MMPDS & Additive Metals

AMSC Design for AM March 31, 2021

Doug Hall Sr. Mechanical Engineer Program Manager - MMPDS Battelle Memorial Institute 614-424-6490 halld@battelle.org

Metallic Materials Properties Development and Standardization

History

- ANC5 (1937-1954), MIL-HDBK-5 (USAF: 1954 2003), MMPDS (FAA: 2003-today)
- Battelle Memorial Institute program Secretariat since 1956.
- MMPDS Handbook is the primary source of statistically-based design allowable properties for metallic materials and fasteners used in many different commercial and military weapon systems around the world.
- The MMPDS General Coordinating Committee is a collaboration between government agencies, aerospace companies, testing and data service companies, and metallic material producers.
- Biannual meetings to review and approve statistical analyses and guidelines.

<u>Scope</u>

a ss% Lower

Standard Deviations from the Mea-

- The Handbook currently contains 600+ A/B-Basis and 1000+ S-Basis entries, 400+ unique metal specifications.
- Two to five new alloys are added each year.
- For more information visit <u>www.mmpds.org</u>

MMPDS General Coordination Committee

Battelle

MMPDS

Secretariat

Government Responsibilities

- Maintain Technical Oversight
- Ensure Certifying Body Requirements Met
- Support Analyses to Add/ Update GSG Priority Materials and Data
- Justify Access to Data by Government Agencies
- Cover Publication of MMPDS Revisions, Agendas and Minutes

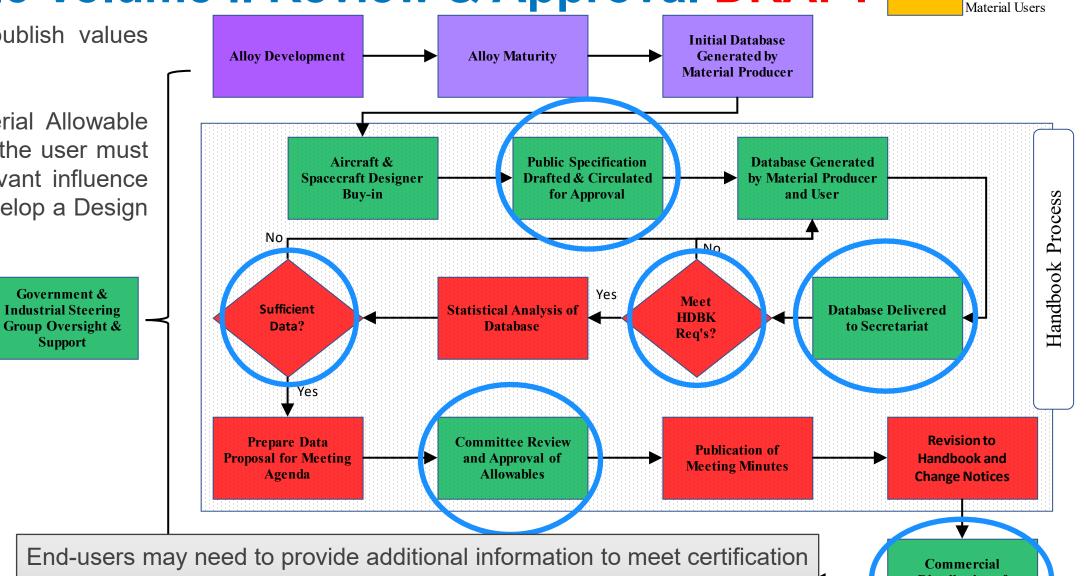
Industry Responsibilities

- Provide/Update Specialized Data Analysis Tools
- Provide Exclusive Access to Current / Quantitative Data & Supporting Information
- Establish Priority of New Materials and Data Analysis Tools for MMPDS Incorporation
- Supporting MMPDS Analyses for MMPDS Coordination

Task Groups: GTG – approve <u>all</u> guidelines MTG – approve materials (Ch. 2-7) FTG – approve fasteners (Ch. 8) ETTG – approve V2 content

Steering Groups: Get industry sector inputs ASG, MATSSG, PSG

Working Groups: Technical input from industry FatWG, SWG, WWG V2WG – develop V2 tech details


Task 1.5 Volume II Review & Approval DRAFT

Process to publish values in Volume II.

Once a Material Allowable is published, the user must consider relevant influence factors to develop a Design Value.

Government &

Support

or qualification requirements of relevant regulators. Chapter 10 will outline a path to develop Design Values from the published Material Allowables.

Distribution of Handbook

Material Producers Collaboration Secretariat

Government

Volume II Material Allowables vs. Design Values

- Material Allowable A bulk material property derived from the statistical reduction of data from a stable process. The amount of data required to derive these values is governed by the statistical significance (or basis) and the methods defined in Chapter 9. Application of allowables may require additional considerations for use in design.
- Design Value A material property that is established to represent the finished part property. These numbers are typically based on material allowables and adjusted, using building block tests as necessary to account for the range of part geometry features (*e.g.*, holes, notches, surface finish) and in-service environmental conditions (*e.g.*, temperature, moisture, and fluid.) Design values are used in analysis to compute structural design margin (*i.e.*, margin of safety.)

19-20: Data Requirements for Volume II

Mechanical or Physical	Customary	Relative Importance	Extenuating Circumstances for	Minimum Data Requirements				
Property	Statistical Basis	in MMPDS	Special Material Usage	Sample	No. of	No. of	Machines ^f	Build
		Volume II	Requirements	Size	Heats ^g	Mfg.		Cycles
¥	*	Τ.	¥	*	*	Lots	v	-
Bearing Yield and Ultimate Strength	S-Basis	Mandatory	Except for elevated temperature applications	30	3	3	3	3
Compression Yield Strength ^a (Derived)	Same as Tensile Properties	Mandatory		20	3	10	3	3
Density	Typical	Mandatory		3	3	3	3	3
Elastic Modulus - Tension Elastic Modulus - Compression Elastic Modulus - Dynamic Elastic Modulus - Shear	ther	Mandatory Mandatory Lecommonde d Recommende d	Dynamic modulus is strongly recommenced for some engine applications	S°2	ipr	bly	3	3
Elastic Modulus (T, C, D) - Elevated Temperatures	Typical	Mandatory	For anticipated usage temperature range	9	3	3	3	3
Elongation	S-Basis	Mandatory	Two-inch gage length preferred	30	3	3	3	3
Shear Ultimate Strength ^a	S-Basis	Mandatory	Except for elevated temperature applications	30	3	3	3	3
Stress/Strain Curves (To Yield) Tension and Compression	Typical	Mandatory	Desirable to have accurate plastic strain offsets from 10^{-6} to 3 x 10^{-2}	6	3	6	3	3
Stress/Strain Curves (Full Range) Tension	Typical	Mandatory	The strain rate should be constant through failure.	6	3	6	3	3
Tension Yield and Ultimate Strength	S-Basis	Mandatory		30	3	3	3	3

Item 19-20 was approved with changes at the 37th MMPDS GCC. Other requirements apply.

:MMPDS:

19-20: Data Requirements for Volume II (Task 1.2)

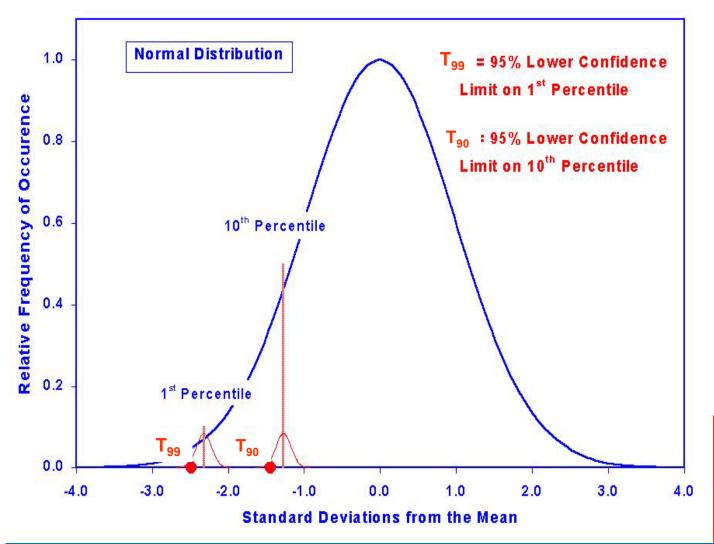
Mechanical or Physical	Customary	Relative Importance	Extenuating Circumstances for	Minimum Data Requirements				
Property	Statistical Basis	in MMPDS	Special Material Usage	Sample	No. of	No. of	Machines ^f	Build
		Volume II	Requirements	Size	Heats ^g	Mfg.		Cycles
•	· ·	Τ.	·	*	*	Lots	*	-
Coefficient of Thermal	[vnica]	Strongly	For anticipated usage temperature	6	3	3	3	3
Expansion		recommended	range					
Poisson's Ratio	Typical	Strongly		6	3	3	3	3
		recommended		0	5	5	5	5
Specific Heat	Typical	Strongly	For anticipated usage temperature	6	3	3	3	3
		recommended	range					
Tension Yield and Ultim te Strength	E-Basser	french U	Especially for strength critical applications a partin error representation of data is possible	5100		Dıy	5	10
Tension Yield and Ultimate Strength	C-Basis	recommended	Especially for strength critical applications; a parametric representation of data is possible	100	10	20	5	20
Tension Yield and Ultimate Strength	C-Basis & D-Basis	recommended	Especially for strength critical applications; a parametric representation of data is not possible	299	10	20	5	20
Thermal Conductivity	Typical	Strongly recommended	For anticipated usage temperature range	6	3	3	3	3

Item 19-20 was approved with changes at the 37th MMPDS GCC. Other requirements apply.

Introducing C- and D-basis Allowables in Vol. II (Metal AM)

- Statistical definitions for A-/B- vs. C-/D- (i.e. 99/95 and 90/95, respectively) are the same (see next slide)
- <u>Differences</u>:
 - Underlying test matrices (e.g. Tables for Vol. II on pp. 6-7 of this presentation)
 - Unlike A- and B- allowables in Vol. I, C- and D- allowables require "further showing"

A- and B-basis Allowables Conventional Alloys (Vol. I)


C- and D-basis Allowables Metal AM (Vol. II)

Volume II C-Basis, D-Basis, S-Basis: Material Allowables

 T_{99} and T_{90} are one-sided lower tolerance bounds. Both are calculated from data.

C-Basis is the lower of the specification minimum or T_{99} value.

D-Basis = is the T_{90} . It is not related to the spec minimum.

S-Basis = is a T_{99} that does not meet C-Basis requirements for sample size or distribution fit.

Metallic C-/D-/S-Basis published in MMPDS Volume II require "further showing."

For Volume II, C-/D-/S-Basis allowable values are reviewed and approved by the MMPDS General Coordinating Committee for metallic materials.

37th MMPDS Coordination Meeting Results

- Volume II is under development. Information subject to further change.
- Agenda Items associated with Volume II
 - ✓19-17: Minimum Content Requirements for a Public Specification Approved at 36th
 - ✓19-20: Data Submission Requirements for Volume II Approved at 37th
 - ✓19-26: Definitions for Process Intensive Materials & Technologies Approved at 34th
 - ✓20-20: Definitions for Volume II Approved at 37th
 - ✓20-31: Definitions of "Design Allowable", "Design Value", and "Material Allowable" App. 37th
 - 21-04: Required Test Methods/Procedures for Volume II Continued at 37th
 - ✓21-11: Interim Data Analysis Methods: Volume II Approved at 37th
 - 21-20: Microstructural Submittal Requirements Continued at 37th
- Full Minutes of MMPDS meetings are shared with ISG, GSG, and attendees.

Coordination with SDOs & Other Organizations

• ASTM

- General test specifications
- AM CoE & F42 Committee
- EWI
- NIAR
 - Air Force/FAA funded project to develop a specification and allowables for PBF Ti 6-4
- NIST
- SAE AMS
 - Additive Manufacturing Data Consortium Battelle is a Liaison member
 - SAE AMS AM Metals Committee drafting an update to the AM Data Submission Guideline
 - Materials/Parts: AMS7000A (625), 7011 (Ti64), 7016 (17-4PH), 7024 (718), 7028 (Ti 6-4), 7030 (AlSi10Mg), 7036 (316L), 7038,
 - Feedstock: AMS7002A, 7006, 7009, 7012A, 7015, 7017 (Ti 64),7020 (F357), 7023 (TiAl), 7026 (Ti5553), 7033, 7037 (316L)
 - Processes: AMS7003A, 7006, 7010, 7031 (recycling), 7032 (Machine Qual), 7035,

800.201.2011 | solutions@battelle.org | www.battelle.org