Additives in concrete and other construction materials

Challenges in metrology, characterization, and implications

Dhimiter Bello, ScD, MSc

Professor, Biomedical and Nutritional Sciences Associate dean for research and graduate studies Zuckerberg College of Health Sciences UMass Lowell

(@)

Product Categories	
Abrasive blasting media (1)	Additives for asphalt (4)
Additives for coatings (39)	Additives for concrete/cement (27)
Adhesives (13)	Boiler additives (1)
Caulking (2)	Cement-based (29)
Coatings - glass/ceramic (40)	Coatings - metal (45)
Coatings - mineral surfaces (145)	Coatings - multi-surface (125)
Coatings - paints (38)	Coatings - wood (37)
Drywall (1)	Fasteners (1)
Flooring (18)	Fuel Additives (1)
Glass and solar panels (17)	Grout (3)
HVAC (5)	Insulation - Electrical (1)
Insulation - Heat/Frost (35)	Interior Design (1)
Joint Sealants (3)	Lighting (2)
Lubricants (19)	Lumber (6)
Metal (10)	Miscellaneous (15)
Patching compounds (17)	Prepregs (4)
Roofing (17)	Soil Stabilizers (2)
Surface preparation (15)	Thermal spray coating materials (11)
Weatherproofing membranes (4)	Welding (10)

Most frequent nano applications in COATINGS:

About

Coatings - Mineral surfaces, 145 Coatings - Multisurface, 125 Additives in coatings, 39 Coatings – glass/ceramic, 40 Coatings – paints, 38 Wood , 37 Insulation – heat/frost, 35 Additives for concrete/cement, 27

Many thanks to:

CPWR – Center for Construction Research and Training and NIOSH; & Bruce Lippy and Gavin West (of CPWR)!

And for funding us two 5-yr cycles to investigate reactive chemical systems in construction

Additives in asphalt and concrete

- SWCNT, > 5um long
- Amorphous silicas
- Calcium silicate
- Zn NPs
- Graphene and functionalized graphenes
- Nanocellulose
- Organo-silanes
- Proprietary additives (e.g. FASS-DRI) ™

Category: Additives for asphalt

Description:

FASS-DRI Pavement Sealer Additive is the result of an exciting break-through in additive chemistry. It enables you to open parking lots to traffic in as little as 30 minutes. Jobs can be completed faster - lots can be striped quicker for reduced down times. The technology behind Fass-Dri Pavement Sealer Additive enables sealers to dry from the bottom up as opposed to skinning over and trapping moisture within the sealer film. It drives moisture out resulting in rapid curing.

Typical Use:

Ideal for coal tar emulsion, asphalt emulsion, or blended sealers.

Apparent use of Nanotechnology: unspecified use of nanotechnology

Reason for Inclusion:

"<u>NANO-CURE™ TECHNOLOGY</u> FOR ASPHALT AND COAL TAR BASED PAVEMENT SEALERS

Product Link click to view product

Additives in Coatings/Paints

- Graphene
- MWCNTs
- Metal oxide nanoparticles
 - Al₂O₃, surface modified silica, ZnO, CeO₂, SiC, TiO₂, CaCO₃
- 3-D (proprietary polymer networks: nano clear coatings
- Several proprietary nanoparticle additives for improved barrier resistance, hydrophobicity, antimicrobial activity in paints, etc.
 - Nano shield

Real-world nano experiences to leverage for advanced materials/technologies

- Nano-additives in advanced polymer nanocomposites synthesis and processing
 - Multiple pubs investigating exposure-disease in workers
- Engineered nanomaterial additives in toners
 - Multiple pubs exploring PCM properties, chemistry, and toxicology
- Industrial steel structure coatings in construction
 - Multiple pubs/years investigating product chemistry, exposures, biomonitoring, PPE testing, and impact on workers' health

UMASS

Coating systems as a practical example

- The general industrial coatings sector is expected to reach 8.9 million metric tons in paints/coatings and \$23B value in global sales by 2020;
- More than 56,000 bridges in the United States are in need of repair or replacement;
- Industrial painter = Class 1 human carcinogen by IARC! (No idea what agents cause cancers)
- Little field research focusing on implications

Process: Sequential coating layers

Sand blasting to clean the surface

Primer coating

High solids, Zn-rich, epoxy rich - polyamide formulation

Mid-coat

Epoxy-based reactive systems

Top-coat

Aliphatic isocyanate-based reactive systems,

Reactive Systems: Steel structure coatings example

Spray painting & roller/brush appl.

Qualified coating products for use on highway bridge steel by Northeast Protective Coating Committee (NEPCOAT)

- List A-Inorganic primer three coat system
 - 6 products
- List B-Organic primer three coat system
 - 22 products
- List C- Organic primer two coat system
- List D- Inorganic primer three coat system

NTP

Syst

No

NEPO

	HEP4		NEPCO							cts Li	st A						
	for Protective NEW and 100% BARE EX																
	NTPEP						Slip	Manuf	Pr Coatin	g VOC	QPL						
	System		3-COAT	SYSTE	EM		Coef	DFT ((min/max)) Tested	Accepted						
	No.	Coats	TESTED AN	D ACCEPT	TED		Class	mil	micror	n g/L	Dates						
	NEPCOAT	LIST A	- INORGANIC Zinc Rich	Primer / Ep	oxy or U	rethane I	ntermedi	ate / Ali	iphatic U	rethane Finish	1						
	SSC(09)-01 SHERWIN WILLIAMS									NEP N	rotective	fied Products List B ive Coatings for EXISTING Steel for Bridges					
		Primer	Zinc Clad [®] DOT Inorgani		Primer		NIP			3-CO/	AT SYSTEM		Stip Coef		r Coating nin/max)	VOC Tested	QPL Accepted
		Interm Topcoat	Steel Spec Epoxy Interme High Solids Polyurethane	diate			No	. C	oats	TESTEI	AND ACCEPTED		lass	mil	micron	g/L	Dates
	¹ Footnote 4 mils max DFT, 48 hours min cure, 4% max thi						NEPCOAT LIST B - ORGANIC Zinc Rich Primer / Epoxy or Ure thane Intermediate / Aliphatic Ure thane Finish										
	SSC(12)-03		CARBOLINE COMPANY Carbozinc [®] 11 HS Inorga	Ţ			SSC(10	Pri Inte Top	imer Ame erm Ame pcoat Ame	rcoat [®] 399 Fast rcoat [®] 450H Gk	ac Rich Epoxy Primer Drying Epoxy oss Aliphatic Polyureth lays min cure, 3% vol n		B	3.5 4.8 2.5	75-125 100-200 50-125	276 177 306	from 12/14/2011 until mtg. fatt 2018
			Carboguard [®] 893 Epoxy I Carbothane 133 LV Aliph 6 mils max DFT, 19 hrs r	ntermediate atic Polyure	e ethane	in	SSC(10	Pri Inte Top	erm MC pcoat MC	SSER HIGH TEC Zinc 100 Miomastic 100 Ferrox A 100 lata reported.	TH COATINGS		Ø no eport	3.5 3.5 2.4	75-125 75-125 50-100	115 es 173 es 144 es	from 4/03/12 until mtg, spring 2019
			COAT Qua				sscar ts Li	Dei	Tine Vine	Spec Epoxy Int tids Potyuretha	rganic Zinc Rich Epoxy ermediate		۸'	3.5 3.8 3.5	75-125 75-200 75-125	337 293 288	from 10/02/12 until mtg. fatt 2019
C		1	for Prote NEW and 100% BAR				Bridge	S		RNATIONAL F inc [®] 315B Epo ard 47 5HS Epo	ny Zinc Rich ny		B 1	2-6 4-8	50-150 100-200	304 187	from 10/02/12 until mtg.
TPEP				Slip	Manuf'r	Coating	VOC	Q	PL.		hours min cure, zero th	inner		3.5	75-125	242 es	fall 2019
stem		2-C0	DAT SYSTEM	Coef	DFT (m	in/max)	Tested	Acc	epted	B continues)							
No.	Coats	TEST	ED AND ACCEPTED	Class	mil	micron	g/L	D	ates	ļ							
COAT	LIST C - ORG.	ANIC Zinc	Rich Primer / / Topcoat														

		<u>NEPCOAT Qua</u>						
		for Prote						
A Server Co	and the second s	NEW and 100% BAR						
NTPEP								
System		2-COAT SYSTEM						
No,	Coats	TESTED AND ACCEPTED						
NEPCOATI	IST D	- INORGANIC Zinc Rich Primer / / Topcoat						

10070000

PCOAT Qualified Products List D for Protective Coatings for

NEW and 100% BARE EXISTING Steel for Bridges Slip

Coef

Class

Manuf'r Coating

DFT (min/max)

micron

mil

QPL

Accepted

Dates

VOC

Tested

g/L

Some lessons from nanotechnologies of the past two decades

1. Formulations that have penetrated the market are often tested and certified as superior performance products – e.g. paints used in industrial steel structure coatings

Q1: How does the addition of nano/ advanced material in a formulation transform properties of the product? Is nano = transformative in materials properties?

We should also ask with the same level of urgency:

Q2: How does the addition of nano/advanced material in a formulation impact toxicity/safety of a product along the product lifecycle ?

Some lessons from nanotechnologies of the past decades

2. Nano additives are only one component of largely complex and poorly understood mixtures

- Assessment of risk lags evaluation of product performance by many years
- Not meaningful or useful to single them out for the purposes of risk/health impact assessment
- Investigation of toxicity and PCM properties of raw nano /advanced material is only a starting point – necessary but not sufficient
- Nano component sometimes blamed inappropriately for toxicity
 - Remember the Song et al 2008 paper on nanotechnologies*

Some lessons from nanotechnologies of the past decades

3. New methods, tools, and platforms are needed to meet the challenge of metrology/PCM characterization of nano/advances materials in commercial formulations

- Alteration of PCM properties of advanced / nano material in complex products due to matrix effects
- Alteration of product properties due to nano /advanced material additive
- Assays to assess risk from exposures to nano-enables products along their life cycle
 - CPSC and NIOSH to be commended for funding research in this space (3-D printing, NP from tonners etc., e-cig, etc.)
- Test methods to assess PPE performance under realistic conditions penetration and permeation tests for gloves and garments example

Some lessons from nanotechnologies of the past decades

4. We are not good at predicting future risks / liabilities

a. Sandblasting of existing paints on steels structures from 30+ yrs. ago
Regulatory driver – Pb exposure; Still poorly controlled
b. Construction a leading consumer of PFAS – just emerging

1. Surface cleaning /sand blasting

For consideration

- How to handle the 'proprietary' nature of nano/advanced formulations
- Who is responsible for funding/developing methods for characterization of nano/advanced materials in new commercial formulations?
- Is there room for standardization of test methods for characterization of these new 'nano or proprietary additives' ?
- Who is responsible for developing test methods for evaluation of PPE performance of emerging advanced materials / products?

Thank you!

Serious and meaningful discussion on these topics is the best insurance policy for harvesting the greatest benefits of new technologies in the long-term!

And minimizing future liabilities....