In-situ monitoring of processing defects and avenues for control/correction in laser-based metal additive manufacturing.

Abdalla R. Nassar

Contributions by: Chaitanya Bakre, Stephen W. Brown, David Corbin, Peter Coutts, Corey Dickman, Christopher Kube, Wesley F. Mitchell, Cliff J. Lissenden, Matthew Pantano, Jan Petrich, Andrew Przyienmski, Edward (Ted) Reutzel, Jason Scherer, Zack Snow, Edward Reutzel, Christopher Stutzman

Center for Innovative Materials Processing through Direct Digital Deposition (CIMP-3D)
Applied Research Laboratory at The Pennsylvania State University

AMSC Virtual Event on AM Standardization to Highlight Inspection/Monitoring to Meet Regulatory Requirements, January 7, 2021
• Department head within the Materials Science Division of the Applied Research Laboratory (ARL) & Associate Research Professor at Penn State.

• Graduate Faculty appointments with
 • Engineering Science and Mechanics Department,
 • Additive Manufacturing & Design (AMD) Graduate Program, &
 • Department of Mechanical Engineering.

• Worked in the field laser processing of metals for >13 years. Focus on laser-based AM of metals since 2012.
 • Earned PhD, from Penn State, in 2012. Thesis on *laser-sustained plasma and the role of plasma in carbon dioxide laser nitriding of titanium*.
 • As part of PhD, completed Post-Baccalaureate Program in Laser-Materials Processing.
 • >35 journal articles, >10 invention disclosures (>5 provision or current patents).

• In 2020, awarded the International Outstanding Young Researcher in Freeform and Additive Manufacturing (SFF FAME JR) Award.

Dr. Abdalla R Nassar
Who We Are

- Designated by DoD as a University-Affiliated Research Center (UARC)
- Maintain a strategic long-term relationship with DoD
- All U.S. Citizens (including students)
- Government Contractor within a University
- Regularly audited (financials, security, purchasing, contracts)
- Maintain timecards and detailed cost/schedule records on all projects
- Advised by Board comprising a mix of PSU and outside senior officials
Interest in sensing and control of PBFAM has grown nearly exponentially over past decade. However, is difficult to differentiate between hype and reality…
• Traditional process performance qualification requires a repetitive manufacturing process to achieve products that exhibit equivalent performance.
 • For example, a Welding Procedure Specification (WPS) for a specific weld type and alloy. (AWS C7.4, ASME Sec IX)
 • A Procedure Qualification Record (PQR or WPQR) is used to document the performed weld and record any required tests.

• Works only if all manufacturing functions, may be well defined….AM's greatest assets is also its greatest liability: Complexity is not so free…

• In-situ sensing offers the potential to
 • verify part quality,
 • accelerate process and part qualification, and
 • enable process control.
Roles of sensing

Subsystem Status
- Laser power
- Scanner error
- Optics temperature
- Oxygen level
- Gas flow speed

ISO/ASTM 52941, ISO/ASTM 52942

Process Monitoring (for quality & control)
- Photodiodes
- Pyrometers
- Spectrometers
- Acoustic sensors
- Layer imaging

ASTM WK62181

Process Monitoring (to elucidate physics)
- High-speed VIS imaging
- High-speed IR imaging
- X-ray imaging
- High-resolution topography

ASTM WK62181

Detector
Rotational Stage
Cone Beam
X-Ray Source

ISO/ASTM 52941,
ISO/ASTM 52942
Some definitions

Sensor configuration

- **Co-axial Configuration**
 - integrated within laser’s optical path

Detector Type

- **Single-point detector**: Integrates captured signal over its total field of view.
 - e.g., Photodiode, microphone

- **Array detector**: Captures signal using a 1D or 2D array such that signal is discretized in space.

note: by this definition a spectrometer (which uses a 1-d array of pixels) is a single-point detector.
Heterogeneous monitoring of DED

Coaxial Vis & IR Imaging

Illuminated Pool Imaging

Plume Imaging

Optical Emission Spectroscopy

Powder Flow Monitoring

Laser Ultrasonics
Heterogeneous monitoring of PBF

IR Imaging

Diffuse Field Ultrasonics

Layerwise Camera & Multi-spectral sensor

High-speed camera

Coaxial multi-spectral

Output Display

Computer Controller/DAQ

Build Plate Insulating Layer SMART Sensor

Housing

Spectrometer

Acoustic Sensor
Fundamental challenges are

• Wide range of time and length scales
• System interfacing & data acquisition
• Replication crisis (too many variables)
• Volume of data being generated
• Alignment/Registration uncertainty

Can standardization meet each of these challenges???

Computed Tomography (XCT) Data

Build Plan or STL

Register XCT Data

Identify Flaws/Features

Confirm Flaws/Features

Run Analysis

Time-series Data Synched to X,Y,Z

Register Data

Split Data into Parts

Rasterize Data

Extract Neighborhood

Build Plan or STL
Center for Innovative Materials Processing through Direct Digital Deposition (CIMP-3D)

Our Capabilities

3D System DMP Factory 500
- 500 x 500 x 500 mm work envelop

Wire Arc Additive Manufacturing (WAAM)

Abdalla Nassar – arn5000@psu.edu
Thank You!
Questions?

Large-Scale DED
Calibrated IR Imaging
DED Sensing
DED Feedback Control
Optimized & Functional Designs
Feed-forward Control of PBFAM

Abdalla Nassar – arn5000@psu.edu