
Advanced Materials (AM)

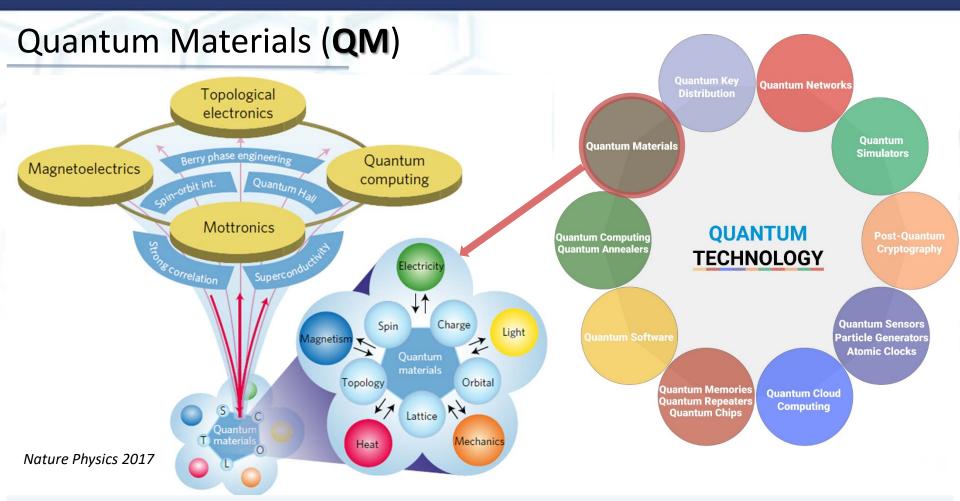
- AM exhibit novel or enhanced properties (electronic, optical, magnetic, mechanical...) that improve performance over conventional products and processes, e.g.:
 - ultra-thin vs. conventional silicon in transistors
 - carbon nanotubes for quantum optics

Stacked nanowire FET

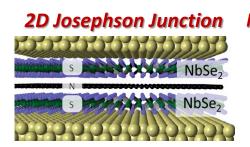
Emission from SWCNT

Appl. Sci. 2020, 10, 2979

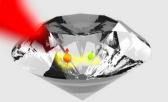
Nature Photonics **2017**, 11, 535

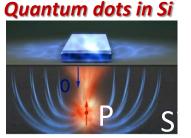

Needs for **AM** standardization:

- Establishing "Structure Property Performance" relationship
- Standardization of emerging technological processes
- Establishing EHS standards
- Support National initiatives: a) Quantum Information Science, b) CHIPs for America (microelectronics)



Albert.Davydov@nist.gov


MATERIAL MEASUREMENT LABORATORY

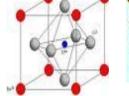


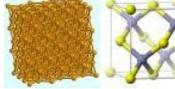
QM – materials in which quantum phenomena (topology, spin-orbit, confinement, symmetry) manifest over a wide range of energies and length-scales

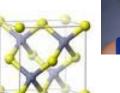
N-V center in diamond

Pr⁺³:Y₂SiO₅ for q-memory

Complimentary

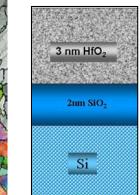

Scope of Advanced Materials

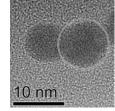

Condensed phases, including

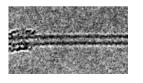

Ceramics Metals Polymers

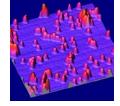
Composites

Semiconductors Biomaterials Fluids






in all forms, including


Bulk Multilayer Tube, rod Particulate

at all length scales

nanoscale \longrightarrow microscale \longrightarrow mesoscale \longrightarrow macroscale

