responsible Entities

An entity that has responsibility for complying with part or all of a given standard

- Transmission System Operator
- Generator User
- Distribution User
- EAPP

11

- EAPP Steering Committee
- EAPP Permanent Secretariat Coordination Centre
- Independent Regulatory Board
- Code Review Panel
- Subcommittee on Operations
- Subcommittee on Planning
- Subcommittee on the Environment

Implementation Process

Existing & Planned Interconnectors

Gradual Transition from Islands to Regional Interconnectors

Common Fundamental Issue Observed

- Which Codes to Follow?

Mitigation Plans

Plans that address any gaps identified during the Gap Analysis:

- The Plan must include what needs to be done, by whom, and by when
- For equipment needed, the estimated capital cost shall be included

() Nexant

Mitigation Plan Implementation – by Type

() Nexant

17

* Aggregate of Member's Validated Gaps

Similar Mitigations Needed by Members

- Capital Equipment

	Operating Category	Function	* Level of Effort	** Cost Impact
1.	Off-Nominal Frequency Plan (aka UFLS)	TSO / DUser	High	Medium
2.	Secondary Response; Automatic Generation Control	TSO / GUser	High	High
3.	Voltage Monitoring & Control	TSO / GUser	High	High
4.	System Protection	TSO/ GUser /	High	Medium
		DUser		
5.	Primary Response; Generator Governors	GUser	High	Medium
6.	Communication Links; Fiber Optics	TSO	High	Medium

- * Level of Effort: Qualitative estimate of the labor and skill required to complete.
 - **** Cost Impact:** Rough estimate of the cost to mitigate gaps.
 - Medium = \$500,000 \$4,999,000 High = > \$5,000,000

() Nexant

THANKYOU

Bob Stuart, Nexant Power System Operations Subject Expert