Real-World Examples: Federal and DoD Perimeter Protection

Basil J. Steele
Sandia National Laboratories

A Summit on Perimeter Security
American National Standards Institute
Homeland Security Standards Panel
May 17, 2005
What is a PIDAS?

P - Perimeter

I - Intrusion

D - Detection and

A - Assessment

S - System
A mutually supporting combination of barriers, clear zones, lighting, and electronic intrusion detection, assessment and access control systems constituting the perimeter of a Protected Area and designed to detect, impede, control or deny access to the Protected Area (PA).
“Hard” PIDAS Requirements

- PA will be protected by a system using Protective Forces, barriers, and intrusion detection
“Soft” PIDAS Requirements

- Number of Sensors
- Sensor types
- Sensor layout
- Zone width
- Lighting type
- Lighting placement
- Camera types
- Camera layout

Complimentary

- Broad dynamic range, light limiting, 5 vertical scan lines
User’s Performance Requirements

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Threat</th>
<th>R</th>
<th>N</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early Detection/Accessment of Ground-Bourne Threats</td>
<td>Unarmed Personnel</td>
<td></td>
<td>X</td>
<td>Do not want to detect unarmed personnel</td>
</tr>
<tr>
<td></td>
<td>Personnel with Weapons</td>
<td></td>
<td>X</td>
<td>Can we discriminate between armed adversaries and workers with tools?</td>
</tr>
<tr>
<td></td>
<td>Personnel with Explosives</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Personnel with Radioactive Materials</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>“Light” vehicles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>“Heavy” vehicles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trojan Horse vehicles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Explosive vehicles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detection/Accessment of Ground-Bourne Threats</td>
<td>Unarmed Personnel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Personnel with Weapons</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Personnel with Explosives</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Performance

- Sensor Characteristics
 - Probability of Detection, P_d
 - Nuisance Alarm Rate (NAR)
 - Vulnerability to Defeat
Exterior Sensor Technologies

- Microwave
- Ultrasonic
- Active Infrared
- Passive Infrared
- Capacitance
- Sonic
- Vibration
- Fiber Optics
- Video Motion Detectors
Features of a Good Barrier System

- Provides delay after detection
- Exhibits balanced design; no weak links
- Uses delay-in-depth
- Designed for maximum credible threat
Schematic of Typical System

- Limited Area
- CCTV
 - IR
 - MW
- Sector Length Approx 75 m.
- Protected Area
 - High Pressure Sodium Lights
 - Taut Wire
 - Power Cabinet
 - CAD Box
- Perimeter Protection
Soft Requirements

Sensor types

Sensor layout

Topography

Design

Lighting layout

Camera layout

Perimeter Protection
Exterior CBRN Detection Technologies

- Chemical
- Biological
- Radiation
- Medical Surveillance
- Intrusion Detection
- Etc.
Early Warning Detection

LaserGuard AES CEDAR

SPIDER PSRS M-Star QUPID
Perimeter Protection

- SPIDER
- PSRS
- M-Star
- QUPID
INTENT?
Summary

Questions and Answers

Basil J. Steele
(505) 845-3620
bjsteel@sandia.gov

MS 0768
Sandia National Laboratories
P.O. Box 5800
Albuquerque, NM 87185-0768