Standards for AM Data and Data Packages

Overview

Data Packages for AM Parts -PWI 52923

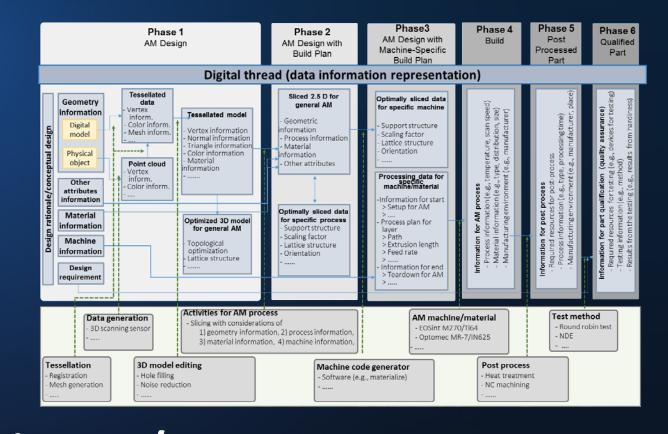
Addresses the packaging of information and data requirements to communicate between designer, manufacturer, and inspection

In PWI (proposed work item) stage Goal to go to ballot in 2021

Complements ISO TC 184 and STEP communities, complements MIL-STD-31000B

Overview of Data Pedigree-WK72172

Defines key terms for sharing detailed process and material information

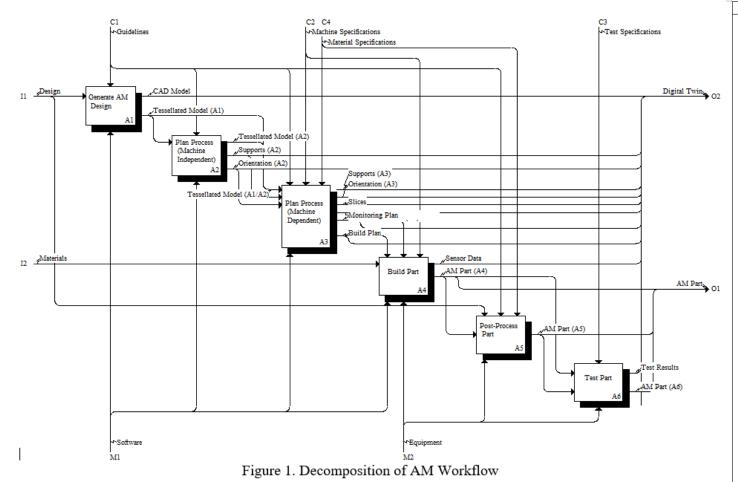

In Pre-ballot state with initial feedback being incorporated

Aims to facilitate the sharing of AM data for materials development, learning, and qualification

Additive Manufacturing— Data Packages for AM Parts— PWI 52923

ISO/TC 261/JG 73 "Joint ISO/TC 261-ASTM F 42 Group; Digital product definition and data management"

Content Overview



		5	Pr	oduct Requirements
For	eword	5.1	Sta	nges of the AM Workflow
		5.2	Pre	oduct Data Elements by Stage
Intr	roduction			AM Design Data
1	Saona (mandatami)			Pre-Process (Machine Independent) Data
1	Scope (mandatory)			Pre Process (Machine Dependent) Data
2	Normative references			Build Process Data
3	Terms and definitions (mandatory)	5.2.	5	Post Process Data
		6	Ins	spection
	General Requirements	6.1	Ins	spectionspection Information Flow
4.1	Facility and Machine Qualification			
4.2	Material Data	7	En	d Delivery
	Customer Information	8	Pr	eservation of Information
4.4	User Information	0	D.	to Committy / Cython Committy
4.5	Security of Part	9	Dα	ta Security/ Cyber Security
	Configuration Management	10	Co	nfiguration and Requirements of Data Packages
1.5				Technical Item Description Data Package (TIDDP): .
				Design Data Package

10.3 Production Data Package

Structured/Explicit Information Requirements NUST

Sub-categories

		 with surface treatments, including drill-on-assembly 		×
	Design Plan	features		
	Design Flan	-with fully dimensioned, toleranced & GD&T applied		
		-Blank Part Model, including designated surfaces for		
		stock addition/ & possibly the stock-add amount		
		-Intermediate Part Model, including secondary		
		machining processes & sequence on designated surfaces		
		Material type (e.g., Ti6Al4V and IN625)		
		Design requirements		
		Plan for 3D model generation	×	×
	3D tessellated	XYZ Coordinates and its connectivity between nodes	×	×
	model	Surface resolution of 3D model	×	×
		- Chordal distance	×	×
		Facet type (e.g., triangular, rectangular)	×	×
		Accuracy (resolution)	×	×
A1		Feature manufacturability	×	×
•••		- Min/max manufacturable feature size	×	×
		- Thickness/under cut	×	×
		- Edge/gap/overhang length	×	×
		 Specification for surfaces receiving whole part treatments 		
		(e.g. anodizing, painting)		
		•Specification for limited area treatments (e.g. chrome		
		plating)		
		Primary [i.e. Blank], Intermediate and Final Part condition		
	AM Design	acceptance testing/ acceptance criteria -e.g. Full Clean-up,		
	Specification	no undercut		
		•Callouts		
		-surfaces receiving limited area treatments (e.g. chrome p		
		-surfaces receiving whole part treatments (e.g. anodizing,		
		-post-build Thermal Treatment [i.e. Stress Relief]		
		-Final Property Heat Treatment		
		-Material Feedstock		
		-AM Machine/ AM Process to be used		
		-Interfaces with other part numbers -		
		manage and constructions		

Attributes

- Point clouds: point data set of XYZ coordinates

Identification Data - NSN

- Finished Part Model

-Overall manufacturing sequence -

•3D model

Medium

Low

High

Configurable Data Packages

By Use Case

Acquisition Manufacture in House Verification Only

Process Maturity Part Maturity	Expeditionary	Developmental	Production
Prototype	General {G1, G2, G4.1} Part{P2, P3.1, P4.3} Material{M1} Inspection{I2.1}		
New Part			
Existing Part			

Configuration of Elements from: G=General; M=Material; P= Part; I=Inspection

By Criticality/Capability

	High	More	Medium	Less	Low
	Capability	Capability	Capability	Capability	Capability
High	Medium	Medium to	High Control	Not	Not
Critical	Control	High Control		Recommended	Recommended
More	Medium to	Medium	Medium to	High Control	Not
Critical	Low Control	Control	High Control		Recommended
Medium	Low Control	Medium to Low Control	Medium Control	Medium to High Control	High Control
Less Critical	Low Control	Low Control	Medium to Low Control	Medium Control	Medium to High Control
Low Critical	Low Control	Low Control	Low Control	Medium to Low Control	Medium Control

Configured based on level of specificity required based on experience of stakeholder (designer, manufacturer, inspector)

Configuration of Data Packages

By Use Case

Acquisition

Process Maturity Part Maturity	Expeditionary	Developmental	Production
Prototype	G1; P1	M1; P1,2	
New Part	M1; P1	M12, P1	M1; P1,2;
Existing Part	M1; P2	M1,2; P1,2	M1; P1,2; I2

Configuration of Elements from:

G=General; M=Material; P= Part; I=Inspection

Different Scenarios:

- Use Case
 - Acquisition, Manufacture, Verification
- Part Maturity
 - Prototype, New Part, Existing Part
- Process Maturity
 - Expeditionary, Developmental, Production

Have Different Data Needs:

- Prototype
 - Expeditionary [P1]
 - Developmental [M1, P12]

Asserting Levels of Control

By Criticality/Capability

	High	More	Medium	Less	Low
	Capability	Capability	Capability	Capability	Capability
High	Medium	Medium to	High Control	Not	Not
Critical	Control	High Control		Recommended	Recommended
More	Medium to	Medium	Medium to	High Control	Not
Critical	Low Control	Control	High Control		Recommended
Medium	Low Control	Medium to Low Control	Medium Control	Medium to High Control	High Control
Less Critical	Low Control	Low Control	Medium to Low Control	Medium Control	Medium to High Control
Low Critical	Low Control	Low Control	Low Control	Medium to Low Control	Medium Control

Different organizations may require different levels of control

	Sub-categories	Attributes	Low	Medium	High
		•Identification Data - NSN	×	×	×
		•3D model	×	×	×
		- Point clouds: point data set of XYZ coordinates	×	×	×
		- Finished Part Model	×	×	×
		- with surface treatments, including drill-on-assembly			×
		features			
	Design Plan	-with fully dimensioned, toleranced & GD&T applied			
		-Blank Part Model, including designated surfaces for			
		stock addition/ & possibly the stock-add amount			
		-Intermediate Part Model, including secondary			
		machining processes & sequence on designated surfaces			
		Material type (e.g., Ti6Al4V and IN625)			
		Design requirements			
		Plan for 3D model generation		×	×
	3D tessellated	XYZ Coordinates and its connectivity between nodes		×	×
	model	Surface resolution of 3D model		×	×
		- Chordal distance		×	×
		Facet type (e.g., triangular, rectangular)		×	×
		Accuracy (resolution)		×	×
A1		Feature manufacturability		×	×
А		- Min/max manufacturable feature size		×	×
		- Thickness/under cut		×	×
		- Edge/gap/overhang length		×	×
ı		•Specification for surfaces receiving whole part treatments			
ı		(e.g. anodizing, painting)			
		•Specification for limited area treatments (e.g. chrome			

Security Considerations

- Part Security
 - Actions taken against counterfeiting
 - Actions taken to secure part
 - Actions taken to secure value chain/ traceability
- Cybersecurity
 - Encryptions used for digital datasets
 - Encryption used for data package
 - Requirements placed on supply chain

Concepts addressed in this document but further refined in an accompanying document.

In Development: Configuration Management

Design Model

Description:	Native CAD file
Purpose:	Provide part geometry and material
Information:	Design, GD&T
Formats:	See Table A1

Build

Orientation,

Transformation

Description:	Design to Print Model
Purpose:	Re-interpret design geometry to create a file type more suited for fabrication
Information Loss/Gain:	See Table B1

Print Model

Description:	Pre-Process Geometry Model
Purpose:	Provide design information in a format easily prepared for layer by layer manufacture
Information:	Design, GD&T
Formats:	See Table A2

STL AMF STEP STEP-NC 3MF Purpose Printing Printing. Printing Product model Product model. information model manufacturing XML, XSD XML, XSD STEP Part 21. EXPRESS STEP Part 21. Format. EXPRESS Schema Tessellated Unstructured Mesh defined by Mesh defined by Mesh defined by list of list of vertices and list of vertices vertices and triangles Geometry triangles defined by triangles indexed and triangles indexed to the vertices. vertices. to the vertices. indexed to the normal vectors, groups of normal and edge vertices triangles, edges, multiple normal tessellations, association vectors vectors, curved triangles, recursive with exact geometry and subdivision tolerances Material Composite Composite. Single material Single material materials. multi materials functional representation of heterogeneous materials Lattice Any Functional Any geometry Any geometry can be Any geometry can be modeled Structures geometry representation of can be modeled modeled can be lattice geometry modeled

Arrangement of

objects in build

Orientation and

placement of

- Process workflow to address
 - The exchange of information
 - Activities,
 - File formats
- Insight into capabilities of different file types
 - Address exchange of information
 - Address preservation of information
- Help with identification of ownership of information

Current State

Topic	Maturity						
	Introduced	Outlined	Drafted	Vetted			
Terms and Definitions	X						
General Requirements	X	X	X				
Product Requirements	X	X	X				
Inspection Requirements	X	X	X				
End Delivery Requirements	X						
Preservation of Information	X	X					
Data Security	X	X	X				
Data Package Configuration	X	X	X	X			

Status

- Next steps
 - Further develop configuration management
 - Complete "X" on tables
- Interest from TC 184 in leveraging data elements for inclusion in future STEP APs
 - Ongoing case study for using STEP AP242e2 and AP238 to drive fabrication
- Preliminary Ballot coming soon

Engage with Stakeholders

DLA expands DOD additive manufacturing tool in fight against COVID-19

By Michael Molinaro, DLA Information Operations

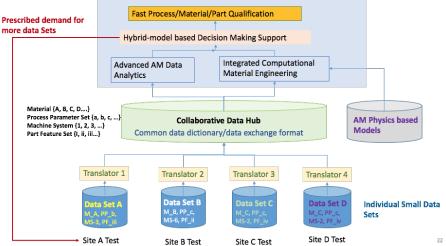
FORT BELVOIR, Va.

A Defense Logistics Agency tool that consolidates the Defense Department's technical data packages for advance manufacturing could be a new weapon in the battle against COVID-19.

Common Data Dictionary

- Working Group
- StandardDevelopment
 - Overview of Data Pedigree- WK72172

AM Data Management Working Group

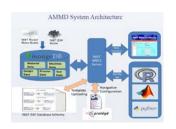

- Ad hoc group established during NAMTII 2018 (Nov, 2018)
- Coordinated by National Institute of Standards and Technology
- Scope of the AM Data Management Working group
 - Complete AM Common Data Dictionary (CDD)
 - Develop Common Data Exchange Formats (CDEF)
 - Data Curation and Integration— using CDD and CDEF
 - Exchange data between existing databases
 - Federate data into common repository
 - Feasibility demonstration through qualification use case
- Bi-weekly phone calls every other Monday
- Support from ASTM Center of Excellence
- Frequent face-to-face working meetings

Objective of AM CDD

The objective of the AM CDD is to provide definitions of a common set of concepts, data elements in AM domain which define the basis of AM data collection, integration, management and exchange.

- Use of common data dictionaries supports the ease of data collection, curation, data storage, data discovery and data exchange.
- Build a foundation for the subsequent development of common data exchange formats and standards data governance for a more streamlined AM development lifecycle and value chain management

Scope of AM CDD Current Efforts



The audience for this CDD includes:

- AM product users
- AM service provider
- AM machine/material vendors
- AM data management system vendors
- AM data providers

Current AM Common Data Dictionary Scope:

- Powder Bed Fusion processes
- Focus on Logical model
- Class (Entity type) name, attribute/property name
- Limited class depth
- Incremental use scope

NIST AM DATABASE ammd.nist.gov

MaterialCenter

And others..

AM CDD Development Timeline

Task 1: First Draft of CDD

Jan. 13, 2020

PHASE I

Task 2: External review of the first Draft of CDD Feb. 28, 2020

Task 4: CDD-based Integrated Query Demonstration

Feb 10, 2020

Task 3: CDD

Harmonization with
existing terms/defs
standards Feb. 28, 2020

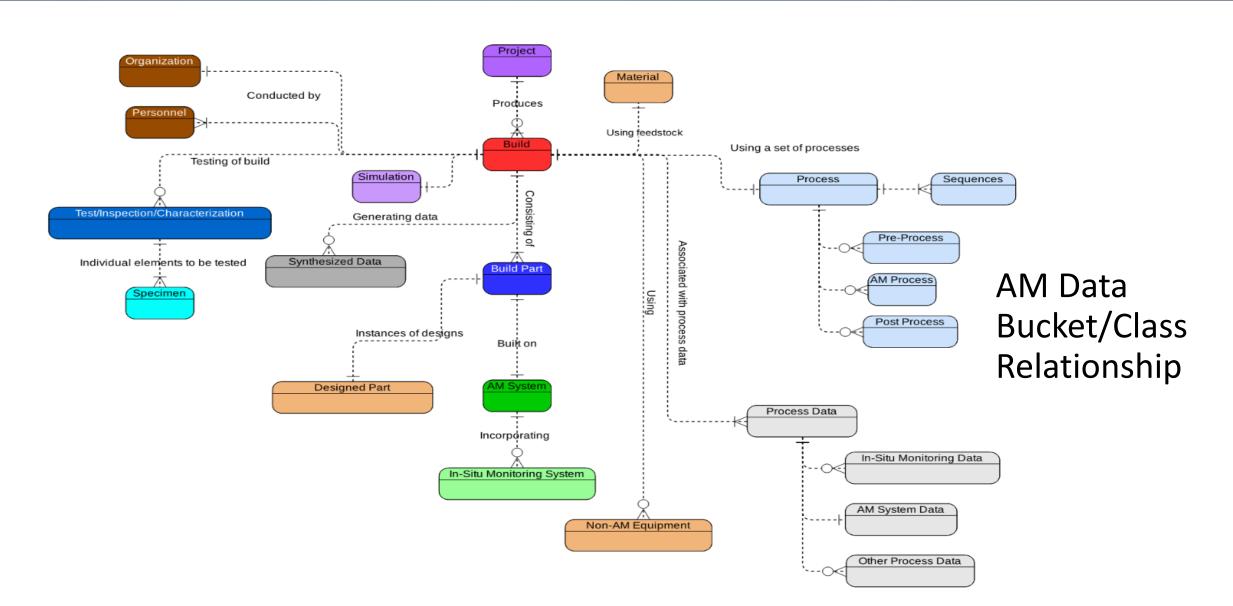
Task5: ASTM CDD Standards NWI March 10, 2020

Task 6: Internal feedback on the second Draft of CDD on July 25, approved by the working group July 27, 2020

Task 7: Share CDD 2.0 (comment/implementation sheet) and WK72172 with Round 1 reviewers/new reviewers; solicit more feedback ~August 7, 2020; returned by August 21

Task 8: ASTM CDD

Ballot 2020

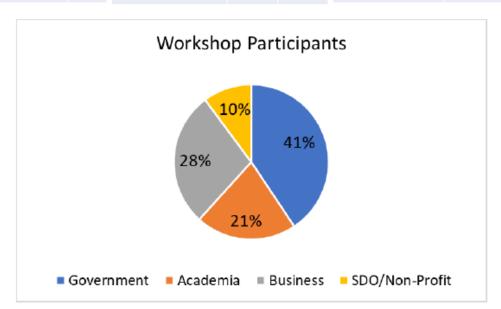

Task 9: ASTM CDD available from NIST website; 2021

Task 10: ASTM CDD on Mobi; 2021

- New efforts to transition to Model
- Effort with Power Size Distribution Case Study

Moving from Dictionary to Model

FAIR AM DATA Workshop October 2020



Findable Accessible Interoperable Reusable AM DATA

Salutation	No.	Agenda Item	27 Oct	28 Oct	Category	No.
Dr.	70	Total	128	128	Government	52
Mr.	39	Plenary	113	99	Academia	27
Mrs.	8	Working Groups	68	50	Business	36
Ms.	11	Brief Out Session	n/a	54	SDO/Non Profit	13

AM Data Standards Activities

The FAIR AM Data Workshop Already Impacting Stands Programs

AM Common Data Dictionary

- An ad-hoc AM Data Working Group from 2018
- AM information modules
- Standard definitions of AM data elements, their data types, and allowable values
- AM common data dictionary Excel Sheet
- ASTM F42.08 WK72172
- Contact: Dr. Yan Lu, NIST

AM Data Package

- ASTM F42 ISO TC 261 JG 73
- Additive Manufacturing— Data Packages for AM Parts
- Contact: Dr. Paul Witherell, NIST

AM Data Registration

- In-situ/ex-situ data alignment
- Data set metadata
- ASTM F42.08 WK73978
- · Contact: Dr. Shaw Feng, NIST

The state of the s

Message-based AM Big Data Exchange

- Open Application Group Integration (OAGI)
 Specification message for AM Big Data Exchange
 Message
- Contact: Dr. Yan Lu, NIST

Current State

Critical Elements of a Plan

Organizational Architecture

- · Public-Private Consortium
- Data Hub or Hybrid
 - ✓ Developmental Test Bed
 - ✓ Home for Persistent Identifiers

Quantify Value Proposition

- Cost Savings
- Time Savings
- Lost Opportunity Costs

Foundational Elements

FAIR Guiding Principles

JSON-LD, RDF, XML, OWL,

Semantic Web

Restful, MatML

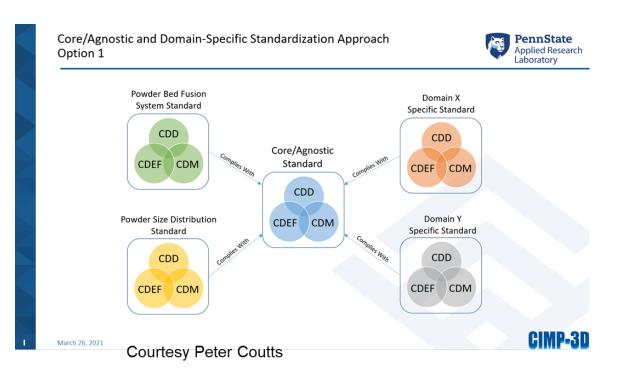
Political Economic PEST Social Technological

Standards Needed

- AM Lexicon
 - AM Taxonomy
 - AM Ontology
 - AM Metadata
 - Aivi ivietadata
 - AM Spatial / Temporal Data

Tools & Capabilities Needed

- Common knowledge / Data Schema
- Tools to Extract-Transform-Load Data
- Tools to Extract Tribal Knowledge
- Domain Specific Languages
- Automated Data Collection
- Data Registration
- · Persistent Identifiers
- · Incentivize proper data curation


Critical Needs

- People, KSAs
- Infrastructure (distributed)
- Funding
- · Program Management
- Value Proposition

Courtesy Bill Frazier Pilgrim Consulting

Follow FAIR workshop recommendations moving forward with CDD community

Adopt inheritance approach (including ontology) in development of AM data models

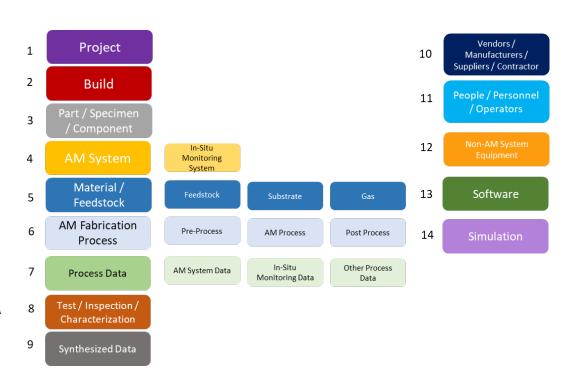
Thank You

For Data Packages:

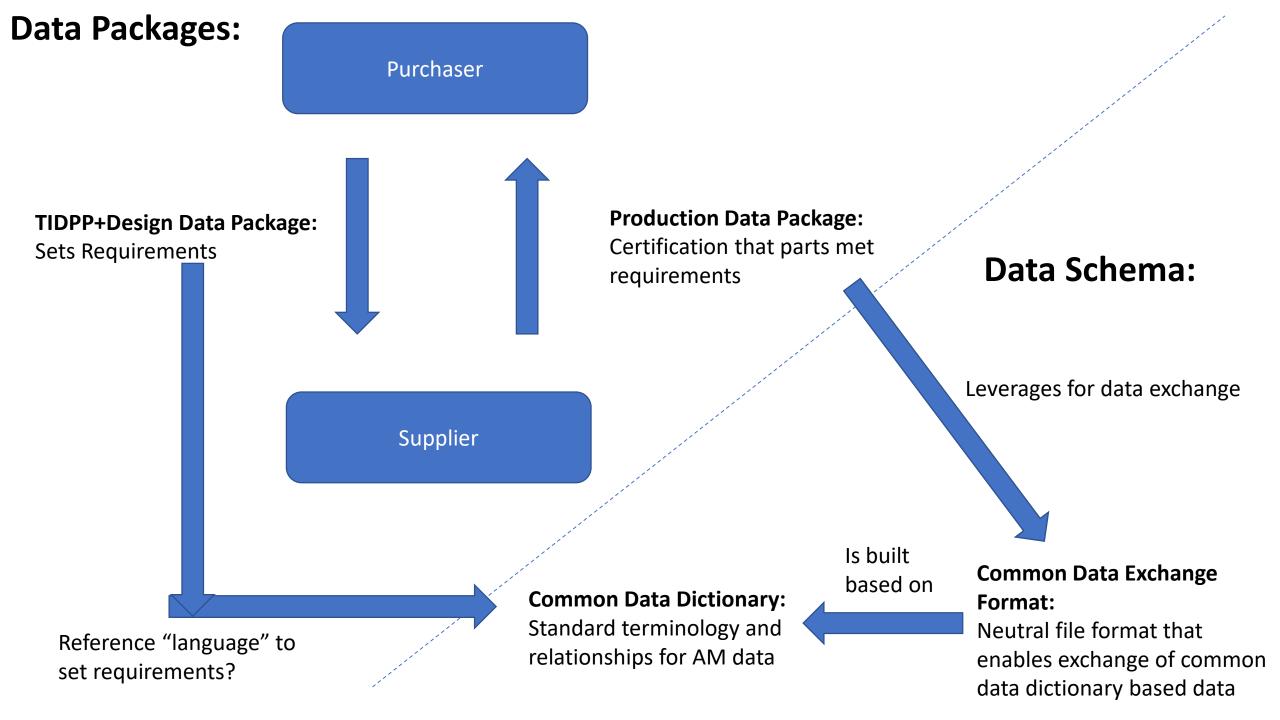
Paul Witherell, PhD paul.witherell@nist.gov National Institute of Standards and Technology

For CDD:

Yan Lu, PhD
yan.lu@nist.gov
National Institute of
Standards and
Technology


Backup

Role of AM CDD in the TDP?



The objective of the AM CDD is to provide definitions of a common set of concepts, data elements in AM domain which define the basis of AM data collection, integration, management and exchange.

- Use of common data dictionaries supports the ease of data collection, curation, data storage, data discovery and data exchange.
- Build a foundation for the subsequent development of common data exchange formats and standards data governance for a more streamlined AM development lifecycle and value chain management

F42.08 Created- ASTM AM Data Subcommittee

