

Presented by:

Leticia Pibida, Ph.D. leticia.pibida@nist.gov

Summary of NIST Efforts in DHS/DNDO Work

Standard development

- Consensus standards ANSI/ IEEE, IEC, ASTM
- Technical capability standards Government unique standards being developed by DHS/DNDO
- Validation testing of standards

DHS/DNDO Testing of radiation detection instruments against standards

- GRaDER®
- ITRAP+10

NIST

Rad/Nuc Detector Standards Development

http://standards.ieee.org/getN42/

- ANSI N42.32 (IEC 62401) under revision
- American National Standard Performance Criteria for Alarming Personal Radiation Detectors for Homeland Security
- ANSI N42.33 (IEC 62533)
- American National Standard for Portable Radiation Detection Instrumentation for Homeland Security
- ANSI N42.34 (IEC 62327) under revision
- American National Standard Performance Criteria for Hand-held Instruments for the Detection and Identification of Radionuclides
- ANSI N42.35 (IEC 62244) under revision
- American National Standard for Evaluation and Performance of Radiation Detection Portal Monitors for Use in Homeland Security

UNCLASSIFIED

Rad/Nuc Detector Standards Development

• ANSI N42.37

- Training Requirements for Homeland Security Purposes
 Using Radiation Detection Instrumentation for Interdiction and Prevention
- ANSI N42.38 (IEC 62484) under revision
- Performance Criteria for Spectroscopy-Based Portal Monitors used for Homeland Security
- ANSI N42.39 (IEC 62534)
- Performance Criteria for Neutron Detectors for Homeland Security
- ANSI N42.42 (IEC 62755) applicable to all instrument standards revision balloted
- Data format standard for radiation detectors used for Homeland Security

Information on ANSI N42.42: http://www.nist.gov/pml/div682/grp04/n42.cfm

Rad/Nuc Detector Standards Development

- ANSI N42.43 (no IEC)
- Standard for Mobile and Transportable Systems Including Cranes used for Homeland Security **Applications**
- (IEC 62618) • ANSI N42.48

Homeland

Security

- American National Standard Performance Requirements for Spectroscopic Personal Radiation Detectors (SPRDs) for Homeland
- ANSI N42.49 A &B (no IEC)
- Performance Criteria for Personal Emergency Radiation Detectors (PERDs) for Exposure Control
- ANSI N42.53 (IEC 62694) in ballot
- Performance Criteria for Backpack Based Radiation Detector Systems Used for Homeland Security

X-Ray Screening/ Active Interrogation Standards Development

- ANSI N42.41 (no IEC)
- Performance Criteria for Active Interrogation Systems used for Homeland Security
- ANSI N42.44 (no IEC)
- Performance and evaluation of checkpoint cabinet x-ray imaging security-screening systems
- ANSI N42.45 (no IEC)

Homeland

Security

- Evaluating the image quality of x-ray computed tomography security-screening systems
- ANSI N42.46 (IEC 62523) under revision
- Measuring the performance of imagining x-ray and gamma-ray systems for cargo and vehicle security screening
- ANSI N42.47 (IEC 62463/62709)
- Measuring the performance of imagining x-ray and gamma-ray systems for security screening of humans

IEC Standards Under Development WG B15

- SPRDs: IEC 62618
 - It is out as a CDV
- Backpacks (BRDs): IEC 62694
 - It is out as a CD3
- Imagining x-ray and gamma-ray systems for security screening of humans: IEC 62709
 - It is out as a CDV
 - The radiation safety part was developed in the IEC 62463 under WG B9
- Data format standard: IEC 62755
 - It is out as a CDV
 - Applicable to all radiation detection instrument standards

Rad/Nuc ANSI N42/IEC Standards Tests Types

- General tests: display, weight, size, data format, alarms, user interface (depend on detector type)
- Radiological tests: exposure rate, background, false alarm, gamma and neutron response, (strongly depend on detector type)
- Environmental tests: temperature, humidity, sealing (similar for all type of detectors)
- Mechanical tests: mechanical shocks, vibration, drop test (strongly depend on detector type)
- Electromagnetic tests: external magnetic fields, radio frequency, conducted disturbances (burst and radio frequencies), surges and oscillatory waves, electrostatic discharges (similar for all type of detectors)

Applicable Standards/Technologies for Cargo Screening

- RIIDs ANSI N42.34 (IEC 62327)
 Main use: CBP, Coast Guards, ports, borders, security
 RPMs ANSI N42.35 (IEC 62244)
 Main use: CBP, ports, borders, security
 SRPMs ANSI N42.38 (IEC 62484)
 Main use: ports, borders, security (outside the US)
 Mobile and Crane Systems ANSI N42.43
- Main use: CBP, ports, borders, security
- BRDs ANSI N42.53 (IEC 62694))
- Main use: Coast Guards, security, law enforcement
- Cargo and vehicle imaging ANSI N42.46 (IEC 62523)
- Main use: CBP, aviation, ports

Main Differences Between ANSI and IEC Standards - RIIDs

- Warm-up/stabilization time: IEC 10 min of power on. ANSI 2 min from dead start or standby.
- **Data format:** IEC provide list of elements required. ANSI adds ANSI N42.42 data format requirements
- Battery life: IEC 5 h. ANSI 2 h.
- Alarms: IEC requires an ambient dose equivalent rate indication (gammas and neutrons). ANSI requires a
 personnel protection alarm it does not specify if it is gamma and/or neutron.
- Explosive atmospheres: IEC no requirement. ANSI requires certificate if claimed by manufacturer
- Response time gamma: IEC gamma alarm within 3 s and ambient dose equivalent rate indication (±30% of 0.5 μSv/h) within 5 s. ANSI alarm within 2 s 50 μR/h (Cs-137) and exposure rate indication (±50% of 50 μR/h) within 5 s.
- Response time neutron: IEC within 10 s for Cf-252 20,000 n/s at 25 cm. ANSI within 2 s same source.
- Dose/Exposure rate indication: IEC ±30% 5 μSv h–1, 20 μSv h–1, 80 μSv h–1. ANSI ±30% for 0.1 mR/h, 5 mR/h, and 80% of the manufacturer-stated maximum response.
- ID radiation quantity: IEC uses ambient dose equivalent rate. ANSI uses exposure rate
- Radionuclide ID: IEC 1 min unshielded ¹¹¹In, ¹³³Xe, ^{99m}Tc, ²⁰¹Tl, ⁶⁷Ga, ¹²⁵I, ¹²³I, ¹³¹I, ¹⁸F. ANSI 2 min unshielded ⁴⁰K, ⁵⁷Co, ⁶⁰Co, ⁶⁷Ga, ^{99m}Tc, ¹²⁵I, ¹³¹I, ¹³³Ba, ¹³⁷Cs, ¹⁹²Ir, ²⁰¹Tl, ²²⁶Ra, ²³²Th, ²³³U, ²³⁵U, ²³⁸U, Pu [Reactor grade plutonium (>6% ²⁴⁰Pu)], ²⁴¹Am. Shielded source: IEC has 3 mm and 5 mm steel. ANSI has 5 mm steel different set of sources.
- Mixed radionuclides: IEC has ¹³⁷Cs + HEU, ¹³¹I + HEU, ⁵⁷Co + HEU, and ¹³³Ba + RGPu. ANSI has ¹³³Ba + RGPu.
- Interfering ionizing radiation (beta), FWHM, efficiency: IEC no requirement. ANSI has requirements.
- Impact (microphonics): IEC no requirement. ANSI 50 g peak acceleration, each applied for a nominal 18 ms in each of three mutually orthogonal axes

Main Differences Between ANSI and IEC Standards - RPMs

- Gamma sources: IEC uses Am-241 17 MBq, Cs-137 600 kBq, Co-60 150 kBq and ANSI uses Co-57 185 kBq, Ba-133 518 kBq, Cs-137 592 kBq, Co-60 259 kBq, Th-232 518 kBq, Am-241 1.74 MBq.
- Neutron source: IEC uses Cf-252 unscattered fluence rate of 0.04 n/cm²/s at face of RPM (equivalent to 20000 n/s 2 m). ANSI uses a 20000 n/s Cf-252 the distance to the RPM depends on type of portal (can vary between 1 and 5 m)
- False alarm rate: IEC no alarms in 100 h. ANSI 1 alarm in 1000 occupancies or 1 alarm in 2 h.
- **Response:** IEC 49 alarms in 50 trials. ANSI 59 alarms in 60 trials
- Over-range: IEC uses air-kerma 100 µGy/h. ANSI uses exposure rate 10 mR/h.
- Background effects: IEC has a step change over 5 s (uses Cs-137). ANSI the source moves at 0.08 km/h from a distance of 8 m (uses Cf-252 and Cs-137).
- Magnetic fields: IEC 30 A/m 50 Hz or 60 Hz, 2 orientations. ANSI has no requirement
- Radiated emissions: IEC has no requirement. ANSI 100 μ V/m 30-88 MHz,150 μ V/m 88-216 MHz, 200 μ V/m 216-960 MHz, 500 μ V/m >960 MHz.
- Mechanical shocks: IEC half-sine from all directions at an acceleration of 300 m/s² over a time interval of 6 ms. ANSI has no requirement
- Temperature: IEC –25 °C to +55 °C (±15% from –25 °C to +40 °C, ±50% from +40 °C to +55 °C) ANSI 30 °C to +55 °C (±15% full range)
- Sealing: IEC has moisture (same as ANSI). ANSI has moisture and dust (IP54)

NIST

Main Differences Between ANSI and IEC Standards - SPRMs

- ID radiation quantity: IEC uses ambient dose equivalent rate. ANSI uses exposure rate.
- Gamma response: IEC uses 320 kBq ¹³³Ba and 550 kBq ⁵⁷Co. ANSI uses 111 kBq ¹³³Ba and 185 kBq ⁵⁷Co.
- Neutron response: IEC requires bare and moderated (8 cm HDPE) ²⁵²Cf. ANSI requires bare ²⁵²Cf.
- Radionuclide ID: IEC and ANSI same list of radionuclides, activities are slightly different (there seems to have been some rounding of the numbers in the IEC standard)
- Simultaneous ID: IEC ^{99m}Tc+ HEU and 1³¹I+ RGPu. 0,05 μSv·h⁻¹. ANSI ⁴⁰K + ²²⁶Ra + ²³²Th + RGPu, ⁴⁰K + ²²⁶Ra + ²³²Th + DU, ^{99m}Tc+ DU, ¹³¹I+ RGPu based on same activities as single radionuclide ID test.
- Masking: IEC ⁴⁰K + ²²⁶Ra + ²³²Th + RGPu, ⁴⁰K + ²²⁶Ra + ²³²Th + DU, ^{99m}Tc+ DU, ¹³¹I+ RGPu (3:1 ratio based in dose rate). ANSI has no requirements
- Radionuclide not in library: IEC requires testing with ⁹⁰Sr/⁹⁰Y. No requirement in ANSI.
- FWHM and Efficiency: No recommendation in IEC. Measurement required in ANSI.

Main Differences Between ANSI and IEC Standards

• BRDs

- For ID radiation quantity: IEC uses ambient dose equivalent rate. ANSI uses exposure rate
- Very similar: the IEC is still in a draft form

Cargo and vehicle imaging

- Testing objects are not exactly the same
- ANSI standard has no radiation safety considerations (are being added in the revision)

GRaDER® Testing Against Standards

DHS/DNDO Project Manager Cheri Hautala-Bateman

Testing against IEC and ANSI standard:

- PRDs
- RIDS
- Backpacks

Includes US laboratories:

- PNNL/Northwest EMC
- SRNL/Global Testing Laboratories (GTL)
- ORNL

ITRAP+10 Testing Against Standards

Joint program between the DHS/DNDO and EU (US Project Manager Luc Murphy)

Testing against IEC and ANSI standard:

- PRDs
- RIDS
- Gamma high sensitivity meters
- Neutron high sensitivity meters
- Backpacks
- Portal monitors gross count and spectrometric
- Mobile systems
- SPRDs

Includes US and EU laboratories:

- JRC (Ispra)
- PNNL
- SRNL
- ORNL

Thank you for your attention

Questions?

