ANSI-NSP 090-2013

VAMAS and Nanotechnology

Steve Freiman VAMAS Secretary National Standards Panel December 5, 2013

What is VAMAS?

- Formed as one of 18 cooperative projects at the1982 Economic Summit of the GATT 7 to stimulate trade in new technologies
- Supports trade in products using advanced materials through pre-standards research
- 16 Current Members: Australia, Brazil, Canada, China, Chinese Taipei, France, Germany, India, Italy, Japan, Korea, Mexico, South Africa, UK, USA, and the EC
- Researchers from VAMAS and non-VAMAS countries

MOUs with Other Organizations

- ISO 1993 (Being updated)
- IEC 1995
- IEA 2002
- CIPM 2008
- WMRIF 2008

VAMAS Outputs

 National, regional, and international standards

Reference materials

Technical/scientific publications

Current VAMAS Technical Working Areas

- Surface Chemical Analysis
- Polymer Composites
- Nanomechanics Applied to SPM
- Modulus Measurements
- Creep, Crack Growth, and Fatigue in Weldments
- Nanoparticle Populations
- Materials Databases Interoperability
- Organic Electronics

- Superconducting Materials
- Mechanical Measurements of Thin Films
 and Coatings
- Performance Properties for Electroceramics
- Spectrometry of Synthetic Polymers
- Polymer Nanocomposites
- Quantitative Microscopic Analysis

Nanotechnology TWAs

- TWA 29: Nanomechanics Applied to SPM: Richard Gates, NIST
 - Goal is the development of reference calibration spring constants
- TWA 33: Polymer Nanocomposites: Andreas Schonhals, BAM
 - Three active projects:
 - Determination of shape and size of filler particles
 - Electrical characterization of polymer nanocomposites
 - Mechanical testing of polymer nanocomposites

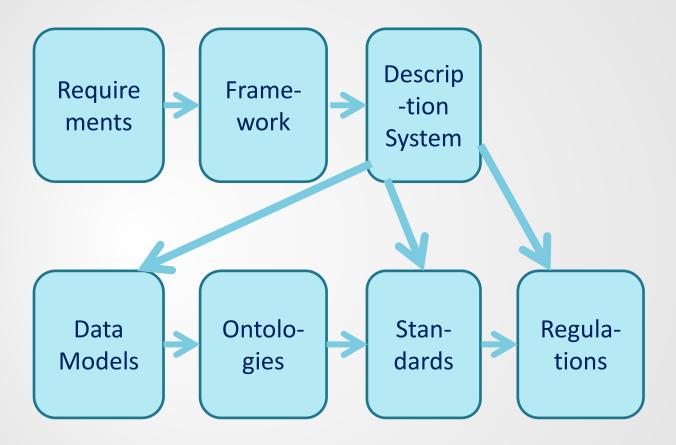
Nanotechnology TWAs

- TWA 34: Nanoparticle Populations: Jeffrey Fagan, NIST
 - Six Active Projects:
 - Single-wall carbon nanotube chiral vector determination
 - Techniques for characterizing morphology of airborne nanoparticles
 - Raman spectroscopy of fullerene nanofibers
 - Method for determination of aspect ratio of gold nanorods
 - Particle size distribution measurements using TEM
 - Uniform system for describing materials on the nanoscale

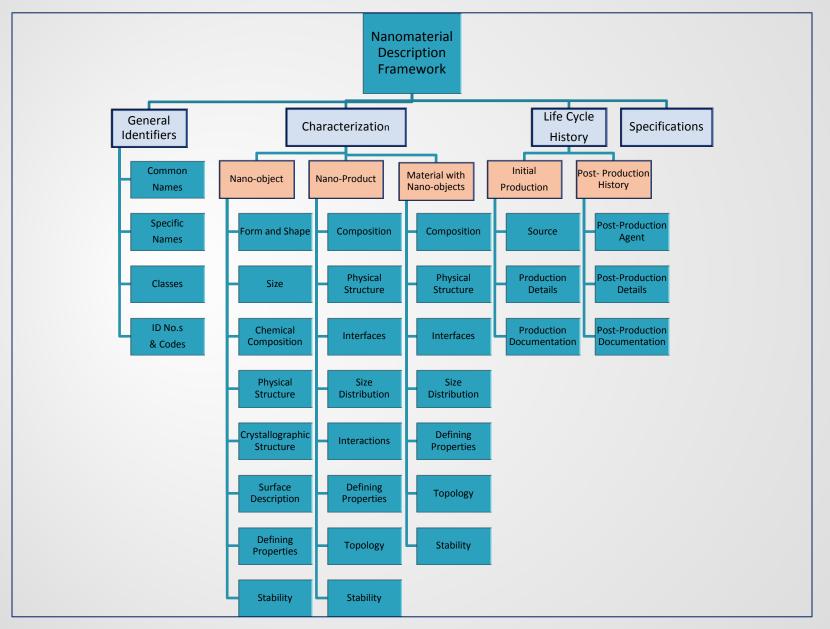
CODATA-VAMAS Working Group

A Uniform Description System (UDS) for Materials on the Nanoscale

Steve Freiman John Rumble Clayton Teague


Goals of the UDS Project

- Develop a systematic approach to describing nanomaterials
 - Uniqueness; system has the ability to differentiate one material from every other
 - Equivalency; system can establish that two materials are the same such that data sets from each material can be combined
- Define a <u>complete set of descriptors</u> and put them into information categories that can be used by all nanomaterial communities
- Identify areas in which insight and work is needed to understand relevant descriptors
- Engage the broad nano-community in the effort


Some Key Definitions

- Descriptor an item of information about an object (here a nanomaterial) that is measured, calculated, or assigned
- Information category a group of descriptors that explain one aspect of a nanomaterial.
- An information category can be divided into one or more layers of subcategories for clarity or convenience in describing complex information

Path to and from the Description System

DRAFT FRAMEWORK

VAMAS and Standards Committees

- Formal liaison with ISO TC 229: Jan Herrmann
- Continuing discussions with ASTM E56: Presentation on 10-30-13 on VAMAS nanotechnology activities
- Plans for more extensive relationships with IEC 113

Summary

- This Framework is only the starting point for our discussions.
- An international workshop is being organized in Dublin, Ireland, late June, 2014. This workshop should lead to further refinements of the framework.