Standardization: Advanced Materials & Advanced Technologies

Scott C. Brown

ANSI NANOTECHNOLOGY PANEL (ANSI-NSP) ADVANCED MATERIALS VIRTUAL WORKSHOP MAY 3, 2022

Advanced Materials

Integral Part of Innovation, society, sustainability

Q

Constantly created, applied and conventionalized (and regulated)

Todays and tomorrow's New Substances (chemicals/materials)!

Advanced Materials change with time...

PAST

FUTURE

Steel

e.g., Graphene Composites

??????

What was 'advanced' is no longer 'advanced' ...

But how do you Standardize a Moving Target?

Practically, there is a need to focus on what's doable and important.

-Optimization of limited resources -Learnings and overlap from Nanotechnologies

Similarities: Nanotechnologies and Advanced Materials

- Huge Technical Benefits of Societal Importance
- Rapidly evolving Research and Development Landscape
- Diverse industries involved
- Growing utility and Applications
- Questions about safe management practices
- Potential to behave different than "typical" materials
- Questions about identification
- Often existing SDOs for end application/performance metrics

Differences: Nanotechnologies and Advanced Materials

- Nanomaterials are defined by size, Advanced Materials by what they do...
 - Not all nanomaterials are advanced materials, and advanced materials are not all nanomaterials
- Wider physicochemical "box" for Advanced Materials
- Advanced" status may depend on application space
 - "Advanced" in one industry/application but conventional in another
- Lifetime as an "advanced material" is limited

Overlaps & Distinctions

How standardization has benefited the advancement & commercialization of Nanotechnologies

Terminology

Measurement and Characterization

- Materials Specifications
- Health, Safety & the Environment
- Products and Applications
- Education & Workforce Development

Standardization & Facilitation of Trade: Nanotechnologies

- ISO TC 229: 98 Published Standards; 30 Standards under development
- ASTM E56: 15+ Active Standards
- Multiple standards across vertical committees

Enables:

Safe Development and Use

International technical knowledge sharing through common methods

Building blocks for workforce development

Worked to lower common barriers

Example: Graphene

Terminology

ISO/TS 80004-13:2017 - Nanotechnologies — Vocabulary — Part 13: Graphene and related two-dimensional (2D) materials

Measurement and Characterization

ISO/TS 21356-1:2021- Nanotechnologies — Structural characterization of graphene — Part 1: Graphene from powders and dispersions

Materials Specifications (ongoing activity)

Health, Safety & the Environment

ISO/29701:2010 - Nanotechnologies --Endotoxin test on nanomaterial samples for in vitro systems -- LAL Assay

ISO 10808:2010 – Nanotechnologies --Characterization of nanoparticles in inhalation exposure chambers for inhalation toxicity testing

ISO/TS 19337:2016 - Nanotechnologies -- Characteristics of working suspensions of nano-objects for in vitro assays to evaluate inherent nano-object toxicity

(Plus several other general methods for nano-object assessment see: <u>https://www.iso.org/obp</u>) Also application specific measurements in IEC & elsewhere... Rigor? Critical Mass?

Standardization & Facilitation of Trade: Nanotechnologies Advanced Materials?

But how do you Standardize a Moving Target?

Where to Focus?

- What's been done
- What are the priorities
- What needs to be done?

Role of Horizontal versus Vertical SDCs

Application or Device Specific Examples: ISO/TC 4 Roller Bearings ISO/TC 79 Light Metals & their Alloys ISO/TC 206 Fine Ceramics

Broadly Impactful Subject matter Examples: ISO/TC 43 Acoustics ISO/TC 207 Environmental Management ISO/TC 229 Nanotechnologies

Avoiding Double-work & Confusion

- Many standards developed in vertical committees are also relevant for advanced materials (e.g., performance standards).
- Many nanotechnology standards may be equally valid for some advanced materials.
- What are the most important aspects of advanced materials that need to be standardized?
- What is too early for standardization?
- What is ready for standardization?
- Which existing standards could be modified to account for advanced materials?

Some Standards from TC 229 that may be applicable to some Advanced Materials

ISO/TR 22293:2021 - Evaluation of methods for assessing the release of nanomaterials from commercial, nanomaterial-containing polymer composites

- ISO/TS 23650:2021 Nanotechnologies Antimicrobial textiles Specifications and performance
- ISO/TS 21236-2:2021 Nanotechnologies Clay nanomaterials Part 2: Specification of characteristics and measurements for clay nanoplates used for gas-barrier film applications
- ISO/TS 80004-6:2021 Nanotechnologies Vocabulary Part 6: Nano-object characterization [Replaces ISO/TS 80004-6:2013]
- ISO/TR 12885:2018 Nanotechnologies Health and safety practices in occupational settings [Replaces ISO/TR 12885:2008]
- ISO/TR 21386:2019 Nanotechnologies Considerations for the measurement of nano-objects and their aggregates and agglomerates (NOAA) in environmental matrices
- ISO/TR 19057:2017 Nanotechnologies Use and application of acellular in vitro tests and methodologies to assess nanomaterial biodurability
- ISO/TR 18637:2016 Nanotechnologies Overview of available frameworks for the development of occupational exposure limits and bands for nano-objects and their aggregates and agglomerates (NOAAs)
- ISO/TR 16196:2016 Compilation and description of sample preparation and dosing methods for engineered and manufactured nanomaterials

ISO/TR 17302:2015, Framework for identifying vocabulary development for nanotechnology applications in human healthcare ISO/TS 18110:2015 - Nanotechnologies - Vocabularies for Science, Technology and Innovation Indicators

- ISO/TS 80004-1:2015 Nanotechnologies Vocabulary Part 1: Core terms [Replaces ISO/TS 80004-1:2010]
- ISO/TS 12901-2:2014 Nanotechnologies Occupational risk management applied to engineered nanomaterials Part 2: Use of the control banding approach
- ISO/TR 16197:2014 Nanotechnologies -- Compilation and description of toxicological screening methods for manufactured nanomaterials

ISO/TS 13830:2013 – Nanotechnologies – Guidance on voluntary labelling for consumer products containing manufactured nanoobjects

Learnings from Nanotechnology

Expectations of widespread "novel & unique" properties were not realized

- "Novel & unique" properties became explainable & more predictable with time, knowledge evolution
 - Small subset of nanomaterials than common across the size range
- Existing paradigms (e.g., chemical safety, aerosol & colloid behavior) adaptable for nanomaterials
- However, measurement approaches and considerations can be more complex

General strategies often require system & purpose specific modifications

Much of the "opportunities" and "concerns" for nanomaterials in retrospect are from a subset of "advanced materials"

Advanced Materials can come from both

Technology Readiness Levels

Actual system "flight proven" through successful mission operations

Actual system completed and "flight qualified" through test and demonstration (Ground or Flight)

System prototype demonstration in a space environment

System/subsystem model or prototype demonstration in a relevant environment (Ground or Space)

Component and/or breadboard validation in relevant environment

Component and/or breadboard validation in laboratory environment

Analytical and experimental critical function and/or characteristic proof-of-concept

Technology concept and/or application formulated

Basic principles observed and reported

Higher Priority "still too early?"

Ο

Û

NO

UO

ati

ardiza

Ō

Stand

Readiness Levels Important to Trade & Commerce

Societal Drivers for Advanced Materials ...

Commitments to UN Sustainability Goals -Advanced Materials are essential to progress

Decision making is based on both perceived and actual risks - Uncertainty in regulatory compliance or acceptance matters

Are there gaps and risks that standardization can help address to enable to deployment and adoption of the best solutions?

Concluding Remarks

- Drivers for standardization of Advanced Materials are similar to those for nanotechnologies almost two decades ago
- Existing and overlapping standards exist that cover some forms of advanced materials (e.g., various nanomaterials and vertical committee performance-based standards)
- Prioritization of gaps needs to addressed to best serve the community
 - Could readiness levels and foresight driven by societal movements help in this area?
 - Which standards are needed and for what purpose?

Thank You!

SCOTT.C.BROWN@CHEMOURS.COM

Disclaimer: The views shared during this presentations are of the presenter/author and do not reflect the policies or views of The Chemours Company or its subsidiaries.