Perspectives on Regulating Graphene Products under the Toxic Substances Control Act ANSI February 28, 2017

> Jim Alwood Office of Pollution Prevention and Toxics

Office of Pollution Prevention and Toxics

Discussion Points

- How the existing regulatory chemicals framework is used to manage risks of emerging nanotechnology-related materials and products entering the market.
- Example of how nanomaterials are currently assessed.

Toxic Substances Control Act (TSCA)

- TSCA provides broad authority to:
 - Gather information on new and existing chemical substances and mixtures
 - Require testing of chemicals
 - Screen and control unreasonable risks of new and existing chemicals
 - Coordinate with other Federal agencies

Nanomaterials (NMs) under TSCA

- NMs are "chemical substances" as defined by the Toxic Substances Control Act (TSCA)
- NMs not on the TSCA Inventory are "new chemicals"
- TSCA "chemical substance" definition based on molecular identity, not on other properties
- NMs on the TSCA Inventory are "existing chemicals"

New Chemicals Program (TSCA §5)

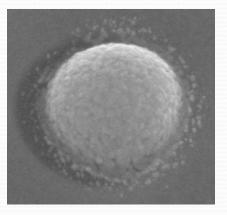
- Chemicals not on the TSCA Inventory are "new chemicals"
- Manufacturers or importers of new chemicals submit premanufacture notices (PMNs)
- Regulation Pending Development of Information
 - Consent Orders
 - Significant New Use Rules (SNURs)

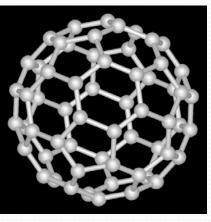
TSCA New Chemicals

- More than 190 new chemical notices for NMs have been received since 2005
- Most notices have completed EPA review, are regulated, but allowed in commerce.
 - Requirements to prevent human and environmental exposure
 - Requirements to develop data

New Chemical Risk Management

- 100% of potential NMs receive further review and are usually regulated but allowed in commerce.
- The review and ultimate regulation of NMs can take 6 – 24 months per substance.


Some types of nano-PMNs


(assessed as "respirable, poorly soluble particulates")

- Fullerenes; Modified fullerenes
- Carbon nanotubes (CNTs)
- Quantum dots
- Nanopolymers
- Silica derivatives
- Titania derivatives

Jnited States

mental Protection

- Material Characterization AND P-Chem properties
- Exposures
 - Occupational
 - Environmental
 - General public
- Hazards
 - Eco
 - Human health

SEPA United States Environmental Protection Agency

- No nomenclature system developed
- Generally, insufficient data to identify relevant properties
- Unclear test methods/relevance of results
- How does material characterization correlate with p-chem

- Material Characterization AND P-Chem properties
- Exposures
 - Occupational
 - Environmental
 - General public
- Hazards
 - Eco
 - Human health

EPA United States Environmental Protection Agency

Occupational

- Large agglomerates do these break down into respirable and inhalable particles that can reach the deep lung
- How do they disperse in lung/other biological fluids?
- Interpretation of workplace exposure monitoring reports...

- Material Characterization AND P-Chem properties
 - Exposures
 - Occupational
 - Environmental
 - General public
- Hazards
 - Eco
 - Human health

SEPA United States Environmental Protection Agency

Environmental

- Do releases escape the POTWs or do they sorb to sludge?
- If they escape the POTWs, would natural organic matter and sunlight lead to soluble transformation products?

- Material Characterization AND P-Chem properties
 - Exposures
 - Occupational
 - Environmental
 - General public
- Hazards
 - Eco
 - Human health

EPA United States Environmental Protection Agency

General public

- Are they chemically bound in composites or just embedded?
- Exposures from incineration/

landfilling?

- Material Characterization AND P-Chem properties
- Exposures
 - Occupational
 - Environmental
 - General public
 - Hazards
 - Eco
 - Human health

EPA United States Environmental Protection Agency

Eco:

- No acute effects at saturation due to low solubility?
- Sample prep/test methods
- what about the possibility of chronic effects, especially on transformed products?

- Material Characterization AND P-Chem properties
- Exposures
 - Occupational
 - Environmental
 - General public
 - Hazards
 - Eco
 - Human health

EPA United States Environmental Protection Agency

Human health:

- Relevance of aerosols and material characteristics from tox studies compared to occupational exposures
- Dose metrics/sample prep
- What is the right tox paradigm ?

Risk Assessment

- Typical assessment for new chemicals would establish an exposure limit, based on best the available analogue.
- Due to the uncertainty of hazard and exposure data, EPA considers risks to be inconclusive.
- Needs better data on human and environmental exposure for a more conclusive risk assessment.

Public Comments for CNT SNURS

- EPA did not adequately identify CNTs
- EPA did not make an adequate risk finding
- Changing reviews as new data becomes available
 - one company specifically requested that EPA include latest data/findings
- When does a CNT become a different chemical
- Applicability of regulation when bound in a polymer matrix and other forms
- Applicability of SNUR to R&D activity

Contact Info

http://www2.epa.gov/reviewing-newchemicals-under-toxic-substances-control-acttsca/control-nanoscale-materials-under

moss.kenneth@epa.gov

202 564-9232

alwood.jim@epa.gov

202 564-8974