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Reducing “Time to First Good AM Part”
Through In-situ Sensor Driven NDE
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Overview

Project Call/Source of Funding: America Makes Open Project
Call

Contract ID: FA8650-20-2-5700

Technology Roadmap Swimlane alignment: Value Chain
Period of Performance: 6 months

Start date, End date: November 20, 2020, May 28, 2021

Total funding, Total Government Funding, Total Cost Share:
$254,992, $169,992, $85,000
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Technical Approach- Problem

= Currently, metal AM is an iterative [ msrasening ) 7 oata ortvem mapection
trial-and-error printing process = ata Driven Inspection

« Time consuming post-inspection steps
* Long lead times
* High cost
= High resolution NDE often needed to
find non-conformances

« High resolution often not feasible for
entire part

« Selecting regions to inspect is often
based on educated guesses

= [n-Situ sensing can inform smarter
“point of concern” inspections
« Data driven decision making
* Lower Cost
 Reduced Lead Time
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Macy Consulting Inc.
Manufacturing Solutions

University
£D NORTHROP
13| oiDavien NORTMMAN |
Institute

» Project Lead

» Printing » Part Identification » NDE (X-Ray CT) » Provides and supports > SUPPQI'tS supply chgin ‘
» In-situ Sensing for LPBF » Past print history » In-situ to NDE correlation AMSENSE In-situ Sensor Suite adoption and DoD integration
» In-situ analysis/correlation » Non-conformance criteria

Part Non-Conformance TDP Detect Anomaly In-Situ Point of Concern Inspection
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Task 1: Part Identification and TDP Extraction

Lead Tasks Sub-Tasks Dec-20 Jan-21 Feb-21 Mar-21 Apr-21 May-21
Identify Part of Interest

Task 1 - Part Identification and |indentify Past Print History of Part
TDP Extraction Identify Non-Conformance Criteria of Part

NGC

Extract TDP for Correlation to In-situ and NDE Data

Lead: Northrop Grumman
 Identify Part of Interest
 ldentify Past Print History of Part
 Identify Non-Conformance Criteria of Part
« Extract TDP for Correlation to In-situ and NDE Data
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Fabrication Timeline

AM Fabrication 7/21

Northrop Grumman Part History

= Prior to program, six aluminum heat exchangers were
fabricated at NGC

= All six heat exchangers passed
visual inspection and pressure
drop testing before proceeding
to machining and non-
destructive evaluation (NDE)

= Unfortunately, it was not until
review of the NDE data that
significant process induced
defects were identified in three
of the of the six heat exchangers

Bulk Powder Removal

T
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Heat Treatment

Remove from Build Plate

Additional Powder Removal Step

Pressure Drop Testing

Loss of 5 Months and <$20000

Model of the heat exchanger selected for this

project with internal cooling channels highlighted MDIE (e et Dighel ey

NDE Review Identifies

11/11
Non-conformances -
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Task 2: Part Printing and In-Situ Data Collection

Lead Tasks Sub-Tasks Dec-20 Jan-21 Feb-21 Mar-21 Apr-21 May-21
Lo Multiple Prints of Identifed Part w/ Post Process
Task 2 - Part Printing and In- : ,
UDRI ) i Detect In-situ Data Anomalies
Situ Data Collection . . . .
Define Region of Interest for High Resolution CT
Lead: UDRI 3 x Correlation Prints MVP Print
* Multiple Prints of Identified Part w/ Post
Process

* Detect In-situ Data Anomalies

« Define Region of Interest for High
Resolution CT

Goal: Establish linkage between In-situ data, NDE, ~ Goal: Demonstrate in-situ informed
and non-conformance criteria inspection decisions
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DART Open Architecture LPBF System

 Up to 500W CW Laser
 Galvanometer Scanhead

e 6'x6"x 12” Custom Powder
Bed

 Integrated Computer with
Custom Controls

 Variable Cross-Bed Flow

« Atmospheric Glovebox
with Filtration
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AMSENSE ®: An Open System Approach

= AMSENSE ® is offered as an

integrated option for Open Additive™ L*)PEN
systems, or can be used as an add- ADDITIV="
on monitoring tool for other industrial

platforms

= Modular design allows for
customization and expansion

through software plug-ins Sensors Analytics
= Users have fully open access to all : :
Custom UsPeE;r{[?; : Standard Custom Uss;!tgf -
Sensors s Options Algorithms Algorithm

raw and/or processed data
= Setup can be tailored to the AM v

process, machine model, and
process anomalies of concern

= Recoat, TOMOTHERM ™ SPAT-
TRAK™ available options

o0 < ; . y 5 ¢ | ‘ I
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Near IR Tomography Camera- Detectable Anomalies

Spatter
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Inclusions Warping
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Print Results and Data Collection

« ® =0 4
Heat Ex%fz)%nlg% Print #1 Heat Ex%ho%nlglg Print #2 Example Detected Spatter Events by Tomography Plugin Job 118- All Detected

Spatter Events > 0.040 in~2
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Task 3: Ground Truth NDE and Non-Conformance ldentification

Lead Tasks Sub-Tasks Dec-20 Jan-21 Feb-21 Mar-21 Apr-21 May-21
Task 3 - Ground Truth NDE and|Low-Resolution CT of Printed Parts
ZEISS Non-Conformance High Resolution CT of Defined Region of Interest
Identification Detection of Part Non-Conformances as per Part TDP

Lead: Zeiss

* Low-Resolution CT of Printed Parts (METROTOM 225 kV )
« High Resolution CT of Defined Region of Interest (Versa 620)
* Detection of Part Non-Conformances as per Part TDP
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WATIONAL CENTER FOR DEFENSE
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Job 118 CT Results

AmericaMakes.us 13



America Makes Driven by... NCDMM

Job 119 CT Results
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Task 4: In-Situ and NDE Algorithmic Correlation

Lead Tasks Sub-Tasks Dec-20 Jan-21 Feb-21 Mar-21 Apr-21 May-21
UDRI Task 4 - In-Situ and NDE Collection of Training Data to Relate In-situ to NDE Data
Algorithmic Correlation Algorithmic Determination of Region of Interest

Lead: UDRI

« Collection of Training Data to
Relate In-situ to NDE Data

 Algorithmic Determination of
Region of Interest

ML Methods
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Task 4: Correlating CT Pores with In-Situ Tomography
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Job 119- CT Pores (Red Spots) Overlaid on In-Situ Tomogaphy
Heat Exchangers Only (left) and Full Build (right)
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Task 4: Machine Learning Based Determination of Region of Interest

Process

1. Apply a sliding window across
image

2. Does this window contain spatter as
defined by ML network?

1. Calculated probability that this
window contains spatter

3. Repeat for all images in a defined
“voxel” height

4. Calculate the average probability of
Spatter across image stack / voxel

Original Image Label:Spatter Spatter Probability:1.00
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Job 119- Highest Spatter Probability Voxel as Determined by
Machine Learning Network
Full Representation (left) and Pixels over 200 (right)
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Voxel Location in Part
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Each “voxel” is represented as a
sphere whose size is based on
Spatter Probability
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Job 119- Machine Learning Based Spatter
Probability

Job 119- Machine Learning Based Spatter
Probability (Highest Probability Cases)
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Job 118- Machine Learning Determined ROI Job 119- Machine Learning Determined ROI
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Task 4: ML High Probability Spatter Voxels

Job 119- Machine Learning Based High Probability
Spatter Voxels
(>0.2 for 250 Image Stack)
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Task 4: ML High Probability Spatter Voxels Overlaid On CT Porosity
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Task 4: ML High Probability Spatter Voxels Overlaid On CT Porosity
and Full Build Tomography

AmericaMakes.us



America Makes Driven by...

Task 5: Minimum Viable Product Demonstration

Lead Tasks Sub-Tasks Dec-20 Jan-21 Feb-21 Mar-21 Apr-21 May-21

.. . ldentificaiton of Regions of Interest via Correlation Algorithm
Task 5 - Minimum Viable g &

UDRI . Ground Truth NDE
Product Demonstration

Evaluation of Process in Terms of Accuracy, Cost / Time Savings

Lead: UDRI

 Identification of Regions of Interest via Correlation Algorithm
* Ground Truth NDE

« Evaluation of Process in Terms of Accuracy, Cost/ Time Savings
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Task 5: Minimum Viable Product Demonstration

= Job 118 exhibits significantly
less porosity in CT

= ML Spatter Density in
Job118 also significantly
lower

= Only porosity in Job118 is
approximately at Layer 3275 “|||/| @'/

AmericaMakes.us
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Task 5: Machine Learning Prediction of Porosity

Geometric Bias in
Training

Using Job119 In-Situ to
CT Porosity
correlations, can we

Possible Correct
Prediction

Job118 Predicted Porosity

predict Job118 Porosity
with in-situ data?
Layer-wise correlations
used to train network

Due to limited porosity

in Job118, it is difficult

to assess accuracy
 More data is needed

* Network can be
improved by limiting
geometric bias

Job 119- Correlation Training Set

Z - Height

Job118- Porosity Prediction
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Conclusions/Summary

= High density spatter region determined by
Machine Learning shows strong
correlation with region of porosity in CT

= Lower density spatter in-situ associated
with lower porosity in CT

» Using in-situ data to predict porosity in CT
Is feasible, but more data is needed

= Currently, in-situ data can enhance CT

data, but is not mature enough to be used
as a replacement for CT

AmericaMakes.us
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Next Steps

Correlation Database Maturation

* More prints, materials, geometries, machines, etc.
» As the correlation data-base matures, the ability to
predict non-conformances in process improves
= Analysis of other anomaly types
» Project has focused on correlating spatter anomalies
to CT non-conformances, but many other anomalies
can be investigated
= Feature level analysis of data
* Focus analysis on specific part features to more
directly relate to non-conformance criteria
» Registration Improvements

« Improve registration for direct correlation of specific
anomalies to end part defects / non-conformances

AmericaMakes.us
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Questions & Discussion

Contact Information:

UDRI Northrop Grumman Zeiss
Solomon Duning Crosby Owens Pradeep Bhattad
Solomon.Duning@udri.udayton.edu Croshy.owens@ngc.com Pradeep.bhattad@zeiss.com
937-229-3076 310-332-9150 865-455-7584
Open Additive Macy Consulting America Makes
Dr. Tom Spears Bill Macy Ed Nemeth

Bill. macy@macyconsultinginc.co

tspears@openadditive.com
937-306-6743

Ed.nemeth@ncdmm.org
724-539-5838

m
636-294-9109
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