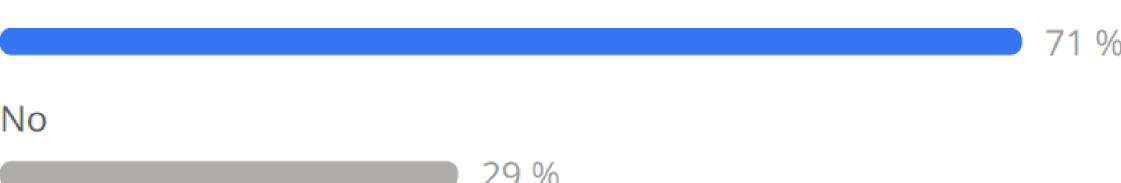
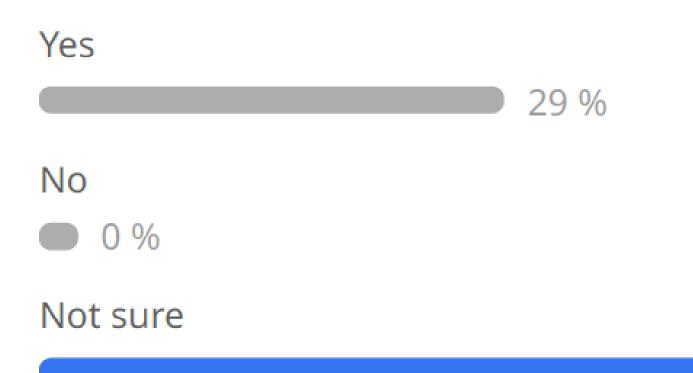
Breakout Session 3


Health and Environmental impacts

THIS IS THE H & I BREAKOUT GROUP (1/3)

Q1. There is a broad concern about the occurrence of nanoplastics in the environment and human exposure to nanoplastics through consumer use and in the workplace. Are nanoplastics different from other nanomaterials?


Q2: If you answered yes, how are they different?

- Many are incidental and not manufactured making exposure assessment particularly difficult.
- They are byproducts and not manufactured, they are also often inert or have lower "activity"
- More varied in terms of composition, size, shape, etc.

THIS IS THE H & I BREAKOUT GROUP (3/3)

Q3. There are existing standards and technical reports addressing nanomaterials generally and for some specific nanomaterials. Are these standards applicable to EHS concerns for nanoplastics?

Q4: If existing standards are not applicable what is missing?

- How do you marry a bunch of simple assays to provide a picture of potential environmental/health responses? Do we know key impacts, initiating events?
- Matrix management
- Standards do not represent what is in the environment along with appropriate and relevant sample prep is important (e.g. to disperse or not disperse)

Q5: Does any of the terminology already in use for nanomaterials generally nor work when applied to nanoplastics?

- The important size rangers are different for health related effects than other areas of nanomaterials
- The origin of the materials (i.e. being engineered compared to degradation of plastics)
- Generalities work sometimes but clarity is needed at the fundamental level (what is a plastic? Does "plastic" refer to what it is or what it was?)

Q6. Most nanoplastics can be considered as pollutants since they are not intentionally produced. Are standards needed for nanoplastics as wastes?

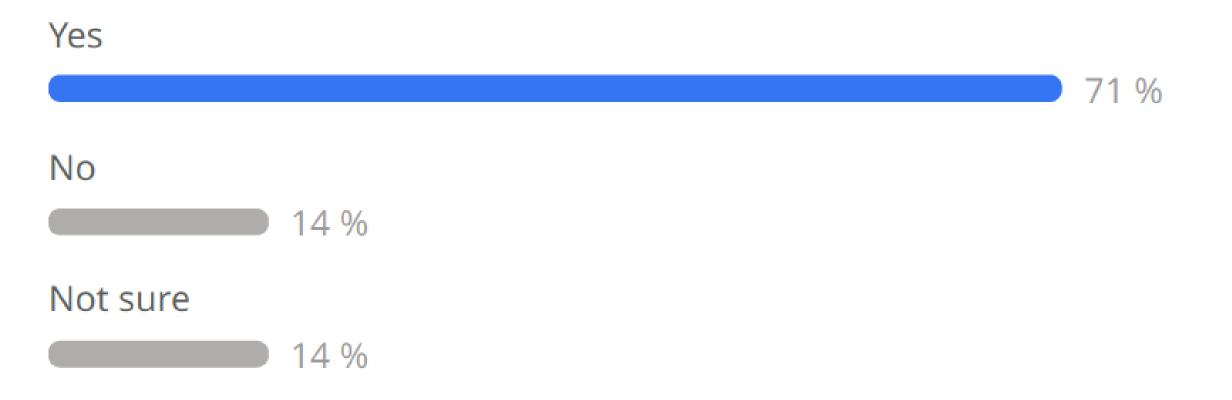
89

Yes

Q7: Are there examples of sampling/separation needs for nanoplastics for which standards would help?

- Need to look at this at different levels (environment, ecosystem, animal, organ, food) and desired levels of confidence
- There would be benefit to standardizing storage and preparation of different environmental matrices.
- Need to establish detection limits/accuracy of techniques and identification that could be composition and size dependent
- Detection protocols in relevant matrices such as water, indoor dust, sediment, biological tissues
- Weathered plastic standards are needed

Q8: Are there examples of sampling/separation challenges for nanoplastics for which standards would help?


- Separation of nanoplastics from other carbon containing matter is important. How do you separate what matters? NPs are likely diverse in the environment.
- Comparability of methods established from other nanomaterials will be useful at least as a starting point for nanoplastics.
- Due to the complexity and variability of what could be collected on a day by day basis, sampling size and frequency probably differ from standard collection procedures.

Q9: Can you identify tools to assess the toxicity of nanoplastics separately from when they function as carriers?

- Need a better understanding of the surface chemistry/interactions with the environment at that size
- Need to address which toxic materials are absorbed to nanoplastics
- NIOSH/Harvard laser printer studies postulate that toxic effects were not due to the nanomaterials/particles but that the nanoparticles where enhancing effects of emitted PAHs.
- There are many nanoplastics why are they special? Which particular ones should we focus on.
- Testing secondary effects such as the function as a carrier is very challenging to do in a standardized way and is usually not performed

Q10. Should intentionally manufactured nanoplastics be included in H&I studies?

Q11. How significant are non-waste generated nanoplastics?

Q12: What are the most important matrices for H&I studies at this time?

- Air, water, surface accumulation
- Food stuffs and human samples (like urine)
- Soil/sediment

Q13: Despite the data gaps for assessing H&I of all nanoplastics, what do we know about synthetics that could help us prioritize H&I research?

- We can use worker studies (like urethanes and PVC that present specific health effects) to point us towards plastics we should focus on studying at the nano level.
- Synthetics have a poorly soluble paradigm and degradation product profiling could occur depending on the closeness to production.
- We know polymers are complex materials that contain a mix of other chemicals and microorganisms including pathogenic ones.