

STANDARDS ACTION

PUBLISHED WEEKLY BY THE AMERICAN NATIONAL STANDARDS INSTITUTE 25 W43RD STREET NY, NY 10036

VOL. 57, NO. 04

JANUARY 23, 2026

CONTENTS

American National Standards

Project Initiation Notification System (PINS)	2
Call for Comment on Standards Proposals	40
Final Actions - (Approved ANS)	62
Call for Members (ANS Consensus Bodies)	64
American National Standards (ANS) Announcements	70
American National Standards (ANS) Process	71
Meeting Notices (Standards Developers)	72
ANS Under Continuous Maintenance	74
ANSI-Accredited Standards Developer Contacts	75

International Standards

ISO and IEC Draft Standards	77
ISO and IEC Newly Published Standards	81
International Electrotechnical Commission (IEC)	83

Information Concerning

Registration of Organization Names in the United States	84
Proposed Foreign Government Regulations	85
Appeals Activity Summary	86

Project Initiation Notification System (PINS)

Section 2.5.1 of the *ANSI Essential Requirements* (www.ansi.org/essentialrequirements) describes the Project Initiation Notification System (PINS) and includes requirements associated with a PINS Deliberation. Following is a list of PINS notices submitted for publication in this issue of ANSI Standards Action by ANSI-Accredited Standards Developers (ASDs). Please also review the section in Standards Action entitled "American National Standards Maintained Under Continuous Maintenance" for information about American National Standards (ANS) maintained under the continuous maintenance option, as a PINS to initiate a revision of such standards is not required. Use this [Public Document Library](#) link to access PDF & EXCEL reports of approved & proposed ANS: List of Approved and Proposed ANS. Directly and materially interested parties wishing to receive more information or to submit comments are to contact the sponsoring ANSI-Accredited Standards Developer directly **within 30 calendar days** of the publication of this PINS announcement.

AAFS (American Academy of Forensic Sciences)

Teresa Ambrosius <tambrosius@aafs.org> | 410 North 21st Street | Colorado Springs, CO 80904 www.aafs.org

New Standard

BSR/ASB BPR 239-202x, Best Practice Recommendation for the Identification of Decedents by the Medicolegal Death Investigation Authorities (new standard)

Stakeholders: Medical Examiner and Coroner Offices, medicolegal death investigation authorities, medicolegal death investigators, families and friends of decedents, law enforcement, and related forensic disciplines involved in the identification of decedents.

Project Need: This document establishes best practice recommendations for MDI authorities with the responsibilities of identifying a decedent. These best practice recommendations aim to educate and foster collaboration during the death notification process. They may also serve as guidance for offices developing policies in preparation for accreditation. These recommendations promote professionalism and aim to improve the quality of services provided to both local communities and the broader MDI community.

Interest Categories: Academics and Researchers, General Interest, Jurisprudence and Criminal Justice, Producer, User - Government, User - Non-Government

This document provides recommendations for the identification of a decedent whose death is under investigation by the medicolegal death investigation authority. This document covers the strategy used in MDI to identify decedents using multiple modalities performed by multiple disciplines (friction ridge, DNA, odontology, radiograph comparisons, visual means, and via circumstances) including when use of non-scientific methods are appropriate. This document does not provide guidance on the processes and procedures of those disciplines. This document does not specifically address mass fatality incidents.

AAFS (American Academy of Forensic Sciences)

Teresa Ambrosius <tambrosius@aafs.org> | 410 North 21st Street | Colorado Springs, CO 80904 www.aafs.org

Revision

BSR/ASB Std 093-202x, Standard for the Forensic Examination and Testing of Firearms (revision of ANSI/ASB STD 093-2020)

Stakeholders: Forensic Firearm and Toolmark examiners.

Project Need: This document is the revision of ANSI/ASB Standard 093, Standard Test Method for the Forensic Examination and Testing of Firearms, First Edition, 2020. This document establishes a standard for firearm and toolmark examiners and technicians to accurately describe, test, and document firearms. This will result in more uniform practices and reporting amongst practitioners who adopt this standard.

Interest Categories: Academics and Researchers, General Interest, Jurisprudence and Criminal Justice, Producer, User - Government, User - Non-Government

This document provides requirements for the examination and testing of a firearm by firearm and toolmark examiners or technicians. Following these procedures, an examiner or technician will be able to conduct, document, and report the examination and testing of a firearm.

AAFS (American Academy of Forensic Sciences)

Teresa Ambrosius <tambrosius@aafs.org> | 410 North 21st Street | Colorado Springs, CO 80904 www.aafs.org

New Standard

BSR/ASB Std 245-202x, Standard for the Systematic Verification of Alternative Training Aids for Detection Canine Disciplines (new standard)

Stakeholders: A federal, state, local and private sector canine detection teams, defense and prosecution attorney, law enforcement community, training aid manufacturers and researchers.

Project Need: Currently commercial, novel, and homemade training aids are used regularly by the canine detection community with no method to compare or verify their utility. This is the first standard of a set which describe the verification methods of canine training aids using both chemical analysis and canine assessments. This document allows the canine detection community to make informed decisions when choosing from training aids available.

Interest Categories: Academics and Researchers, General Interest, Jurisprudence and Criminal Justice, Producer, User - Government, User - Non-Government

This standard provides requirements for conducting verification tests of alternative training aids for detection canines and the process for assessing alternative training aids, including the instrumental chemical composition analysis (solid/liquid and headspace analysis) and canine training efficacy. It does not include a detailed description of chemical analysis and canine assessment methodologies.

AHRI (Air-Conditioning, Heating, and Refrigeration Institute)Jerry Yeh <jyeh2@ahrinet.org> | 2311 Wilson Boulevard, Suite 400 | Arlington, VA 22201 www.ahrinet.org***Revision***

BSR/AHRI Standard 551/591-202x (SI), Performance Rating of Water-Chilling and Heat Pump Water-Heating Packages Using the Vapor Compression Cycle (revision of ANSI/AHRI Standard 551/591-2023 (SI))

Stakeholders: Groups and individuals known to be, or who have indicated that they are, directly and materially affected by the standard, including manufacturers, testers, regulators and trade or professional organizations.

Project Need: The scope of this revision project is limited to two informative appendices: Appendix F, "Examples – Informative"; and Appendix G, "Indian Rating Conditions – Informative";

Interest Categories: Product Manufacturer, Regulatory Agency, Component Manufacturer, General Interest, Testing Laboratory

This standard applies to factory-made vapor compression refrigeration Water-chilling and Water-heating Packages including one or more compressors. These Water-chilling and Water-heating Packages include: Water-cooled, Air-cooled, or Evaporatively-cooled Condensers; Water-cooled heat recovery condensers; Air-to-water heat pumps; and Water-to-water heat pumps with a capacity greater or equal to 135,000 Btu/h. Water-to-water heat pumps with a capacity less than 135,000 Btu/h are covered by ASHRAE/ANSI/AHRI/ISO Standard 13256-2 and -2 1998 (R2012).

ASABE (American Society of Agricultural and Biological Engineers)Sadie Stell <stell@asabe.org> | 2590 Niles Road | Saint Joseph, MI 49085 [https://www.asabe.org/](http://www.asabe.org)***National Adoption***

BSR/ASABE/ISO 20383-2025-202x, Tractors and machinery for agriculture Speed Identification Sign (SIS) (identical national adoption of ISO 20383:2025 and revision of ANSI/ASABE/ISO 20383-2017 OCT2019 (R2023))

Stakeholders: Manufacturers and end users of agricultural equipment. Motorists on public roads.

Project Need: When ISO 20383 was revised in 2017 various errors were introduced. The national adoption of ISO 20383:2017 in 2019 inherited these errors. ISO 20383:2017 was corrected under US leadership in 2025. ASABE/ISO 20383:2017 OCT2019 (R2023) needs to be replaced with the identical adoption of the corrected ISO 20383:2025.

Interest Categories: Academia, design, compliance, general interest, producer, safety, user

This standard specifies the dimensions, characteristics, and positioning of Speed Identification Signs (SIS). These signs indicate the maximum equipment ground speed, based on the ground speed design capability, for an agricultural vehicle. A rear-facing SIS is visible to other operators on public roads approaching the equipment from behind. A forwardfacing SIS, mounted on the front of towed equipment, alerts operators of the towing vehicle of the maximum specified ground speed capabilities at which the equipment combination can be operated. This document is applicable to self-propelled, semi-integral and towed equipment moving on public roads.

ASME (American Society of Mechanical Engineers)Terrell Henry <ansibox@asme.org> | Two Park Avenue, M/S 6-2B | New York, NY 10016-5990 www.asme.org***Revision***

BSR/ASME B18.2.3.9M-202x, Metric Heavy Hex Flange Screws (revision of ANSI/ASME B18.2.3.9M-2001 (R2020))

Stakeholders: Manufacturers, distributors, users.

Project Need: The Standard contains outdated references to other Standards that were revised, withdrawn, and/or redesignated.

Interest Categories: AD – Distributor, AK – Manufacturer, AV – Trainer/Educator, AW – User, AF – General Interest, SP – Standards Developer

This Standard covers the complete dimensional and general data for metric series heavy hex flange screws.

ASME (American Society of Mechanical Engineers)

Terrell Henry <ansibox@asme.org> | Two Park Avenue, M/S 6-2B | New York, NY 10016-5990 www.asme.org

New Standard

BSR/ASME PTC 6-202x, Steam Turbines (new standard)

Stakeholders: Manufacturers, Users, Owners, Plant Operators

Project Need: This Code provides procedures for the accurate testing of steam turbines. It is recommended for use in conducting acceptance tests of steam turbines and any other situation in which performance levels must be determined with minimum uncertainty.

Interest Categories: Testing Services (AQ), Users (AW), Manufacturers (AK), General Interest (AF)

This Code provides procedures for the accurate testing of steam turbines. It is recommended for use in conducting acceptance tests of steam turbines and any other situation in which performance levels must be determined with minimum uncertainty.

ASME (American Society of Mechanical Engineers)

Terrell Henry <ansibox@asme.org> | Two Park Avenue, M/S 6-2B | New York, NY 10016-5990 www.asme.org

New Standard

BSR/ASME VVUQ 80-202x, Verification, Validation and Uncertainty Quantification in Computational Modeling of Pharmaceutical Products (new standard)

Stakeholders: medical device manufacturers, pharmaceutical producers, academia, research facilities, regulators, and inspectors

Project Need: Establishing the credibility of a computational model to assess performance is important because of the potential risk pharmaceuticals can present. This project will standardize verification, validation, and uncertainty quantification in computational modeling of pharmaceutical process development, manufacturing, and drug delivery. Areas to be addressed include but not limited to ai, bioreactors, chromatography, mixing, and tablet manufacturing.

Interest Categories: AF – General Interest, AI – Laboratory/Testing, AK - Manufacturing, AT – Regulatory

This standard will provide procedures for verification, validation, and uncertainty quantification in computational modeling of pharmaceutical process development, manufacturing, and drug delivery. It will present a framework for establishing and assessing model credibility. This standard will augment other standards that present V&V methodologies, such as ASME V&V 10 and ASME V&V 20.

AWS (American Welding Society)

Ady Celaya <acelaya@aws.org> | 8669 NW 36th St | Miami, FL 3316 www.aws.org

Revision

BSR/AWS C2.20/C2.20M-202x, Specification for Thermal Spraying Zinc Anodes on Steel Reinforced Concrete (revision of ANSI/AWS C2.20/C2.20M (R2025))

Stakeholders: Thermal spray contractors, shops, and operators.

Project Need: Need for guidance on the application of zinc thermal spray coatings.

Interest Categories: Producers, Users, General Interest, and Educators

This AWS standard is a specification for thermal spraying zinc anodes on steel reinforced concrete. This standard is formatted as an industrial process instruction. The scope includes: job description, safety, pass/fail job reference standards, feedstock materials, equipment, a step-by-step process instruction for surface preparation, thermal spraying, and quality control. There are five annexes, including job control record and portable adhesion testing.

AWWA (American Water Works Association)

Madeline Rohr <mrohr@awwa.org> | 6666 W. Quincy Avenue | Denver, CO 80235 www.awwa.org

Revision

BSR/AWWA B104-202x, Single-Use Ion Exchange Treatment for Trace Contaminant Removal (revision of ANSI/AWWA B104-2024)

Stakeholders: Drinking water treatment and supply industry. Water utilities, consulting engineers, regulators, water treatment equipment manufacturers, etc.

Project Need: The purpose of this standard is to provide the minimum requirements for purchasing and installing IX resin and equipment, including physical, chemical, packaging, purchasing, shipping, testing, and installation.

Interest Categories: General Interest, Producer, User

This standard describes ion exchange (IX) resin for water supply service applications and the requirements of the equipment used in water treatment to remove contaminants such as per- and polyfluoroalkyl substances (PFAS), perchlorate, hexavalent chromium, uranium, and radium, etc., for potable water treatment applications with single-use IX resin (resin that is not regenerated nor fluidized bed). It discusses the design of IX resin systems and requirements for the IX material.

AWWA (American Water Works Association)

Madeline Rohr <mrohr@awwa.org> | 6666 W. Quincy Avenue | Denver, CO 80235 www.awwa.org

Revision

BSR/AWWA B300-202x, Hypochlorites (revision of ANSI/AWWA B300-2024)

Stakeholders: Drinking water treatment and supply industry. Water utilities, consulting engineers, regulators, water treatment equipment manufacturers, etc.

Project Need: The purpose of this standard is to provide the minimum requirements for hypochlorites, including physical, chemical, sampling, testing, packaging, and shipping requirements.

Interest Categories: General Interest, Producer, User

This standard describes chlorinated lime, calcium hypochlorite, and sodium hypochlorite for use in water, wastewater, and reclaimed water treatment.

AWWA (American Water Works Association)

Madeline Rohr <mrohr@awwa.org> | 6666 W. Quincy Avenue | Denver, CO 80235 www.awwa.org

Revision

BSR/AWWA B301-202x, Liquid Chlorine (revision of ANSI/AWWA B301-2024)

Stakeholders: Drinking water treatment and supply industry. Water utilities, consulting engineers, regulators, water treatment equipment manufacturers, etc.

Project Need: The purpose of this standard is to provide the minimum requirements for liquid chlorine, including physical, chemical, sampling, testing, packaging, and shipping requirements.

Interest Categories: General Interest, Producer, User

This standard describes liquid chlorine for use in potable water, wastewater, and reclaimed water treatment.

AWWA (American Water Works Association)

Madeline Rohr <mrohr@awwa.org> | 6666 W. Quincy Avenue | Denver, CO 80235 www.awwa.org

Revision

BSR/AWWA B303-202x, Sodium Chlorite (revision of ANSI/AWWA B303-2024)

Stakeholders: Drinking water treatment and supply industry. Water utilities, consulting engineers, regulators, water treatment equipment manufacturers, etc.

Project Need: The purpose of this standard is to provide purchasers, manufacturers, and suppliers with the minimum requirements for sodium chlorite, including physical, chemical, sampling, packaging, shipping, and testing requirements.

Interest Categories: General Interest, Producer, User

This standard describes sodium chlorite, in either solid (granular, flake, or powdered) or aqueous-solution form, for use in making chlorine dioxide for use in the treatment of potable water, wastewater, and reclaimed water. Sodium chlorite must be packaged, labeled, and registered according to the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) as administered by the US Environmental Protection Agency (USEPA). State regulations may also apply.

AWWA (American Water Works Association)

Madeline Rohr <mrohr@awwa.org> | 6666 W. Quincy Avenue | Denver, CO 80235 www.awwa.org

Revision

BSR/AWWA B402-202x, Ferrous Sulfate (revision of ANSI/AWWA B402-2024)

Stakeholders: Drinking water treatment and supply industry. Water utilities, consulting engineers, regulators, water treatment equipment manufacturers, etc.

Project Need: The purpose of this standard is to provide minimum requirements for ferrous sulfate, including physical, chemical, sampling, packaging, shipping, and testing requirements.

Interest Categories: General Interest, Producer, User

This standard describes ferrous sulfate (FeSO_4) in moist, dried, and solution (liquid) forms for the treatment of potable water, wastewater, or reclaimed water.

AWWA (American Water Works Association)

Madeline Rohr <mrohr@awwa.org> | 6666 W. Quincy Avenue | Denver, CO 80235 www.awwa.org

Revision

BSR/AWWA B403-202x, Aluminum Sulfate - Liquid, Ground or Lump (revision of ANSI/AWWA B403-2024)

Stakeholders: Drinking water treatment and supply industry. Water utilities, consulting engineers, regulators, water treatment equipment manufacturers, etc.

Project Need: The purpose of this standard is to provide the minimum requirements for aluminum sulfate, including physical, chemical, sampling, testing, packaging, and shipping requirements.

Interest Categories: General Interest, Producer, User

This standard describes purified aluminum sulfate in liquid, ground, or lump form for use in treatment of potable water, wastewater, or reclaimed water.

AWWA (American Water Works Association)

Madeline Rohr <mrohr@awwa.org> | 6666 W. Quincy Avenue | Denver, CO 80235 www.awwa.org

Revision

BSR/AWWA B405-202x, Sodium Aluminate (revision of ANSI/AWWA B405-2024)

Stakeholders: Drinking water treatment and supply industry. Water utilities, consulting engineers, regulators, water treatment equipment manufacturers, etc.

Project Need: The purpose of this standard is to provide the minimum requirements for sodium aluminate, including physical, chemical, sampling, packaging, shipping, and testing requirements.

Interest Categories: General Interest, Producer, User

This standard describes sodium aluminate ($Na_2Al_2O_4$) in both liquid and solid form for use in the treatment of potable water, wastewater, or reclaimed water. Sodium aluminate according to this standard is a combination of sodium oxide (Na_2O) and aluminum oxide (Al_2O_3) with sufficient excess causticity (sodium oxide) for stabilization.

AWWA (American Water Works Association)

Madeline Rohr <mrohr@awwa.org> | 6666 W. Quincy Avenue | Denver, CO 80235 www.awwa.org

Revision

BSR/AWWA B407-202x, Liquid Ferric Chloride (revision of ANSI/AWWA B407-2024)

Stakeholders: Drinking water treatment and supply industry. Water utilities, consulting engineers, regulators, water treatment equipment manufacturers, etc.

Project Need: The purpose of this standard is to provide the minimum requirements for liquid ferric chloride, including physical, chemical, sampling, packaging, shipping, and testing requirements.

Interest Categories: General Interest, Producer, User

This standard describes ferric chloride in aqueous (liquid) form for use in the treatment of potable water, wastewater, and reclaimed water. Applications of the chemical include (1) water softening with lime or a combination of lime and soda ash to improve hardness reduction and coagulation and (2) water clarification, as a coagulant, followed by settling or filtration.

AWWA (American Water Works Association)

Madeline Rohr <mrohr@awwa.org> | 6666 W. Quincy Avenue | Denver, CO 80235 www.awwa.org

Revision

BSR/AWWA B453-202x, Polyacrylamide (revision of ANSI/AWWA B453-2024)

Stakeholders: Drinking water treatment and supply industry. Water utilities, consulting engineers, regulators, water treatment equipment manufacturers, etc.

Project Need: The purpose of this standard is to provide the minimum requirements for PAM products, including physical, chemical, packaging, shipping, and testing requirements and to provide the means of developing requirements for PAM products.

Interest Categories: General Interest, Producer, User

This standard describes polyacrylamide (PAM) for use in the treatment of potable water, wastewater, and reclaimed water.

AWWA (American Water Works Association)

Madeline Rohr <mrohr@awwa.org> | 6666 W. Quincy Avenue | Denver, CO 80235 www.awwa.org

Revision

BSR/AWWA B504-202x, Monosodium Phosphate, Anhydrous & Liquid (revision of ANSI/AWWA B504-2024)

Stakeholders: Drinking water treatment and supply industry. Water utilities, consulting engineers, regulators, water treatment equipment manufacturers, etc.

Project Need: The purpose of this standard is to provide the minimum requirements for monosodium phosphate, anhydrous and liquid, including physical, chemical, sampling, packaging, shipping, and testing requirements.

Interest Categories: General Interest, Producer, User

This standard describes monosodium phosphate, anhydrous and liquid, for use in the treatment of potable water, wastewater, and reclaimed water. The product described is an orthophosphate used as formulated and in blends to inhibit corrosion of water conveyance systems. The product described by this standard is also known as sodium phosphate, monobasic, anhydrous and liquid.

AWWA (American Water Works Association)

Madeline Rohr <mrohr@awwa.org> | 6666 W. Quincy Avenue | Denver, CO 80235 www.awwa.org

Revision

BSR/AWWA B505-202x, Disodium Phosphate, Anhydrous (revision of ANSI/AWWA B505-2024)

Stakeholders: Drinking water treatment and supply industry. Water utilities, consulting engineers, regulators, water treatment equipment manufacturers, etc.

Project Need: The purpose of this standard is to provide minimum requirements for disodium phosphate, anhydrous, including physical, chemical, sampling, packaging, shipping, and testing requirements.

Interest Categories: General Interest, Producer, User

This standard describes disodium phosphate, anhydrous, for use in the treatment of potable water, wastewater, and reclaimed water. The product described is also known as sodium hydrogen phosphate, with the salt in anhydrous form. Disodium phosphate, anhydrous, is an orthophosphate used, as formulated and in blends, to inhibit corrosion of potable water conveyance systems. The product described by this standard is also known as sodium phosphate, dibasic, anhydrous.

AWWA (American Water Works Association)

Madeline Rohr <mrohr@awwa.org> | 6666 W. Quincy Avenue | Denver, CO 80235 www.awwa.org

Revision

BSR/AWWA B600-202x, Powdered Activated Carbon (revision of ANSI/AWWA B600-2024)

Stakeholders: Drinking water treatment and supply industry. Water utilities, consulting engineers, regulators, water treatment equipment manufacturers, etc.

Project Need: The purpose of this standard is to provide the minimum requirements for PAC, including physical, testing, packaging, and shipping requirements.

Interest Categories: General Interest, Producer, User

This standard describes powdered activated carbon (PAC) for use in adsorption of impurities for water supply service applications.

AWWA (American Water Works Association)

Madeline Rohr <mrohr@awwa.org> | 6666 W. Quincy Avenue | Denver, CO 80235 www.awwa.org

Revision

BSR/AWWA B701-202x, Sodium Fluoride (revision of ANSI/AWWA B701-2024)

Stakeholders: Drinking water treatment and supply industry. Water utilities, consulting engineers, regulators, water treatment equipment manufacturers, etc.

Project Need: The purpose of this standard is to provide the minimum requirements for NaF, including physical, chemical, sampling, packaging, shipping, and testing requirements.

Interest Categories: General Interest, Producer, User

This standard describes sodium fluoride (NaF), coarse crystalline grade, for use in the treatment of potable water.

AWWA (American Water Works Association)

Madeline Rohr <mrohr@awwa.org> | 6666 W. Quincy Avenue | Denver, CO 80235 www.awwa.org

Revision

BSR/AWWA B702-202x, Sodium Fluorosilicate (revision of ANSI/AWWA B702-2024)

Stakeholders: Drinking water treatment and supply industry. Water utilities, consulting engineers, regulators, water treatment equipment manufacturers, etc.

Project Need: The purpose of this standard is to provide the minimum requirements for sodium fluorosilicate, including physical, chemical, sampling, packaging, shipping, and testing requirements.

Interest Categories: General Interest, Producer, User

This standard describes sodium fluorosilicate (Na₂SiF₆) for use in the treatment of potable water.

AWWA (American Water Works Association)

Madeline Rohr <mrohr@awwa.org> | 6666 W. Quincy Avenue | Denver, CO 80235 www.awwa.org

Revision

BSR/AWWA B703-202x, Fluorosilicic Acid (revision of ANSI/AWWA B703-2024)

Stakeholders: Drinking water treatment and supply industry. Water utilities, consulting engineers, regulators, water treatment equipment manufacturers, etc.

Project Need: The purpose of this standard is to provide the minimum requirements for fluorosilicic acid, including physical, chemical, sampling, packaging, shipping, and testing requirements.

Interest Categories: General Interest, Producer, User

This standard describes fluorosilicic acid (H₂SiF₆) for use in the treatment of potable water.

AWWA (American Water Works Association)

Madeline Rohr <mrohr@awwa.org> | 6666 W. Quincy Avenue | Denver, CO 80235 www.awwa.org

Revision

BSR/AWWA C205-202x, Cement–Mortar Protective Lining and Coating for Steel Water Pipe—4 In. (100mm) and Larger—Shop Applied (revision of ANSI/AWWA C205-2024)

Stakeholders: Drinking water treatment and supply industry. Water utilities, consulting engineers, regulators, water treatment equipment manufacturers, etc.

Project Need: The purpose of this standard is to provide the minimum requirements for shop-applied cement–mortar lining and coating of steel water pipe, including material, application, inspection, handling, and field-jointing requirements.

Interest Categories: General Interest, Producer, User

This standard describes the material, application, and curing of shop-applied cement–mortar protective linings and coatings for steel water pipe and fittings and field jointing of cement–mortar-lined-and-coated steel water pipe and fittings.

AWWA (American Water Works Association)

Madeline Rohr <mrohr@awwa.org> | 6666 W. Quincy Avenue | Denver, CO 80235 www.awwa.org

Revision

BSR/AWWA C210-202x, Liquid-Epoxy Coatings and Linings for Steel Water Pipe and Fittings (revision of ANSI/AWWA C210-2024)

Stakeholders: Drinking water treatment and supply industry. Water utilities, consulting engineers, regulators, water treatment equipment manufacturers, etc.

Project Need: The purpose of this standard is to provide the minimum requirements for liquid-epoxy coatings and linings for steel water pipe and fittings, including material, application, inspection, testing, performance requirements, packaging, and storage requirements.

Interest Categories: General Interest, Producer, User

This standard describes the material and application of shop-applied and field-applied liquid-epoxy coatings and linings used in the water-supply industry for steel water pipe, special sections, welded joints, connections, and fittings installed underground or underwater, under normal construction conditions.

AWWA (American Water Works Association)

Madeline Rohr <mrohr@awwa.org> | 6666 W. Quincy Avenue | Denver, CO 80235 www.awwa.org

Revision

BSR/AWWA C214-202x, Machine-Applied Polyolefin Tape Coatings for Steel Water Pipe (revision of ANSI/AWWA C214-2024)

Stakeholders: Drinking water treatment and supply industry. Water utilities, consulting engineers, regulators, water treatment equipment manufacturers, etc.

Project Need: The purpose of this standard is to provide the minimum performance requirements for tape coating systems for the exterior of steel water pipelines, including system components, application, inspection, testing, and marking and packaging requirements.

Interest Categories: General Interest, Producer, User

This standard describes the materials and application of prefabricated polyolefin tape coating systems in coating plants at fixed sites using coating techniques and equipment as recommended by the tape coating manufacturer. This standard establishes the minimum requirements for tape coating systems used on the exterior of steel water pipes.

AWWA (American Water Works Association)

Madeline Rohr <mrohr@awwa.org> | 6666 W. Quincy Avenue | Denver, CO 80235 www.awwa.org

Revision

BSR/AWWA C221-202x, Fabricated Steel Mechanical Slip-Type Expansion Joints (revision of ANSI/AWWA C221-2024)
 Stakeholders: Drinking water treatment and supply industry. Water utilities, consulting engineers, regulators, water treatment equipment manufacturers, etc.

Project Need: The purpose of this standard is to provide the minimum requirements for fabricated steel mechanical slip-type expansion joints, including system components, testing, and marking requirements.

Interest Categories: General Interest, Producer, User

This standard describes fabricated steel mechanical slip-type expansion joints having packing chambers for use on pipe with plain, flanged, grooved, or shouldered ends in nominal pipe sizes 3 in. (75 mm)* and larger. The joints shall be manufactured from steel and are intended for use in systems conveying water. Mechanical expansion joints are not intended for use in buried conditions.

AWWA (American Water Works Association)

Madeline Rohr <mrohr@awwa.org> | 6666 W. Quincy Avenue | Denver, CO 80235 www.awwa.org

Revision

BSR/AWWA C224-202x, Nylon-11-Based Polyamide Coatings and Linings for Steel Water Pipe and Fittings (revision of ANSI/AWWA C224-2024)

Stakeholders: Drinking water treatment and supply industry. Water utilities, consulting engineers, regulators, water treatment equipment manufacturers, etc.

Project Need: The purpose of this standard is to establish and describe the minimum requirements for the application and use of polyamide systems for steel articles employed in water handling to maximize long-term performance—in particular, long-term corrosion protection.

Interest Categories: General Interest, Producer, User

This standard describes Nylon-11-based polyamide systems for coating and lining of steel pipe, connections, fittings, and special sections (articles) that are used in water-handling equipment that is installed aboveground, belowground, or underwater. Polyamide systems are thermoplastic and are ordinarily applied in a shop or manufacturing facility.

AWWA (American Water Works Association)

Madeline Rohr <mrohr@awwa.org> | 6666 W. Quincy Avenue | Denver, CO 80235 www.awwa.org

Revision

BSR/AWWA C226-202x, Stainless-Steel Fittings for Waterworks Service, Sizes 1 in. Through 72 in. (13mmThrough1,800 mm) (revision of ANSI/AWWA C226-2024)

Stakeholders: Drinking water treatment and supply industry. Water utilities, consulting engineers, regulators, water treatment equipment manufacturers, etc.

Project Need: The purpose of this standard is to provide the minimum requirements for stainless-steel fittings, including materials, manufacturing, testing, inspection, and marking requirements.

Interest Categories: General Interest, Producer, User

This standard pertains to the various types of stainless-steel fittings that are intended for the transmission and distribution of potable water, reclaimed water, and wastewater and for use in other water-supply system facilities.

AWWA (American Water Works Association)

Madeline Rohr <mrohr@awwa.org> | 6666 W. Quincy Avenue | Denver, CO 80235 www.awwa.org

Revision

BSR/AWWA C229-202x, Fusion-Bonded Polyethylene Coatings for Steel Water Pipe & Fittings (revision of ANSI/AWWA C229-2024)

Stakeholders: Drinking water treatment and supply industry. Water utilities, consulting engineers, regulators, water treatment equipment manufacturers, etc.

Project Need: The purpose of this standard is to provide the minimum requirements for FBPE coating for steel water pipe and fittings, including material, application, inspection, testing, performance, marking, handling, packaging, and storage requirements.

Interest Categories: General Interest, Producer, User

This standard describes the materials and application requirements for factory-applied, fusion-bonded polyethylene (FBPE) coating to the exterior of steel water pipes and fittings.

AWWA (American Water Works Association)

Madeline Rohr <mrohr@awwa.org> | 6666 W. Quincy Avenue | Denver, CO 80235 www.awwa.org

Revision

BSR/AWWA C231-202x, Field Welding of Stainless-Steel Water Pipe (revision of ANSI/AWWA C231-2024)

Stakeholders: Drinking water treatment and supply industry. Water utilities, consulting engineers, regulators, water treatment equipment manufacturers, etc.

Project Need: The purpose of this standard is to provide minimum requirements for field welding and inspection of field welds on stainless-steel potable water, wastewater, and reclaimed water pipe.

Interest Categories: General Interest, Producer, User

This standard describes manual, semi-automatic, and automatic field welding by the metal arc-welding processes for stainless-steel potable water, wastewater, and reclaimed water pipe manufactured in accordance with ANSI*/AWWA C220. This standard describes field-welding of two types of circumferential pipe joints: lap joints and butt joints. This standard also applies to other welding required in field fabrication and installation of specials and appurtenances.

AWWA (American Water Works Association)

Madeline Rohr <mrohr@awwa.org> | 6666 W. Quincy Avenue | Denver, CO 80235 www.awwa.org

Revision

BSR/AWWA C233-202x, Geotextile Backed Tape Coatings for Steel Water Pipe and Fittings (revision of ANSI/AWWA C233 (formerly C2GT)-2024)

Stakeholders: Drinking water treatment and supply industry. Water utilities, consulting engineers, regulators, water treatment equipment manufacturers, etc.

Project Need: The purpose of this standard is to provide the minimum performance requirements for geotextile backed tape coatings, including material, application, inspection, testing, marking, and packaging.

Interest Categories: General Interest, Producer, User

This standard describes protective coatings that consist of liquid adhesive and geotextile backed tape coating systems and their applications to steel water pipe and fittings to be used for underground steel water pipelines. Geotextile backed tape coating systems conforming to this standard may be field- or shop-applied to uncoated fittings, or field-applied to pipelines and joints protected with organic coatings.

AWWA (American Water Works Association)

Madeline Rohr <mrohr@awwa.org> | 6666 W. Quincy Avenue | Denver, CO 80235 www.awwa.org

Revision

BSR/AWWA C303-202x, Concrete Pressure Pipe, Bar-Wrapped Steel-Cylinder Type (revision of ANSI/AWWA C303-2023)

Stakeholders: Drinking water treatment and supply industry. Water utilities, consulting engineers, regulators, water treatment equipment manufacturers, etc.

Project Need: The purpose of this standard is to provide the minimum requirements for concrete pressure pipe, bar-wrapped steel-cylinder type, including fabrication and testing requirements.

Interest Categories: General Interest, Producer, User

This standard describes the manufacture of concrete pressure pipe, reinforced with a steel cylinder that is helically wrapped with mild steel-bar reinforcement, in sizes ranging from 10 through 72 in. (250 through 1,830 mm), inclusive, and for working pressures up to 400 psi (2,760 kPa).

AWWA (American Water Works Association)

Madeline Rohr <mrohr@awwa.org> | 6666 W. Quincy Avenue | Denver, CO 80235 www.awwa.org

Revision

BSR/AWWA C304-202x, Design of Prestressed Concrete Cylinder Pipe (revision of ANSI/AWWA C304-2014 (R2024))

Stakeholders: Drinking water treatment and supply industry. Water utilities, consulting engineers, regulators, water treatment equipment manufacturers, etc.

Project Need: The purpose of this standard is to provide minimum design requirements for prestressed concrete cylinder pipe for water services.

Interest Categories: General Interest, Producer, User

This standard defines the methods to be used in the structural design of buried prestressed concrete cylinder pipe (PCCP) under internal pressure. These methods are provided for the design of pipe subjected to the effects of working, transient, and field-test load and internal pressure combinations.

AWWA (American Water Works Association)

Madeline Rohr <mrohr@awwa.org> | 6666 W. Quincy Avenue | Denver, CO 80235 www.awwa.org

Revision

BSR/AWWA C305-202x, CFRP Renewal and Strengthening of Prestressed Concrete Cylinder Pipe (PCCP) (revision of ANSI/AWWA C305-2024)

Stakeholders: Drinking water treatment and supply industry. Water utilities, consulting engineers, regulators, water treatment equipment manufacturers, etc.

Project Need: The purpose of this standard is to provide the minimum requirements for material selection, design, installation, quality control, and quality assurance of the carbon fiber reinforced polymer (CFRP) renewal and strengthening of prestressed concrete cylinder pipe (PCCP), bar-wrapped concrete pressure pipe, and steel pipe.

Interest Categories: General Interest, Producer, User

This standard provides the minimum requirements for material selection, design, installation, and quality control and quality assurance of carbon fiber reinforced polymer (CFRP) renewal and strengthening of prestressed concrete cylinder pressure pipe (PCCP), bar-wrapped concrete pressure pipe, and steel pipe.

AWWA (American Water Works Association)Madeline Rohr <mrohr@awwa.org> | 6666 W. Quincy Avenue | Denver, CO 80235 www.awwa.org***Revision***

BSR/AWWA C502-202x, Dry-Barrel Fire Hydrants (revision of ANSI/AWWA C502-2024)

Stakeholders: Drinking water treatment and supply industry. Water utilities, consulting engineers, regulators, water treatment equipment manufacturers, etc.

Project Need: The purpose of this standard is to provide the minimum requirements for dry-barrel fire hydrants for fire protection service, including materials, general design, and testing.

Interest Categories: General Interest, Producer, User

This standard describes post-type, dry-barrel fire hydrants with compression shutoff (opening against or with the pressure) or gate shutoff for use in fire protection service in all climates, including those where freezing occurs.

AWWA (American Water Works Association)Madeline Rohr <mrohr@awwa.org> | 6666 W. Quincy Avenue | Denver, CO 80235 www.awwa.org***Revision***

BSR/AWWA C518-202x, Double-Disc Swing-Check Valves for Waterworks Service, 2-in. Through 48-in. (50-mm Through 1,200-mm) NPS (revision of ANSI/AWWA C518-2024)

Stakeholders: Drinking water treatment and supply industry. Water utilities, consulting engineers, regulators, water treatment equipment manufacturers, etc.

Project Need: The purpose of this standard is to provide the minimum requirements for double-disc swing-check valves, suitable for waterworks service, 2-in. through 48-in. (50-mm through 1,200-mm) NPS, including materials and testing.

Interest Categories: General Interest, Producer, User

This standard establishes minimum requirements for double-disc swing check valves, 2-in. (50-mm) through 48-in. (1,200-mm) NPS (nominal pipe size), with various body and end types for raw, potable, and reclaimed water having a pH range from 6 to 12 and a temperature range of 33–125°F (0.6–52°C).

AWWA (American Water Works Association)Madeline Rohr <mrohr@awwa.org> | 6666 W. Quincy Avenue | Denver, CO 80235 www.awwa.org***Revision***

BSR/AWWA C520-202x, Knife Gate Valves, Sizes 2 In. (50 mm) Through 96 In. (2,400 mm) (revision of ANSI/AWWA C520-2024)

Stakeholders: Drinking water treatment and supply industry. Water utilities, consulting engineers, regulators, water treatment equipment manufacturers, etc.

Project Need: The purpose of this standard is to provide minimum requirements for stainless-steel and ductile-iron body knife gate valves with resilient and metal seats, including tapping knife gate valves, for use in water, wastewater, and reclaimed water systems, including materials, design, testing, rejection, marking, and shipping.

Interest Categories: General Interest, Producer, User

This standard describes bonneted, bonnetless, cast, and fabricated steel; stainless-steel; and cast ductile-iron body knife gate valves with resilient or metal seats, including tapping knife gate valves, for use in water, wastewater, and reclaimed water systems with a pH range from 6 to 12 and a temperature range from 33 to 125°F (0.6 to 52°C).

AWWA (American Water Works Association)

Madeline Rohr <mrohr@awwa.org> | 6666 W. Quincy Avenue | Denver, CO 80235 www.awwa.org

Revision

BSR/AWWA C550-202x, Protective Interior Coatings for Valves and Hydrants (revision of ANSI/AWWA C550-2024)

Stakeholders: Drinking water treatment and supply industry. Water utilities, consulting engineers, regulators, water treatment equipment manufacturers, etc.

Project Need: The purpose of this standard is to provide the minimum requirements for protective interior coatings for valves and hydrants, including materials, coating process, testing, and repair.

Interest Categories: General Interest, Producer, User

This standard describes protective interior coatings for valves used for water supply, wastewater collection and treatment, and reclaimed water service having a pH range from 4 to 9 and for hydrants used for water supply service. The standard describes the material, application, and performance requirements for these interior coatings. The coating shall not contain coal tar. These coatings are applied for protection of ferrous surfaces of valves and hydrants.

AWWA (American Water Works Association)

Madeline Rohr <mrohr@awwa.org> | 6666 W. Quincy Avenue | Denver, CO 80235 www.awwa.org

Revision

BSR/AWWA C604-202x, Installation of Buried Steel Water Pipe - 4 In. (100 mm) and Larger (revision of ANSI/AWWA C604-2024)

Stakeholders: Drinking water treatment and supply industry. Water utilities, consulting engineers, regulators, water treatment equipment manufacturers, etc.

Project Need: The purpose of this standard is to provide the minimum requirements for the installation of buried steel water pipelines, including inspection, unloading, handling, storage, and testing.

Interest Categories: General Interest, Producer, User

This standard provides the field installation guidelines for buried steel water pipe, 4 in. (100 mm)* and larger. The information contained in this standard is intended to be used as a guide to assist in the installation of steel water pipe.

AWWA (American Water Works Association)

Madeline Rohr <mrohr@awwa.org> | 6666 W. Quincy Avenue | Denver, CO 80235 www.awwa.org

Revision

BSR/AWWA C607-202x, Installation of Concrete Pressure Pipe (revision of ANSI/AWWA C607-2024)

Stakeholders: Drinking water treatment and supply industry. Water utilities, consulting engineers, regulators, water treatment equipment manufacturers, etc.

Project Need: The purpose of this standard is to provide the minimum requirements for the installation of buried concrete pressure pipelines, including inspection, unloading, handling, storage, and testing.

Interest Categories: General Interest, Producer, User

This standard provides the field installation guidelines for buried concrete pressure pipe. The information contained in this standard is intended to be used as a guide to assist in the installation of concrete pressure pipe.

AWWA (American Water Works Association)

Madeline Rohr <mrohr@awwa.org> | 6666 W. Quincy Avenue | Denver, CO 80235 www.awwa.org

Revision

BSR/AWWA C700-202x, Cold-Water Meters - Displacement Type, Metal Alloy Main Case (revision of ANSI/AWWA C700-2024)

Stakeholders: Drinking water treatment and supply industry. Water utilities, consulting engineers, regulators, water treatment equipment manufacturers, etc.

Project Need: The purpose of this standard is to provide the minimum requirements for cold-water meters—displacement type, metal alloy main case, including materials and design.

Interest Categories: General Interest, Producer, User

This standard describes the various types and classes of cold-water displacement meters with metal alloy main cases, in sizes $\frac{1}{2}$ in. (13 mm) through 2 in. (50 mm), and the materials and workmanship employed in their fabrication. The displacement meters described, known as nutating-disc or oscillating-piston meters, are positive in action because the pistons and discs displace or carry over a fixed quantity of water for each nutation or oscillation when operated under positive pressure.

AWWA (American Water Works Association)

Madeline Rohr <mrohr@awwa.org> | 6666 W. Quincy Avenue | Denver, CO 80235 www.awwa.org

Revision

BSR/AWWA C701-202x, Cold-Water Meters—Turbine Type, for Customer Service (revision of ANSI/AWWA C701-2024)

Stakeholders: Drinking water treatment and supply industry. Water utilities, consulting engineers, regulators, water treatment equipment manufacturers, etc.

Project Need: The purpose of this standard is to provide the minimum requirements for cold-water turbine-type meters, including materials and design.

Interest Categories: General Interest, Producer, User

This standard describes the various classes of cold-water turbine meters in sizes $\frac{3}{4}$ in. (20 mm) through 20 in. (500 mm) for water supply customer service, mainline metering, and custody transfer of water among purveyors, and the materials and workmanship employed in their fabrication. The turbine meters described in this standard are divided into class I and class II meters. Both classes of meters register by recording the revolutions of a turbine set in motion by the force of flowing water striking its blades.

AWWA (American Water Works Association)

Madeline Rohr <mrohr@awwa.org> | 6666 W. Quincy Avenue | Denver, CO 80235 www.awwa.org

Revision

BSR/AWWA C702-202x, Cold-Water Meters - Compound Type (revision of ANSI/AWWA C702-2024)

Stakeholders: Drinking water treatment and supply industry. Water utilities, consulting engineers, regulators, water treatment equipment manufacturers, etc.

Project Need: The purpose of this standard is to provide the minimum requirements for compound-type cold-water meters, including materials and design.

Interest Categories: General Interest, Producer, User

This standard describes the various types and classes of cold-water compound type meters in sizes 2 in. (50 mm) through 8 in. (200 mm), and the materials and workmanship used in their fabrication. Compound meters shall consist of a combination of a turbine-type mainline meter for measuring high rates of flow and a bypass meter of an appropriate size for measuring low rates of flow. The compound meter shall have an automatic valve mechanism for diverting low rates of flow through the bypass meter.

AWWA (American Water Works Association)

Madeline Rohr <mrohr@awwa.org> | 6666 W. Quincy Avenue | Denver, CO 80235 www.awwa.org

Revision

BSR/AWWA C703-202x, Cold-Water Meters— Fire-Service Type (revision of ANSI/AWWA C703-2024)

Stakeholders: Drinking water treatment and supply industry. Water utilities, consulting engineers, regulators, water treatment equipment manufacturers, etc.

Project Need: The purpose of this standard is to provide the minimum requirements for cold-water meters—fire-service type.

Interest Categories: General Interest, Producer, User

This standard describes the various types and classes of cold-water fire-service— type meters in sizes 3 in. (80 mm)* through 10 in. (250 mm), and the materials and workmanship used in their fabrication.

AWWA (American Water Works Association)

Madeline Rohr <mrohr@awwa.org> | 6666 W. Quincy Avenue | Denver, CO 80235 www.awwa.org

Revision

BSR/AWWA C704-202x, Propeller-Type Meters for Waterworks Applications (revision of ANSI/AWWA C704-2024)

Stakeholders: Drinking water treatment and supply industry. Water utilities, consulting engineers, regulators, water treatment equipment manufacturers, etc.

Project Need: The purpose of this standard is to provide the minimum requirements for propeller-type meters for waterworks applications.

Interest Categories: General Interest, Producer, User

This standard describes the various types and classes of propeller meters in sizes 2 in. (50 mm) through 72 in. (1,800 mm) for waterworks applications. These meters register by recording the revolutions of a propeller set in motion by the force of flowing water striking the blades.

AWWA (American Water Works Association)

Madeline Rohr <mrohr@awwa.org> | 6666 W. Quincy Avenue | Denver, CO 80235 www.awwa.org

Revision

BSR/AWWA C708-202x, Cold-Water Meters—Multijet Type (revision of ANSI/AWWA C708-2024)

Stakeholders: Drinking water treatment and supply industry. Water utilities, consulting engineers, regulators, water treatment equipment manufacturers, etc.

Project Need: The purpose of this standard is to provide the minimum requirements for multijet-type cold-water meters, including materials and design.

Interest Categories: General Interest, Producer, User

This standard describes cold-water multijet meters in sizes $\frac{3}{4}$ in. (15 mm) through 2 in. (50 mm) for water utilities' customer service and the materials and workmanship employed in their fabrication. These meters register by recording the revolutions of a rotor set in motion by the force of flowing water striking the blades.

AWWA (American Water Works Association)

Madeline Rohr <mrohr@awwa.org> | 6666 W. Quincy Avenue | Denver, CO 80235 www.awwa.org

Revision

BSR/AWWA C710-202x, Cold-Water Meters— Displacement Type, Plastic Main Case (revision of ANSI/AWWA C710-2024)

Stakeholders: Drinking water treatment and supply industry. Water utilities, consulting engineers, regulators, water treatment equipment manufacturers, etc.

Project Need: The purpose of this standard is to provide the minimum requirements for cold-water meters—displacement type, plastic main case, including materials and design.

Interest Categories: General Interest, Producer, User

This standard describes the various types and classes of cold-water displacement meters with plastic main cases, in sizes $\frac{1}{2}$ in. (13 mm) through 1 in. (25 mm), for water utility customer service, and the materials and workmanship employed in their fabrication. The displacement meters described, known as nutating-disc or oscillating-piston meters, are positive in action because the pistons and discs displace or carry over a fixed quantity of water for each nutation or oscillation when operated under positive pressure.

AWWA (American Water Works Association)

Madeline Rohr <mrohr@awwa.org> | 6666 W. Quincy Avenue | Denver, CO 80235 www.awwa.org

Revision

BSR/AWWA C712-202x, Cold-Water Meters— Singlejet Type (revision of ANSI/AWWA C712-2024)

Stakeholders: Drinking water treatment and supply industry. Water utilities, consulting engineers, regulators, water treatment equipment manufacturers, etc.

Project Need: The purpose of this standard is to provide the minimum requirements for cold-water singlejet meters, including materials and design.

Interest Categories: General Interest, Producer, User

This standard describes the various types and classes of cold-water singlejet meters in sizes $\frac{5}{8}$ in. (15 mm) through 6 in. (150 mm) for water utilities' customer service and the materials and workmanship employed in their fabrication. These meters register by recording the revolutions of a rotor powered by the force of flowing water striking its blades.

AWWA (American Water Works Association)

Madeline Rohr <mrohr@awwa.org> | 6666 W. Quincy Avenue | Denver, CO 80235 www.awwa.org

Revision

BSR/AWWA C713-202x, Cold-Water Meters— Fluidic-Oscillator Type (revision of ANSI/AWWA C713-2024)

Stakeholders: Drinking water treatment and supply industry. Water utilities, consulting engineers, regulators, water treatment equipment manufacturers, etc.

Project Need: The purpose of this standard is to provide the minimum requirements for cold-water meters—fluidic-oscillator type, including materials and design.

Interest Categories: General Interest, Producer, User

This standard describes cold-water fluidic-oscillator meters with brass main cases in sizes $\frac{1}{2}$ in. (13 mm)* through 2 in. (50 mm), and the materials and workmanship employed in their fabrication. The basis for volume measurement is a transducer element that senses and utilizes fluidic oscillation rather than a moving measurement element, as required in traditional cold-water volumetric meters.

AWWA (American Water Works Association)

Madeline Rohr <mrohr@awwa.org> | 6666 W. Quincy Avenue | Denver, CO 80235 www.awwa.org

Revision

BSR/AWWA C714-202x, Cold-Water Meters for Residential Fire Sprinkler Systems in One- and Two-Family Dwellings and Manufactured Homes (revision of ANSI/AWWA C714-2024)

Stakeholders: Drinking water treatment and supply industry. Water utilities, consulting engineers, regulators, water treatment equipment manufacturers, etc.

Project Need: The purpose of this standard is to provide the minimum requirements for cold-water meters for residential fire sprinkler applications that meet the requirements of NFPA 13D in one- and two-family dwellings and manufactured homes, in sizes $\frac{3}{4}$ in. (20 mm) through 2 in. (50 mm), including materials and design.

Interest Categories: General Interest, Producer, User

This standard describes cold-water meters used for residential fire sprinkler applications that meet the requirements of NFPA* 13D in one- and two-family dwellings and manufactured homes, in sizes $\frac{3}{4}$ in. (20 mm) through 2 in. (50 mm), and the materials and workmanship employed in their fabrication.

AWWA (American Water Works Association)

Madeline Rohr <mrohr@awwa.org> | 6666 W. Quincy Avenue | Denver, CO 80235 www.awwa.org

Revision

BSR/AWWA D101-202x, Evaluation of Steel Water Tanks and Related Facilities (revision of ANSI/AWWA D101-2024)

Stakeholders: Drinking water treatment and supply industry. Water utilities, consulting engineers, regulators, water treatment equipment manufacturers, etc.

Project Need: The purpose of this standard is to provide a detailed description of the minimum services together with minimum qualifications and training of the field observation company and its employees during the evaluation of infrastructure related to the treatment, storage, and distribution of both potable water and wastewater.

Interest Categories: General Interest, Producer, User

This standard describes the evaluation of structures involved in the treatment, storage, and distribution of water. The evaluation could be performed while the structure is being fabricated and erected or within the warranty period after work is performed. This standard also addresses the minimum qualification level of an evaluation company and its personnel.

AWWA (American Water Works Association)

Madeline Rohr <mrohr@awwa.org> | 6666 W. Quincy Avenue | Denver, CO 80235 www.awwa.org

Revision

BSR/AWWA D102-202x, Coating Steel Water-Storage Tanks (revision of ANSI/AWWA D102-2024)

Stakeholders: Drinking water treatment and supply industry. Water utilities, consulting engineers, regulators, water treatment equipment manufacturers, etc.

Project Need: The purpose of this standard is to provide the minimum requirements for coating steel water-storage tanks, including materials, coating systems, surface preparation, application, and inspection and testing.

Interest Categories: General Interest, Producer, User

This standard describes coating systems for coating and recoating the inside and outside surfaces of steel tanks used for potable water storage in water supply service. Coating systems for bolted steel tanks are not described in this standard (see ANSI/AWWA D103).

AWWA (American Water Works Association)

Madeline Rohr <mrohr@awwa.org> | 6666 W. Quincy Avenue | Denver, CO 80235 www.awwa.org

Revision

BSR/AWWA D106-202x, Sacrificial Anode Cathodic Protection Systems for the Interior Submerged Surfaces of Steel Water Storage Tanks (revision of ANSI/AWWA D106-2024)

Stakeholders: Drinking water treatment and supply industry. Water utilities, consulting engineers, regulators, water treatment equipment manufacturers, etc.

Project Need: The purpose of this standard is to provide the minimum requirements for sacrificial anode cathodic protection systems for the interior submerged surfaces of steel water storage tanks, including design, system components, quality of work, installation, operation, and maintenance.

Interest Categories: General Interest, Producer, User

This standard describes sacrificial anode cathodic protection systems intended to minimize corrosion of interior submerged surfaces of steel water storage tanks. This standard does not describe automatically or manually controlled impressed current systems.

AWWA (American Water Works Association)

Madeline Rohr <mrohr@awwa.org> | 6666 W. Quincy Avenue | Denver, CO 80235 www.awwa.org

Revision

BSR/AWWA D115-202x, Tendon-Prestressed Concrete Water Tanks (revision of ANSI/AWWA D115-2024)

Stakeholders: Drinking water treatment and supply industry. Water utilities, consulting engineers, regulators, water treatment equipment manufacturers, etc.

Project Need: The purpose of this standard is to provide minimum requirements for tendon type prestressed concrete water storage tanks.

Interest Categories: General Interest, Producer, User

This standard describes current and recommended practice for the design, construction, and field observations of concrete tanks using internal tendons for prestressing. This standard applies to containment structures for use with potable water, raw water, or wastewater.

AWWA (American Water Works Association)

Madeline Rohr <mrohr@awwa.org> | 6666 W. Quincy Avenue | Denver, CO 80235 www.awwa.org

Revision

BSR/AWWA D121-202x, Bolted Aboveground Thermosetting Fiberglass-Reinforced Plastic Panel-Type Tanks for Water Storage (revision of ANSI/AWWA D121-2024)

Stakeholders: Drinking water treatment and supply industry. Water utilities, consulting engineers, regulators, water treatment equipment manufacturers, etc.

Project Need: The purpose of this standard is to provide minimum requirements for the design, manufacture, construction, and inspection of BATFRPP tanks for the storage of water.

Interest Categories: General Interest, Producer, User

This standard describes the design, fabrication, construction, inspection, and testing of bolted aboveground thermosetting fiberglass-reinforced plastic paneltype (BATFRPP) tanks for potable water, reclaimed water, and nonpotable water. Requirements for the fabrication, design, construction, and testing of fiberglassreinforced plastic (FRP) panels, concrete and steel foundation members, steel bolts, and accessories are included.

AWWA (American Water Works Association)

Madeline Rohr <mrohr@awwa.org> | 6666 W. Quincy Avenue | Denver, CO 80235 www.awwa.org

Revision

BSR/AWWA F120-202x, Ozone Systems for Water (revision of ANSI/AWWA F120-2024)

Stakeholders: Drinking water treatment and supply industry. Water utilities, consulting engineers, regulators, water treatment equipment manufacturers, etc.

Project Need: The purpose of this standard is to provide a minimum set of requirements for ozone systems for the treatment of potable water, wastewater, reclaimed water, and stormwater. This standard is intended to assist with the design, procurement, installation, and commissioning of ozone systems.

Interest Categories: General Interest, Producer, User

This standard describes the minimum requirements for ozone systems and equipment used to treat potable water, wastewater, reclaimed water, and stormwater. This standard covers high-concentration ozone generation equipment using discharge dielectrics and modular-type ozone generators fed from oxygen gas vaporized from a liquid oxygen (LOX) storage system. Equipment under this standard includes ozone generators with associated ancillary equipment, design considerations, and testing requirements.

AWWA (American Water Works Association)

Madeline Rohr <mrohr@awwa.org> | 6666 W. Quincy Avenue | Denver, CO 80235 www.awwa.org

Revision

BSR/AWWA G400-202x, Utility Management System (revision of ANSI/AWWA G400-2024)

Stakeholders: Drinking water treatment and supply industry. Water utilities, consulting engineers, regulators, water treatment equipment manufacturers, etc.

Project Need: The purpose of this standard is to define the minimum requirements for establishing a utility management system for a water or wastewater utility that will promote continuous improvement.

Interest Categories: Service Provider/Consultant, Management Interest, and Utility/User

This standard covers the essential requirements for an effective utility management system.

AWWA (American Water Works Association)

Madeline Rohr <mrohr@awwa.org> | 6666 W. Quincy Avenue | Denver, CO 80235 www.awwa.org

Revision

BSR/AWWA G420-202x, Communication and Customer Relations (revision of ANSI/AWWA G420-2024)

Stakeholders: Drinking water treatment and supply industry. Water utilities, consulting engineers, regulators, water treatment equipment manufacturers, etc.

Project Need: The purpose of this standard is to define the minimum requirements for establishing an effective communication and customer relations plan for a water and/or wastewater utility. .

Interest Categories: Service Provider/Consultant, Management Interest, and Utility/User

This standard covers the essential requirements to effectively manage communication and customer relations.

AWWA (American Water Works Association)

Madeline Rohr <mrohr@awwa.org> | 6666 W. Quincy Avenue | Denver, CO 80235 www.awwa.org

Revision

BSR/AWWA G430-202x, Security Practices for Operation and Management (revision of ANSI/AWWA G430-2024)

Stakeholders: Drinking water treatment and supply industry. Water utilities, consulting engineers, regulators, water treatment equipment manufacturers, etc.

Project Need: The purpose of this standard is to define the minimum requirements for a protective security program for a water, wastewater, or reuse utility that will promote the protection of employee safety, public health, public safety, and public confidence.

Interest Categories: Service Provider/Consultant, Management Interest, and Utility/User

This standard covers the minimum requirements for a protective security program for a water, wastewater, or reuse utility.

CSA (CSA America Standards Inc.)

Thuy Ton <ansi.contact@csagroup.org> | 8501 East Pleasant Valley Road | Cleveland, OH 44131-5575 www.csagroup.org

Revision

BSR/CSA HGV 4.1-202x, Hydrogen-dispensing systems (revision of ANSI/CSA HGV 4.1-2020 (R2025))

Stakeholders: Manufacturers, consumers, certifiers

Project Need: Industry need to include medium and high-flow hydrogen, as well as cryogenic hydrogen.

Interest Categories: Fuel suppliers, manufacturers, general interest, regulatory authority, research/testing, consumer/user interest

This document will specify the requirements for dispensers of hydrogen gas intended for fuel storage systems integral to fuel cell vehicles at a range of pressures.

CSA (CSA America Standards Inc.)

Thuy Ton <ansi.contact@csagroup.org> | 8501 East Pleasant Valley Road | Cleveland, OH 44131-5575 www.csagroup.org

Revision

BSR/CSA HGV 4.4-202x, Gaseous hydrogen — Fuelling stations — Valves (Adopted ISO 19880-3:2018, first edition, 2018-06, with North American deviations) (revision of ANSI/CSA HGV 4.4-2021)

Stakeholders: Manufacturers, consumers, certifiers

Project Need: Industry need for valves used in high flow applications.

Interest Categories: Fuel suppliers, manufacturers, general interest, regulatory authority, research/testing, consumer/user interest

This document provides the requirements and test methods for the safety performance of high pressure gas valves that are used in gaseous hydrogen stations of up to the H70 designation. This document covers the following gas valves: — check valve; — excess flow valve; — flow control valve; — hose breakaway device; — manual valve; — pressure safety valve; — shut-off valve.

CSA (CSA America Standards Inc.)

Thuy Ton ansi.contact@csagroup.org | 8501 East Pleasant Valley Road | Cleveland, OH 44131-5575 www.csagroup.org

Revision

BSR/CSA HGV 4.9-202x, Hydrogen fueling stations (revision of ANSI/CSA HGV 4.9-2020 (R2025))

Stakeholders: Manufacturers, consumers, certifiers

Project Need: Industry need to include medium and high-flow hydrogen, as well as cryogenic hydrogen.

Interest Categories: Fuel suppliers, manufacturers, general interest, regulatory authority, research/testing, consumer/user interest

This Standard will specify the design, installation, operation, and maintenance of site-built and modular gaseous hydrogen fuelling stations (HFS) intended to fuel on-road vehicles.

CSA (CSA America Standards Inc.)

Thuy Ton ansi.contact@csagroup.org | 8501 East Pleasant Valley Road | Cleveland, OH 44131-5575 www.csagroup.org

Revision

BSR/LC 1/CSA 6.26-202x, Fuel gas piping systems using corrugated stainless steel tubing (revision of ANSI LC 1-2023/CSA 6.26-2023)

Stakeholders: Manufacturers, certification representatives, end users, installers

Project Need: There currently is no American standard that handles corrugated stainless steel tubing outside of this standard. This proposal is intended to provide coverage for an existing gap in performance and construction requirements.

Interest Categories: - Consumer / User Interest - Government Agency - General Interest - Gas Supplier - Manufacturer - Research and Testing

This Standard applies to fuel gas piping systems using corrugated stainless steel tubing (CSST), intended for installation in residential, commercial, or industrial buildings, and including the following components as a minimum: a) corrugated stainless steel tubing (CSST) piping systems not exceeding a size of 2 in (50.8 mm), based on the nominal inside diameter of the tubing; b) fittings for connection to the CSST; and c) striker plates (see Clause 3) to protect the installed CSST from puncture threats. Other components of piping systems covered by this Standard include gas manifolds, gas pressure regulators, manual gas valves, quick-disconnect devices, excess flow valves, and gas convenience outlets.

IEEE (Institute of Electrical and Electronics Engineers)

Teresa Belmont <t.belmont@ieee.org> | 445 Hoes Lane, 3rd Floor | Piscataway, NJ 08854 www.ieee.org

New Standard

BSR/IEEE 841.2-202x, Standard for Process Industry—Premium Efficiency, Severe-Duty, Totally Enclosed, Vertical, Squirrel Cage Induction Motors 0.75 kW to 370 kW (1 hp to 500 hp) (new standard)

Stakeholders: Process industries

Project Need: The end-user community requested that the IEEE Std 841 motor working group create a motor standard that covers high thrust vertical applications. In lieu of adding those requirements to the existing IEEE Std 841 standard the WG decided to use the base IEEE Std 841 standard as its starting template and enhance the mechanical sections to include high thrust vertical applications. The principal sections that will be enhanced over and above an IEEE Std 841 motor will be the bearings, motor vibration, cooling, and potentially the accessories.

Interest Categories: A subset of the interest categories on this list is expected to comprise the consensus body: <https://ieee.app.box.com/v/Interest-Categories>

This standard applies to premium-efficiency totally enclosed fan-cooled (TEFC) and totally enclosed non ventilated (TENV), vertical, high-thrust, single-speed, squirrel cage polyphase induction motors, 0.75 kW to 370 kW (1 hp to 500 hp), and up to 4000 V nominal, for process industries, and other severe-duty applications (commonly referred to as premium-efficiency severe-duty motors).

IEEE (Institute of Electrical and Electronics Engineers)

Teresa Belmont <t.belmont@ieee.org> | 445 Hoes Lane, 3rd Floor | Piscataway, NJ 08854 www.ieee.org

New Standard

BSR/IEEE 1366-202x, Recommended Practice for Electric Power Distribution Reliability Indices (new standard)

Stakeholders: Electric Utilities and Regulators.

Project Need: This revision includes updates, new definitions, and revisions needed to convert the document from a guide to a recommended practice. Also align some of the metrics with the IEEE P2856

Interest Categories: A subset of the interest categories on this list is expected to comprise the consensus body: <https://ieee.app.box.com/v/Interest-Categories>

This recommended practice identifies distribution reliability indices and factors that affect their calculation. It includes indices, which are useful today, as well as indices that might be useful in the future. The indices are intended to apply to distribution systems, substations, circuits, and defined regions.

IEEE (Institute of Electrical and Electronics Engineers)

Teresa Belmont <t.belmont@ieee.org> | 445 Hoes Lane, 3rd Floor | Piscataway, NJ 08854 www.ieee.org

New Standard

BSR/IEEE 1409.1-202x, Guide for Long-Term Assessment of Steady-State Power Quality Improvement Projects (new standard)

Stakeholders: The stakeholders for this guide include funders of SPQIP; manufacturers of power quality improvement equipment; designers and constructors responsible for implementing the improvement solutions; targets of SPQIP, including both the grid side and the user side.

Project Need: Regarding steady-state power quality disturbances such as harmonics and inter-harmonics, voltage fluctuations and flicker, and three-phase imbalance, there are already relatively mature improvement methods such as the installation of filters and reactive power compensation devices. The existing standards only support the monitoring and assessment methods to make technical judgments on whether improvement projects meet relevant standards. However, with the development of economy and technology, stakeholders are increasingly concerned about the implementation effects of SPQIP. Therefore, there is an urgent need for comprehensive indicators that take into account both technical and economic aspects to achieve long-term assessment of SPQIP. The proposed long-term assessment technique can comprehensively assess the economy, effectiveness, and reliability of SPQIP, providing instructional advice for the designers and users to further improve and rectify the projects. The long-term assessment of the projects in actual situations can better reflect the impact of specific application objects, operation time, and operating scenarios on the product's effectiveness, providing the improvement equipment manufacturers with an effective feedback mode and channel. When the long-term assessment data accumulate to a certain extent, they will help the power quality improvement industry to form standardized design, construction, and operation and maintenance plans, improving the treatment effect

Interest Categories: A subset of the interest categories on this list is expected to comprise the consensus body: <https://ieee.app.box.com/v/Interest-Categories>

The guide specifies the long-term assessment of Steady-state Power Quality Improvement Projects (SPQIP). It includes relevant basic principles, process and data collection for long-term assessment of SPQIP, the technical and economic indicators as well as their calculation methods of SPQIP, the comprehensive indicators and their calculation methods for long-term assessment of SPQIP. Outline of the report containing content above is also provided in this guide.

IEEE (Institute of Electrical and Electronics Engineers)

Teresa Belmont <t.belmont@ieee.org> | 445 Hoes Lane, 3rd Floor | Piscataway, NJ 08854 www.ieee.org

New Standard

BSR/IEEE 1491-202x, Recommended Practice for Battery Monitoring in Stationary Applications (new standard)

Stakeholders: Stakeholders of this project would be battery monitoring equipment manufacturers, battery manufacturers, battery services companies, major users of this equipment and related services, and the battery engineering community at large. This includes but is not limited to industrial, data-center, telecom, utility, network-rail, and other applications where aqueous chemistries are used.

Project Need: The need for battery monitoring systems has grown from a guide into a recommended practice for many large-scale and remotely distributed deployments. Some end-users are driven to monitoring systems by regulatory requirements, while others are guided by insurance and industry best practices towards understanding their battery assets. With the growing use of Energy Storage Systems and other chemistries used for energy storage, nuanced differences between battery monitoring and battery management systems have emerged. This document will focus exclusively on battery monitoring systems often used to monitor aqueous battery chemistries. Building off the existing IEEE Std 1491 document, we recognize there are measurement parameters that are not contained within the existing document due to changes in measurement technology since this standard was originally developed.

Interest Categories: A subset of the interest categories on this list is expected to comprise the consensus body: <https://ieee.app.box.com/v/Interest-Categories>

This recommended practice provides specific recommendations for selection and application of parameters for monitoring Valve-Regulated Lead-Acid (VRLA), Vented Lead-Acid (VLA) and Nickel-Cadmium (Ni-Cd) battery systems in stationary applications. This recommended practice also contains several informative annexes. These provide additional tutorial information relating to topics introduced in the body of the document. The monitoring of battery systems utilizing emerging energy storage technologies (such as lithium, sodium, flow batteries, etc.) often utilize active management systems and are beyond the scope of this recommended practice.

IEEE (Institute of Electrical and Electronics Engineers)

Teresa Belmont <t.belmont@ieee.org> | 445 Hoes Lane, 3rd Floor | Piscataway, NJ 08854 www.ieee.org

Revision

BSR/IEEE 1673-202x, Standard for Requirements for Conduit and Cable Seals for Field Connected Wiring to Equipment in Petroleum and Chemical Industry Exposed to Pressures above Atmospheric (1.5 kPa, 0.22 psi) (revision of ANSI/IEEE 1673-2015)

Stakeholders: electrical installers, users and manufacturers

Project Need: Current standards address conduit and cable seals which only minimize the passage of gases under ambient conditions and at pressures below 1.5 kilopascals (0.22 psi). Other standards (ISA) for equipment connected directly to a pressurized process system apply to specific products and do not address other types electrical equipment. There have been numerous incidents of explosions resulting from process fluids from equipment subject to higher pressures that migrated through the conduits and interstices of cables into unclassified locations. The target group is installers and users of electrical equipment in the Petroleum and Chemical Industry

Interest Categories: A subset of the interest categories on this list is expected to comprise the consensus body: <https://ieee.app.box.com/v/Interest-Categories>

This document provides specific requirements for field installed sealing between a pressurized system (stream) containing flammable or combustible process fluids which is connected directly or indirectly to an electrical system where a failure could allow the migration of process fluids directly into the electrical system. The basic requirements for electrical safety are not specifically addressed by this standard. The effects of the loss of containment of the process system in terms of risk to the environment and/or personnel health and safety are also not addressed by this document. While certain types of equipment incorporate a primary seal in their design, a redundant sealing method or secondary seal as defined in NFPA 70(R) NEC(R) (501.17, 505.26) and CSA(R) C22.1 (18-072) is required for equipment where such a seal is not incorporated into its design. This standard provides requirements for such a seal which is added to the equipment during installation.

IEEE (Institute of Electrical and Electronics Engineers)

Teresa Belmont <t.belmont@ieee.org> | 445 Hoes Lane, 3rd Floor | Piscataway, NJ 08854 www.ieee.org

New Standard

BSR/IEEE 1679.5-202x, Guide for the Characterization and Evaluation of Long-Duration Energy Storage Technologies in Stationary Applications (new standard)

Stakeholders: Technology developers, utilities, end users, balance-of-plant manufacturers, independent system operators and public utilities commissions.

Project Need: LDES technologies cover a broad range of storage media and it is very difficult to make an objective comparison. The information in this document will assist users and integrators in assessing the possible use of these technologies in grid applications and will provide criteria for comparative evaluation.

Interest Categories: A subset of the interest categories on this list is expected to comprise the consensus body: <https://ieee.app.box.com/v/Interest-Categories>

This document guides end users on objective evaluation of long-duration energy storage (LDES) technologies. IEEE Std 1679-2020 provides the foundation for the application of this guide. LDES technologies are a class of stationary energy storage that are designed to supply power for an extended timeframe. LDES technologies fall into several categories, including electrochemical (batteries and electrolyzer/fuel cell combinations), mechanical (compressed air and gravity-based, such as pumped storage hydro), thermal (sensible heat, latent heat, and thermochemical), and chemical (hydrogen and ammonia). This guide discusses time-based categories for LDES applications and key metrics for evaluating and comparing technologies. The guide follows the outline of IEEE Std 1679-2020, with tutorial information specific to LDES technologies provided as appropriate. Examples of tutorial information include technology descriptions, operating parameters, failure modes, safety information, architecture, and qualification and application considerations. The guide applies to the characterization and evaluation of batteries with flowing electrolytes that are proposed as LDES technologies. Additional information on these flow batteries can be found in IEEE Std 1679.3. Sizing, installation, maintenance, and testing techniques are beyond the scope of this guide except insofar as they may influence the evaluation of an LDES technology for its intended application.

IEEE (Institute of Electrical and Electronics Engineers)

Teresa Belmont <t.belmont@ieee.org> | 445 Hoes Lane, 3rd Floor | Piscataway, NJ 08854 www.ieee.org

New Standard

BSR/IEEE 1835-202x, Standard for Atmospheric (Above Grade) Corrosion Control of Existing Electric Transmission, Distribution, and Substation Structures by Coating Systems (new standard)

Stakeholders: This standard is intended for use by owners, qualified applicators, field repair technicians, subcontractors, and inspectors.

Project Need: This standard has been prepared to assist personnel responsible for maintenance painting of above grade electrical support structures for utilities and large industrial facilities. It will serve as a resource for preparing specifications to achieve the successful coating of utility structures.

Interest Categories: A subset of the interest categories on this list is expected to comprise the consensus body: <https://ieee.app.box.com/v/Interest-Categories>

This standard provides a procedure to (1) assess structures for atmospheric corrosion; (2) assess the level of risk to the structure in terms of corrosion attack and degradation to the existing coating system; (3) make informed decisions based on those findings as to whether coating repair is needed, and if so, to what extent; and (4) apply repair coatings to the structure if applicable. This standard applies to the repair of above-grade atmospheric coatings. For the purposes of this standard, the atmospheric area to be coated generally comprises of that portion of the utility support structure above the transition zone, which is that portion of the coating exposed up to 600 mm (24 in) above grade.

IEEE (Institute of Electrical and Electronics Engineers)

Teresa Belmont <t.belmont@ieee.org> | 445 Hoes Lane, 3rd Floor | Piscataway, NJ 08854 www.ieee.org

New Standard

BSR/IEEE 1839-202x, Standard for Below-Grade Corrosion Control of Transmission, Distribution, and Substation Structures by Coating Repair Systems (new standard)

Stakeholders: This standard is intended for use by owners, qualified applicators, field repair technicians, subcontractors, and inspectors.

Project Need: This standard has been prepared to assist personnel responsible for maintenance painting of below grade electrical support structures for utilities and large industrial facilities. It will serve as a resource for preparing specifications to achieve the successful coating of utility structures.

Interest Categories: A subset of the interest categories on this list is expected to comprise the consensus body: <https://ieee.app.box.com/v/Interest-Categories>

This standard provides a procedure to (1) identify electric transmission, and substation structures that may be at higher risk for below-grade coating degradation; (2) excavate and inspect the selected structure; (3) assess the level of risk to the structure in terms of corrosion attack and degradation to the existing coating system; (4) prioritize structures to be repaired based on those findings as to whether coating repair is needed and if so, to what extent; and (5) apply repair coatings to the structure, if applicable. This standard is limited to assessment and repair of coating applied below grade and in the transition zone portions of carbon steel and galvanized steel electric transmission towers, grillage, and substation structures. It does not address assessment and repair of coatings above the transition zone. For the purposes of this standard, this area comprises of the below-grade portion, the transition zone, and is defined as that portion of the coating exposed up to 600 mm (24 in) above grade. This standard does not address structural damage assessment, structural repairs, weathering steel, or structural integrity. This standard does not address concrete foundations or above-grade attachment points including anchor rods, attachment nuts, and noncoated ground sleeves. This standard does not address continuous immersion environments. This standard does not provide guidelines and repair procedures for coating systems for every specific situation because of the complexity and diverse nature of conditions to which buried structures may be exposed.

IEEE (Institute of Electrical and Electronics Engineers)

Teresa Belmont <t.belmont@ieee.org> | 445 Hoes Lane, 3rd Floor | Piscataway, NJ 08854 www.ieee.org

New Standard

BSR/IEEE 1895-202x, Standard for Below-Grade Inspection and Assessment of Corrosion on Steel Transmission, Distribution, and Substation Structures (new standard)

Stakeholders: This standard is intended for use by electric utility personnel, contractors, inspectors, and those interested in the impact of corrosion on the below-grade sections of transmission, distribution, and substation steel structures.

Project Need: There are an estimated 900,000 electric utility steel transmission and distribution structures in North America alone. The majority of these structures were installed between 1950 and 1990. The average age of these structures is now approximately 45 years old. While the condition of the above-grade portions of these structures is relatively easy to visually assess, the buried or below-grade sections are often subject to a more corrosive environment and are not easily accessible for visual inspection. The age of these structures dictates an inspection and assessment procedure to determine the level of corrosion affecting the buried portions of this important segment of our infrastructure. Prior to the publication of this standard, no industry practice existed to help electric utilities determine a prioritized listing of structures to be inspected or that described an inspection and assessment procedure to evaluate below-grade corrosion problems.

Interest Categories: A subset of the interest categories on this list is expected to comprise the consensus body: <https://ieee.app.box.com/v/Interest-Categories>

This standard provides requirements to: (1) help utilities identify structures that may be at a high risk for below-grade corrosion; (2) excavate and inspect the selected structures; (3) categorize the condition of structures based on corrosion degradation; (4) prioritize structures requiring additional inspection based on those findings; and (5) help identify next steps as required. This standard is limited to the inspection and assessment of steel transmission towers, poles, and substation structures, to include galvanized, self-weathering, and painted mild steel structures, as well as other similar structures. It does not address the specific inspection of concrete foundations, above-grade attachment points, noncoated ground sleeves, guy anchors, or specific pass or fail criteria. In addition, this standard does not provide guidelines or procedures regarding repair and/or replacement of these same types of structures. This standard does not address localized corrosion, which is corrosion that can take place in relatively small and limited steel surface areas as a result of unusual factors such as soil conditions, electrical currents, etc. For the purposes of this standard, the area of inspection is composed of the transition zone and below-grade portion of the structure. The inspection area and depth of excavation is determined by the utility as appropriate to identify the extent of corrosion. This standard does not address structures in continuous water immersion environments.

IEEE (Institute of Electrical and Electronics Engineers)

Teresa Belmont <t.belmont@ieee.org> | 445 Hoes Lane, 3rd Floor | Piscataway, NJ 08854 www.ieee.org

New Standard

BSR/IEEE 1936.23-202x, Standard for Communications Network Monitoring for Unmanned Aircraft Systems (UAS) in Power Grid Inspection Applications (new standard)

Stakeholders: UAS manufacturers, UAS operators, Grid operators, UAS users.

Project Need: This standard proposes key technical requirements of monitoring Unmanned Aircraft Systems (UAS) communications network, to enhance network safety, reliability, and data integrity of UAS in power grid inspection.

Interest Categories: A subset of the interest categories on this list is expected to comprise the consensus body: <https://ieee.app.box.com/v/Interest-Categories>

This standard specifies requirements for monitoring the communications network of Unmanned Aircraft Systems (UAS) that are used to inspect power grids. The standard includes: • A common set of key performance parameters for control and data payload links. • The parameters including latency, jitter, packet loss rate, signal strength, and available bandwidth. • Methodologies and procedures for the real-time monitoring and post-mission analysis of above parameters.

IEEE (Institute of Electrical and Electronics Engineers)

Teresa Belmont <t.belmont@ieee.org> | 445 Hoes Lane, 3rd Floor | Piscataway, NJ 08854 www.ieee.org

New Standard

BSR/IEEE 1936.24-202x, Standard for Technical Requirements for Unmanned Aerial Systems (UAS) Based Monitoring of Soil and Water Surrounding Electrical Power Transmission and Transformer Deployments (new standard)

Stakeholders: Electric transmission system and power transformer project administrators, power grid drone monitoring operators, grid operators, power grid inspection operator, and so on.

Project Need: This standard specifies unified technical methods, operational procedures, and deliverable requirements for monitoring soil and water environment in electric power transmission and power transformer projects using unmanned aerial systems (UAS). It establishes a standardized technical framework covering the complete workflow from data acquisition and processing to analysis and application. The framework addresses key limitations of traditional monitoring approaches - including low efficiency, subjective data interpretation, and incomplete coverage - while helping ensure objectivity, accuracy, and comparability of monitoring results.

Interest Categories: A subset of the interest categories on this list is expected to comprise the consensus body: <https://ieee.app.box.com/v/Interest-Categories>

This standard specifies technical requirements for Unmanned Aerial Systems (UAS) based monitoring of soil and water surrounding electrical power transmission and transformer installations. The standard addresses image acquisition and information extraction, as well as result compilation and quality control.

IEEE (Institute of Electrical and Electronics Engineers)

Teresa Belmont <t.belmont@ieee.org> | 445 Hoes Lane, 3rd Floor | Piscataway, NJ 08854 www.ieee.org

New Standard

BSR/IEEE 1937.19-202x, Standard for Coding of Cargo Data of Unmanned Aerial Vehicle (UAV) Used for Beyond Visual Line of Sight (BVLOS) Logistics (new standard)

Stakeholders: Unmanned aerial vehicle manufacturers, unmanned aerial vehicle users, low altitude traffic regulatory operators, low-altitude traffic regulatory government departments.

Project Need: The standard for coding cargo data of unmanned aerial vehicle (UAV) used for beyond visual line of sight (BVLOS) logistics establishes a universal and verifiable data framework and unifies data coding. By adopting this standard, regulatory agencies can manage air traffic more efficiently and improve data transparency and controllability.

Interest Categories: A subset of the interest categories on this list is expected to comprise the consensus body: <https://ieee.app.box.com/v/Interest-Categories>

This standard specifies the coding structure and data fields for cargo data of Unmanned Aerial Vehicle (UAV) used for beyond visual line of sight (BVLOS) logistics operations.

IEEE (Institute of Electrical and Electronics Engineers)

Teresa Belmont <t.belmont@ieee.org> | 445 Hoes Lane, 3rd Floor | Piscataway, NJ 08854 www.ieee.org

New Standard

BSR/IEEE 1937.20-202x, Standard for Reference Architecture for Mesh Networking Communication of Unmanned Aircraft Systems (UAS) for Inspection of Overhead Transmission and Distribution Lines (new standard)

Stakeholders: Power Grid company, Mesh networking system provider, UAS developers and manufacturers.

Project Need: This standard helps ensure efficiency, stability, and reliability, data security for inspection of overhead transmission and distribution lines with Mesh networking communication of Unmanned Aircraft Systems (UAS).

Interest Categories: A subset of the interest categories on this list is expected to comprise the consensus body: <https://ieee.app.box.com/v/Interest-Categories>

This standard defines the Reference Architecture for Mesh Networking Communication of Unmanned Aircraft Systems (UAS) for inspection of overhead transmission and distribution lines. This standard also specifies the system components, network topology, system performance, and data security requirements.

IEEE (Institute of Electrical and Electronics Engineers)

Teresa Belmont <t.belmont@ieee.org> | 445 Hoes Lane, 3rd Floor | Piscataway, NJ 08854 www.ieee.org

New Standard

BSR/IEEE 1937.23-202x, Standard for the Requirements of Multi-Rotor Unmanned Aircraft Systems (UAS) for Transportation under Hazard-Constrained Conditions (new standard)

Stakeholders: Unmanned Aerial Vehicle (UAV) Air Traffic Service System, UAV Service Supplier, UAV operators, UAV integrators, UAV users, UAV service providers.

Project Need: In hazard-constrained conditions, there is a growing reliance on multi-rotor Unmanned Aircraft Systems (UAS) to perform transport tasks, especially in cases where ground-based logistics systems are disrupted. This project establishes a standardized framework for UAS operation, communication, and transportation requirements under hazard-constrained conditions. The standard provides basic operational requirements for mission continuity and control reliability. It specifies communication and transportation requirements to maintain reliable and coordinated information exchange, as well as to enable stable and efficient transport task.

Interest Categories: A subset of the interest categories on this list is expected to comprise the consensus body: <https://ieee.app.box.com/v/Interest-Categories>

This standard specifies the requirements for multi-rotor Unmanned Aircraft Systems (UAS) for the execution of transport tasks under hazard-constrained conditions. It includes operational, communication, and transportation requirements.

IEEE (Institute of Electrical and Electronics Engineers)

Teresa Belmont <t.belmont@ieee.org> | 445 Hoes Lane, 3rd Floor | Piscataway, NJ 08854 www.ieee.org

New Standard

BSR/IEEE 2030.101-202x, Guide for Designing Time Synchronization Systems for Electric Power Systems (new standard)

Stakeholders: The stakeholders are systems users, substation designers, protection engineers, automation engineers, and vendors.

Project Need: Time synchronization is critical to Electric Power Systems. A revised guide is needed to support applications relying on accurate, resilient, and reliable time.

Interest Categories: A subset of the interest categories on this list is expected to comprise the consensus body: <https://ieee.app.box.com/v/Interest-Categories>

This guide covers the design, installation, and monitoring of time synchronization systems for Electric Power Systems. This includes time sources and time distribution systems.

IEEE (Institute of Electrical and Electronics Engineers)

Teresa Belmont <t.belmont@ieee.org> | 445 Hoes Lane, 3rd Floor | Piscataway, NJ 08854 www.ieee.org

New Standard

BSR/IEEE 2686-202x, Recommended Practice for Battery Management Systems in Stationary Energy Storage Applications (new standard)

Stakeholders: Designers, engineers, system integrators, manufacturers, utilities, energy storage owners, energy storage operators

Project Need: General update of the 2024 document, with added content to address European Union Battery Passport requirements, changes in balancing needs for new larger cell capacities, and recent research findings on current-sharing in parallel connections, among others.

Interest Categories: A subset of the interest categories on this list is expected to comprise the consensus body: <https://ieee.app.box.com/v/Interest-Categories>

This recommended practice includes information on the design, configuration, and interoperability of battery management systems (BMSs) in stationary applications. This document considers the BMS to be a functionally distinct component of a battery energy storage system (BESS) that includes active functions necessary to protect the battery from modes of operation that could impact its safety or longevity. This document covers battery management technologies, configuration by application and battery type, and interoperability with other systems. Technologies include battery management peripheral devices and subsystems, balancing methods, sensor types and placement, physical and software architectures, and battery management functions. Configuration includes both grid-supporting and non-grid-supporting applications and specific recommendations for the following battery types: lithium-based, flow, sodium-based, and alkaline zinc-manganese. General recommendations applicable to other battery types are provided. Interoperability recommendations include guidance such as minimum measurement accuracy and state-of-charge reporting standards, communications including information models and error reporting, and cybersecurity including access control and software update management best practices. Transportable energy storage systems that are stationary during operation are included in this standard. This document does not cover BMSs for mobile applications such as electric vehicles; nor does it include operation in vehicle-to-grid applications. Energy storage management systems (ESMS), which control the dispatch of power and energy to and from the grid, are not covered.

IEEE (Institute of Electrical and Electronics Engineers)

Teresa Belmont <t.belmont@ieee.org> | 445 Hoes Lane, 3rd Floor | Piscataway, NJ 08854 www.ieee.org

New Standard

BSR/IEEE 2800.1-202x, Recommended Practice for Functional Capabilities and Performance of Grid Forming Equipment in Inverter-Based Resources (IBRs) / Converter-Based Resources (CBRs) (new standard)

Stakeholders: Electric utilities, transmission owners/operators/planners/designers; manufacturers of equipment used in IBRs/CBRs; IBR plant owners and developers; system integrators; and regulatory and government bodies.

Project Need: This proposed recommended practice is needed to fill gaps in the IEEE 2800 specifications for IBRs with grid-forming equipment. Multiple grid operators have started to identify needs for GFM equipment.

Interest Categories: A subset of the interest categories on this list is expected to comprise the consensus body: <https://ieee.app.box.com/v/Interest-Categories>

This recommended practice complements IEEE Std 2800. This document establishes a framework recommending technical minimum functional capability and performance requirements as well as model-based test procedures and test criteria for grid-forming equipment used in inverter/converter-based resource (IBR/CBR) plants. It applies to IBRs/CBRs of any scale that are connected to and operate in parallel with electric power systems. Grid-forming (GFM) equipment that does not interface with the power system via power electronics is not in the scope. This recommended practice specifies capabilities and performance requirements; actual utilization of these capabilities in any given application is outside of the scope of this standard.

IEEE (Institute of Electrical and Electronics Engineers)

Teresa Belmont <t.belmont@ieee.org> | 445 Hoes Lane, 3rd Floor | Piscataway, NJ 08854 www.ieee.org

New Standard

BSR/IEEE 3731-202x, Recommended Practice for Testing Household Hybrid Photovoltaic and Storage Converters (new standard)

Stakeholders: The stakeholders for the recommended practice include Electricity consumers, Grid operators, and Equipment manufacturers.

Project Need: According to Global Info Research, the HHPSCs market size of the global in 2022 is about 7.5 billion US dollars. The market has maintained a high growth rate over the past few years, with the Chinese market expected to grow at a compound annual growth rate (CAGR) of 12.9% between 2021 and 2028. The HHPSCs need to be tested to help ensure its performance meets the requirements of users and the power grid. China has issued national standards for testing household optical storage all-in-one machines. Huawei and State Grid Corporation of China have respectively started testing the production and integration of household light storage integrated machines into the power grid. The HHPSC has functions of photovoltaic inverter, energy storage charging and discharging, and electric vehicle charging, especially with the function of switching between different operation modes. According to the retrieval, IEEE, IEC and ISO don't involve the testing of household hybrid photovoltaic and storage converters.

Interest Categories: A subset of the interest categories on this list is expected to comprise the consensus body: <https://ieee.app.box.com/v/Interest-Categories>

This recommended practice addresses test specification of household hybrid photovoltaic and storage converters (HHPSCs), including test conditions, test processes, test items, test methods, and test requirements. It applies to the testing of single-phase or three-phase HHPSCs connected to the public grid with a voltage level of 230 V and below.

IEEE (Institute of Electrical and Electronics Engineers)

Teresa Belmont <t.belmont@ieee.org> | 445 Hoes Lane, 3rd Floor | Piscataway, NJ 08854 www.ieee.org

New Standard

BSR/IEEE 3755-202x, Recommended Practice for On-Site Assembly, Commissioning, Operation and Maintenance of Prefabricated Transformer Zone Modules (0.4 kV to 22 kV) in Industrial and Commercial Power Systems Facilities (new standard)

Stakeholders: The relevant parties of this standard include electric power energy enterprises, manufacturers, industrial and commercial users.

Project Need: With the widespread adoption of prefabricated modules in industrial and commercial distribution transformer zone, standardization is required to meet demands for construction efficiency, quality, and safety. By providing the assembly and commissioning recommendations for prefabricated modules, this document helps address issues such as prolonged construction periods and inconsistent quality inherent in traditional methods, thereby providing more efficient power supply solutions for industrial and commercial users. Furthermore, by establishing standardized operation and maintenance specifications, it enhances the reliability of industrial and commercial power distribution systems while reducing potential risks caused by improper maintenance practices.

Interest Categories: A subset of the interest categories on this list is expected to comprise the consensus body: <https://ieee.app.box.com/v/Interest-Categories>

This recommended practice provides requirements for on-site assembly, commissioning, operation and maintenance of prefabricated transformer zone modules ranging from 0.4kV to 22 kV that are used in industrial and commercial power systems facilities and include transformer frameworks, branch circuits, and fittings.

IEEE (Institute of Electrical and Electronics Engineers)

Teresa Belmont <t.belmont@ieee.org> | 445 Hoes Lane, 3rd Floor | Piscataway, NJ 08854 www.ieee.org

New Standard

BSR/IEEE 11073-10424-202x, Standard for Health Informatics - Device Interoperability - Personal health device communication - Device Specialization - Sleep Apnoea Breathing Therapy Equipment (SABTE) (new standard)

Stakeholders: People who use personal health devices in home and mobile environments, personal health device vendors, personal health manager vendors, institutions that may ultimately receive data from these devices (e.g. hospitals, doctor offices, diet and fitness companies), payors (e.g. insurance companies), regulatory agencies (e.g. food and drug administration), telemedicine consultants and businesses.

Project Need: The applications for personal health devices differ sufficiently from other ISO/IEEE 11073 point of care medical devices so as to require derivative standards tailored to address the particular needs of the personal health market. Implementers of this standard will have a clear definition of what is required to implement the interoperable communication functionality for sleep apnoea breathing therapy equipment. For end users, this standard addresses a market need to provide interoperability among personal health devices and managers that interact with the collected information.

Interest Categories: A subset of the interest categories on this list is expected to comprise the consensus body: <https://ieee.app.box.com/v/Interest-Categories>

Within the context of the ISO/IEEE 11073 family of standards for device communication, this standard establishes a normative definition of the communication between sleep apnoea breathing therapy equipment and managers (e.g., cell phones, personal computers, personal health appliances, set top boxes) in a manner that enables plug-and-play interoperability. It leverages appropriate portions of existing standards including ISO/IEEE 11073 terminology, information models, application profile standards, and transport standards. It specifies the use of specific term codes, formats, and behaviors in telehealth environments restricting optionality in base frameworks in favor of interoperability. This standard defines a common core of communication functionality for sleep apnoea breathing therapy equipment. In this context, sleep apnoea breathing therapy equipment are defined as devices that are intended to alleviate the symptoms of a patient who suffers from sleep apnoea by delivering a therapeutic breathing pressure to the patient. Sleep apnoea breathing therapy equipment are primarily used in the home health-care environment by a lay operator without direct professional supervision.

IEEE (Institute of Electrical and Electronics Engineers)

Teresa Belmont <t.belmont@ieee.org> | 445 Hoes Lane, 3rd Floor | Piscataway, NJ 08854 www.ieee.org

New Standard

BSR/IEEE C37.112-202x, Standard for Inverse-Time Characteristics Equations for Overcurrent Relays (new standard)

Stakeholders: Individuals and manufacturers who use, are interested in, or who design or manufacture devices used for overcurrent curve coordination.

Project Need: Due to the IEEE Standards 10 year maintenance cycle, the PSRC K36 Working Group will revise and ballot the document to prevent it from being withdrawn. The Working Group does not anticipate many changes since the Standard is generally accepted.

Interest Categories: A subset of the interest categories on this list is expected to comprise the consensus body: <https://ieee.app.box.com/v/Interest-Categories>

This standard reviews various existing analytic techniques used to represent relay operating characteristic curve shapes and proposes analytical (formula) representation of typical operating characteristic curve shapes to foster some standardization of available inverse-time relay characteristics provided in microprocessor or computer relay applications.

IEEE (Institute of Electrical and Electronics Engineers)

Teresa Belmont <t.belmont@ieee.org> | 445 Hoes Lane, 3rd Floor | Piscataway, NJ 08854 www.ieee.org

Revision

BSR/IEEE C37.121-202x, Guide for Switchgear--Unit Substation--Requirements (revision of ANSI/IEEE C37.121-2022)
Stakeholders: Users and Manufacturers of Unit Substations.

Project Need: The field of unit substations is evolving, creating the need to keep this document current with the state-of-the-art and new technical developments. The original document was issued in 1989, by a working group sponsored by the Power Switchgear Assemblies Technical Committee of the Switchgear Section (8SG) of the National Electrical Manufacturers Association (NEMA/SG/5). The document was transferred from NEMA to the IEEE Power and Energy Society Switchgear Committee, Switchgear Assemblies Subcommittee, in January of 2003. IEEE Std C37.121 was reaffirmed by the IEEE Standards Association Standards Board in 2006 and revised in 2020. The previous revision of this document was not processed to achieve ANSI accreditation but ANSI accreditation is desired for the document. In order to go through the ANSI accreditation process, this PAR includes the request for ANSI submittal. Thus an IEEE ballot will be conducted of the existing document.

Interest Categories: A subset of the interest categories on this list is expected to comprise the consensus body: <https://ieee.app.box.com/v/Interest-Categories>

This guide covers three-phase unit substations for step-down operation in the range of 112.5 kVA or greater at primary voltages of 601 V through 52 kV. This guide does not cover the following installations: a) Substations in which the transformer section is described and defined as "network," "subway," "vault," or "underground" in IEEE Std C57.12.24 and IEEE Std C57.12.40 b) Substations in which the transformer section is described and defined as "pad-mounted" c) Rectifier-type substations d) Mobile unit substations e) Installations in ships, watercraft, railway rolling stock, aircraft, or automotive vehicles f) Installations for mines g) Installations of railways for generation, transformation, transmission, or distribution of power used exclusively for operation of rolling stock, or for installations used exclusively for signaling and railway communication purposes h) Installations of communication equipment that is under the exclusive control of communication utilities, located outdoors or in building spaces used exclusively for such installations i) Installations under the exclusive control of electric utilities for the purpose of communication, or metering; or for the generation, control, transformation, transmission, and distribution of electric energy located in buildings used exclusively by utilities for such purposes or located outdoors on property owned or leased by the utility or on public highways, streets, roads, etc.; or outdoors by established rights on private property

ULSE (UL Standards and Engagement)

Vickie Hinton <Vickie.T.Hinton@ul.org> | 12 Laboratory Drive | Research Triangle Park, NC 27709-3995 <https://ulse.org/>

National Adoption

BSR/UL 60079-45-202x, Standard for Safety for Explosive atmospheres - Part 45: Electrical ignition systems for internal combustion engines (national adoption with modifications of IEC 60079-45)

Stakeholders: Industrial end users, equipment manufacturers particularly those with equipment utilizing internal combustion engines, 3rd party and government regulators for evaluation purposes.

Project Need: The project is needed to bring the national adoption with the correct national differences for the standard. The application is to enhance the safe use of electrical ignition systems of internal combustion engines that are used in hazardous locations.

Interest Categories: Industrial end users, NRTL bodies, equipment manufacturers, government regulators, & supply chain.

IEC 60079-45:2025 is intended to enhance the safety of personnel by providing minimum requirements for electrical ignition systems for spark-ignited reciprocating internal combustion engines, parts of which provide Equipment Protection Level (EPL) Gc.

ULSE (UL Standards and Engagement)

Vickie Hinton <Vickie.T.Hinton@ul.org> | 12 Laboratory Drive | Research Triangle Park, NC 27709-3995 <https://ulse.org/>

National Adoption

BSR/UL 60079-29-0-202x, Standard for Safety for Explosive Atmospheres – Part 29-0: Gas Detection Equipment – General Requirements and Test Methods (national adoption with modifications of IEC 60079-29-0)

Stakeholders: Manufacturer, NRTL, user, installer.

Project Need: The US desires to align with IEC 60079 Series standards as much as practically possible.

Interest Categories: Commercial/Industrial User, General, Producer and Testing & Standards.

IEC 60079-29-0 is a gas detection equipment performance standard for explosive atmospheres. The standard will replace IEC 60079-29-1 and IEC 60079-29-4, and it will replace a portion of toxic gas detection equipment presently residing in IEC 62990-1.

ULSE (UL Standards and Engagement)

Doreen Stocker <Doreen.Stocker@ul.org> | 12 Laboratory Drive | Research Triangle Park, NC 27709-3995 <https://ulse.org/>

National Adoption

BSR/UL 62841-2-24-202x, Standard for Electric Motor-Operated Hand-Held Tools, Transportable Tools and Lawn and Garden Machinery – Safety – Part 2-24: Particular requirements for hand-held oscillating multifunction tools (identical national adoption of IEC 62841-2-24:2025)

Stakeholders: Consumers and manufacturers of hand-held oscillating multifunction tools

Project Need: To obtain standard recognition for this new Standard covering requirements for hand-held oscillating multifunction tools with the adoption of IEC 62841-2-24:2025 as the first edition of UL 62841-2-24. The adoption of this Standard is intended to harmonize terminology, design & construction specifications, and test methods used for verification of safety requirements related specifically to hand-held oscillating multifunction tools. The adoption of this Standard is important to advance the harmonized international based safety requirements to ensure products produced in the United States or imported are delivering the same quality safety certified products.

Interest Categories: AHJ, Commercial/Industrial Users, Consumers, General, Government, International Delegate, Producers, Supply Chain and Testing & Standards Organizations.

This International Standard provides safety requirements particular to hand-held oscillating multifunction tools.

ULSE (UL Standards and Engagement)

Doreen Stocker <Doreen.Stocker@ul.org> | 12 Laboratory Drive | Research Triangle Park, NC 27709-3995 <https://ulse.org/>

National Adoption

BSR/UL 62841-3-16-202x, Standard for Electric Motor-Operated Hand-Held Tools, Transportable Tools and Lawn and Garden Machinery – Safety – Part 3-16: Particular requirements for transportable belt sanders, disc sanders and belt/disc sanders (identical national adoption of IEC 62841-3-16:2025)

Stakeholders: Consumers, users and manufacturers of transportable belt sanders, disc sanders and belt/disc sanders

Project Need: To obtain standard recognition for this new Standard covering requirements for transportable belt sanders, disc sanders and belt/disc sanders with the adoption of IEC 62841-3-16:2025 as the first edition of UL 62841 -3-16. The adoption of this Standard is intended to harmonize terminology, design & construction specifications, and test methods used for verification of safety requirements related specifically to transportable belt sanders, disc sanders and belt/disc sanders . The adoption of this Standard is important to advance the harmonized international based safety requirements to ensure products produced in the United States or imported are delivering the same quality safety certified products.

Interest Categories: AHJ, Commercial/Industrial Users, Consumers, General, Government, International Delegate, Producers, Supply Chain and Testing & Standards Organizations.

This International Standard provides safety requirements particular to transportable belt sanders, disc sanders and belt/disc sanders.

Call for Comment on Standards Proposals

American National Standards

This section solicits public comments on proposed draft new American National Standards, including the national adoption of ISO and IEC standards as American National Standards, and on proposals to revise, reaffirm or withdraw approval of existing American National Standards. A draft standard is listed in this section under the ANSI-accredited standards developer (ASD) that sponsors it and from whom a copy may be obtained. Comments in connection with a draft American National Standard must be submitted in writing to the ASD no later than the last day of the comment period specified herein. Such comments shall be specific to the section (s) of the standard under review and include sufficient detail so as to enable the reader to understand the commenter's position, concerns and suggested alternative language, if appropriate. Please note that the ANSI Executive Standards Council (ExSC) has determined that an ASD has the right to require that interested parties submit public review comments electronically, in accordance with the developer's procedures.

Ordering Instructions for "Call-for-Comment" Listings

1. Order from the organization indicated for the specific proposal.
2. Use the full identification in your order, including the BSR prefix; for example, Electric Fuses BSR/SAE J554.
3. Include remittance with all orders.
4. BSR proposals will not be available after the deadline of call for comment.

Comments should be addressed to the organization indicated, with a copy to the Board of Standards Review, American National Standards Institute, 25 West 43rd Street, New York, NY 10036. e-mail: psa@ansi.org

* Standard for consumer products

Comment Deadline: February 22, 2026

IIAR (International Institute of All-Natural Refrigeration)

1001 North Fairfax Street, Alexandria, VA 22314 | tony_lundell@iilar.org, www.iilar.org

New Standard

BSR/IIAR HC-202x, Safety Standard for Closed-Circuit Refrigeration Systems Utilizing Hydrocarbon Refrigerants (new standard)

This standard provides the minimum safety requirements for design, installation, startup, inspection, testing, and maintenance, as well as, decommissioning and general safety requirements for refrigeration systems that use naturally occurring hydrocarbon refrigerants such as propane, N-butane, and isobutane. This standard shall apply to hydrocarbon refrigeration systems that are not regulated by listing agencies.

[Click here to view these changes in full](#)

Send comments (copy psa@ansi.org) to: tony_lundell@iilar.org

NSF (NSF International)

789 N. Dixboro Road, Ann Arbor, MI 48105 | mmilla@nsf.org, www.nsf.org

Revision

BSR/NSF 42-202x (i136r2), Drinking Water Treatment Units - Aesthetic Effects (revision of ANSI/NSF 42-2023)

The point-of-use (POU) and point-of-entry (POE) systems addressed by this standard are designed to be used for the reduction of specific substances that may be present in drinking water (public or private) considered to be microbiologically safe and of known quality. Systems covered under this standard are intended to address one or more of the following: reduce substances affecting the aesthetic quality of the water, add chemicals for scale control, or limit microbial growth in the system (bacteriostatic).

[Click here to view these changes in full](#)

Send comments (copy psa@ansi.org) to: mmilla@nsf.org

Comment Deadline: February 22, 2026

NSF (NSF International)

789 N. Dixboro Road, Ann Arbor, MI 48105 | mmilla@nsf.org, www.nsf.org

Revision

BSR/NSF 53-202x (i169r2), Drinking Water Treatment Units - Health Effects (revision of ANSI/NSF 53-2024)
The POU and POE systems addressed by this standard are designed to be used for the reduction of specific substances that may be present in drinking water (public or private) considered to be microbiologically safe and of known quality. Systems covered under this standard are intended to reduce substances that are considered established or potential health hazards.

[Click here to view these changes in full](#)

Send comments (copy psa@ansi.org) to: mmilla@nsf.org

NSF (NSF International)

789 N. Dixboro Road, Ann Arbor, MI 48105 | mmilla@nsf.org, www.nsf.org

Revision

BSR/NSF 55-202x (i68r2), Ultraviolet Microbiological Water Treatment Systems (revision of ANSI/NSF 55-2024)
This standard covers UV microbiological water treatment systems and components for point-of-use (POU) and point-of-entry (POE) applications. This standard covers systems which use UV radiation within the range of 240 nm to 300 nm inclusive.

[Click here to view these changes in full](#)

Send comments (copy psa@ansi.org) to: mmilla@nsf.org

NSF (NSF International)

789 N. Dixboro Road, Ann Arbor, MI 48105-9723 | ajump@nsf.org, www.nsf.org

Revision

BSR/NSF/CAN 50-202x (i220r1), 50-20XX: Equipment and Chemicals for Swimming Pools, Spas, Hot Tubs, and Other Recreational Water Facilities (revision of ANSI/NSF/CAN 50-2025)

This standard covers materials, chemicals, components, products, equipment and systems related to public and residential recreational water facility operation.

[Click here to view these changes in full](#)

Send comments (copy psa@ansi.org) to: ajump@nsf.org

NSF (NSF International)

789 N. Dixboro Road, Ann Arbor, MI 48105-9723 | ajump@nsf.org, www.nsf.org

Revision

BSR/NSF/CAN 50-202x (i225r1), 50-20XX: Equipment and Chemicals for Swimming Pools, Spas, Hot Tubs, and Other Recreational Water Facilities (revision of ANSI/NSF/CAN 50-2025)

This standard covers materials, chemicals, components, products, equipment and systems related to public and residential recreational water facility operation.

[Click here to view these changes in full](#)

Send comments (copy psa@ansi.org) to: ajump@nsf.org

Comment Deadline: February 22, 2026

NSF (NSF International)

789 N. Dixboro Road, Ann Arbor, MI 48105-9723 | ajump@nsf.org, www.nsf.org

Revision

BSR/NSF/CAN 50-202x (i232r1), 50-20XX: Equipment and Chemicals for Swimming Pools, Spas, Hot Tubs, and Other Recreational Water Facilities (revision of ANSI/NSF/CAN 50-2025)

This standard covers materials, chemicals, components, products, equipment and systems related to public and residential recreational water facility operation.

[Click here to view these changes in full](#)

Send comments (copy psa@ansi.org) to: Amy Jump <ajump@nsf.org>

ULSE (UL Standards and Engagement)

47173 Benicia Street, Fremont, CA 94538 | Derrick.L.Martin@ul.org, [https://ulse.org/](http://ulse.org/)

Revision

BSR/UL 94-202x, Standard for Safety for Tests for Flammability of Plastic Materials for Parts in Devices and Appliances (revision of ANSI/UL 94-2024)

This proposal for UL 94 covers the Addition of New Paragraph B2.3.1 to Annex B

[Click here to view these changes in full](#)

Send comments (copy psa@ansi.org) to: <https://csds.ul.com/ProposalAvailable>

ULSE (UL Standards and Engagement)

12 Laboratory Drive, Research Triangle Park, NC 27709-3995 | michael.niedermayer@ul.org, [https://ulse.org/](http://ulse.org/)

Revision

BSR/UL 136-202x, Standard for Pressure Cookers (revision of ANSI/UL 136-2019)

1. Cover Misalignment Test

[Click here to view these changes in full](#)

Send comments (copy psa@ansi.org) to: <https://csds.ul.com/ProposalAvailable>

ULSE (UL Standards and Engagement)

100 Queen Street, Suite 1040, Ottawa, ON K1P 1J9 Canada | sabrina.khrebto@ul.org, [https://ulse.org/](http://ulse.org/)

Revision

BSR/UL 514C-202x, Standard for Safety Nonmetallic Outlet Boxes, Flush-Device Boxes, and Covers (revision of ANSI/UL 514C-2024)

1. Topic 6: 68.1 Conduit Bodies 2. Topic 8: 92.1.1 (e) Details

[Click here to view these changes in full](#)

Send comments (copy psa@ansi.org) to: Follow the instructions in the following website to enter comments into the CSDS Work Area <https://csds.ul.com/ProposalAvailable>.

ULSE (UL Standards and Engagement)

12 Laboratory Drive, Research Triangle Park, NC | akhira.watson@ul.org, [https://ulse.org/](http://ulse.org/)

Revision

BSR/UL 2367-202x, Standard for Solid State Overcurrent Protectors (revision of ANSI/UL 2367-2021)

A proposed revision to UL 2367, Standard for Solid State Overcurrent Protectors, which includes the following: (2) Addition of new general performance section and (4) Update to the shipping and storage temperature range.

[Click here to view these changes in full](#)

Send comments (copy psa@ansi.org) to: Send comments (copy psa@ansi.org) to: Follow the instructions at the following website to enter comments into the CSDS Work Area: <https://csds.ul.com/ProposalAvailable>

Comment Deadline: March 9, 2026

ANS (American Nuclear Society)

1111 Pasquinelli Drive, Suite 350, Westmont, IL 60559 | kmurdoch@ans.org, www.ans.org

Reaffirmation

BSR/ANS 55.1-2021 (R202x), Solid Radioactive Waste Processing System for Light-Water-Cooled Reactor Plants (reaffirmation of ANSI/ANS 55.1-2021)

This standard provides design, fabrication, and performance criteria and guidance for solid radioactive waste processing systems for light-water-cooled reactors. The purpose of this standard is to provide criteria to ensure that the solid radioactive waste processing systems are designed, fabricated, installed, and operated in a manner commensurate with the need to protect plant personnel and the health and safety of the public.

Single copy price: \$164.00

Obtain an electronic copy from: orders@ans.org

Send comments (copy psa@ansi.org) to: standards@ans.org

ANS (American Nuclear Society)

1111 Pasquinelli Drive, Suite 350, Westmont, IL 60559 | kmurdoch@ans.org, www.ans.org

Revision

BSR/ANS 15.11-202x, Radiation Protection at Research Reactors (revision of ANSI/ANS 15.11-2016 (R2021))

This standard identifies the elements of radiation protection programs at research and test reactor facilities. It provides guidance on facility design and provides criteria for monitoring, administration and surveys for personnel safety at research and test reactors.

Single copy price: \$124.00

Obtain an electronic copy from: orders@ans.org

Send comments (copy psa@ansi.org) to: standards@ans.org

ASME (American Society of Mechanical Engineers)

Two Park Avenue, M/S 6-2B, New York, NY 10016-5990 | ansibox@asme.org, www.asme.org

Revision

BSR/ASME A17.8/CSA B44.8-202x, Standard for wind turbine tower elevators (revision of ANSI/ASME A17.8-2016/CSA B44.8-2021)

ASME A17.8/CSA B44.8 applies to elevators permanently installed in a wind turbine tower to provide vertical transportation of authorized personnel and their tools and equipment only.

Single copy price: Free

Obtain an electronic copy from: <https://cstools.asme.org/csconnect/PublicReviewPage.cfm>

Send comments (copy psa@ansi.org) to: Riad Mohamed

Comment Deadline: March 9, 2026

ASME (American Society of Mechanical Engineers)

Two Park Avenue, M/S 6-2B, New York, NY 10016-5990 | ansibox@asme.org, www.asme.org

Revision

BSR/ASME BPVC Section VIII-202x, Rules for Construction of Pressure Vessels (revision of ANSI/ASME BPVC Section VIII-2025)

This Section contains mandatory requirements, specific prohibitions, and nonmandatory guidance for pressure vessel materials, design, fabrication, examination, inspection, testing, certification, and pressure relief. The Code does not address all aspects of these activities, and those aspects which are not specifically addressed should not be considered prohibited.

Single copy price: Free

Obtain an electronic copy from: <https://cstools.asme.org/csconnect/PublicReviewPage.cfm>

Send comments (copy psa@ansi.org) to: Steven Rossi

ASME (American Society of Mechanical Engineers)

Two Park Avenue, M/S 6-2B, New York, NY 10016-5990 | ansibox@asme.org, www.asme.org

Revision

BSR/ASME NQA-1-202x, Quality Assurance Requirements for Nuclear Facility Applications (revision of ANSI/ASME NQA-1-2024)

This Standard provides requirements and guidelines for the establishment and execution of quality assurance programs during siting, design, construction, operation and decommissioning of nuclear facilities.

Single copy price: Free

Obtain an electronic copy from: <https://cstools.asme.org/csconnect/PublicReviewPage.cfm>

Send comments (copy psa@ansi.org) to: Abena Dinizulu

ASME (American Society of Mechanical Engineers)

Two Park Avenue, M/S 6-2B, New York, NY 10016-5990 | ansibox@asme.org, www.asme.org

Revision

BSR/ASME STS-1-202x, Steel Stacks (revision of ANSI/ASME STS-1-2021)

The Standard applies to steel stacks; i.e., those stacks where the primary supporting shell is made of steel. It outlines the consideration that must be made for both the mechanical and structural design, such as what consideration must be taken for wind- and seismic-induced vibrations. The document provides guidelines for the selection of material, linings, and coatings, and gives the requirements for lighting and lightning protection based upon existing building and federal codes. Additionally, this Standard gives the requirements for climbing and access based upon current Occupational Safety and Health Administration (OSHA) standards, emphasizes the important areas regarding fabrication and construction, and outlines areas requiring maintenance and inspection following initial operation. Although many of the topics within these guidelines may be used for all stacks, this Standard is intended to provide design guidelines for stacks containing nonflammable gases, such as combustion exhaust gases at low internal pressures.

Single copy price: Free

Obtain an electronic copy from: <https://cstools.asme.org/csconnect/PublicReviewPage.cfm>

Send comments (copy psa@ansi.org) to: Abena Dinizulu

Comment Deadline: March 9, 2026

ASSP (ASC A10) (American Society of Safety Professionals)

520 N. Northwest Hwy., Park Ridge, IL 60068 | LBauerschmidt@assp.org, www.assp.org

Revision

BSR/ASSP A10.37-202x, Debris Net Systems Used During Construction and Demolition Operations (revision and redesignation of ANSI/ASSE A10.37-2016)

Scope: This standard establishes safety requirements for the design, selection, installation and use of debris net systems during construction, demolition operations and for the temporary containment of debris from deteriorating structures. Purpose: The purpose of this standard is to provide the criteria for debris net selection and use and to provide design, test and installation requirements for debris nets.

Single copy price: \$125.00

Obtain an electronic copy from: LBauerschmidt@assp.org

Send comments (copy psa@ansi.org) to: Same

ASSP (Safety) (American Society of Safety Professionals)

520 N. Northwest Highway, Park Ridge, IL 60068 | LBauerschmidt@assp.org, www.assp.org

New Standard

BSR/ASSP Z310.1-202x, Risk Management - Guidelines for Assessing and Managing Risks (new standard)

This standard provides guidelines on assessing and managing risk faced by organizations. The application of these guidelines can be customized to the organization, and its context. These guidelines can be used throughout the life of the organization and applied to any activity, including decision-making at all levels.

Single copy price: \$140.00

Obtain an electronic copy from: LBauerschmidt@assp.org

Send comments (copy psa@ansi.org) to: Same

AWS (American Welding Society)

8669 NW 36th Street, Suite 130, Miami, FL 33166-6672 | jrosario@aws.org, www.aws.org

New Standard

BSR/AWS D15.3/D15.3M-202x, Specification for Resistance Welding for Railroad Applications (new standard)

This specification provides the general resistance welding requirements for railcars, locomotives, and their components. It includes, but is not limited to, resistance spot and resistance seam welding of aluminum and iron-based alloys. There are requirements for machine qualification, welding schedule certification, production witness samples, and inspection and acceptance criteria.

Single copy price: \$25.00

Obtain an electronic copy from: jrosario@aws.org

Send comments (copy psa@ansi.org) to: Jennifer Rosario <jrosario@aws.org>

Comment Deadline: March 9, 2026

AWS (American Welding Society)

8669 NW 36th Street, Suite 130, Miami, 33166-6672 | eesler@aws.org, www.aws.org

New Standard

BSR/AWS D20.2/D20.2M-202x, Specification for Additive Manufacturing (AM) of Metal Components Using Wire Directed Energy Deposition (DED) (new standard)

This specification provides the general requirements for additively manufactured components using a wire-based deposition process. It provides guidance for the interaction between the Engineer and the Contractor. It includes the qualification, fabrication, inspection, and acceptance of additively manufactured components. A commentary for the specification is included.

Single copy price: Member: \$33 / Non-member: \$44

Obtain an electronic copy from: eesler@aws.org

Send comments (copy psa@ansi.org) to: Exsenet Esler eesler@aws.org

AWS (American Welding Society)

8669 NW 36th Street #130, Miami, FL 33166 | jpadron@aws.org, www.aws.org

Reaffirmation

BSR/AWS B2.1-8-318 (R202x), Standard Welding Procedure Specification for Naval Applications (SWPS-N) for Gas Tungsten Arc Welding of Austenitic Stainless Steel (S-8), 1/8 inch [3 mm] through 1-1/2 inch [38 mm] Thick, MIL-3XX, in the As-Welded Condition, Primarily Pipe for Naval Applications (reaffirmation of ANSI/AWS/NAVSEA B2.1-8-318-2016)

This standard contains the essential welding variables for austenitic stainless steel in the thickness range of 1/8 inch [3 mm] through 1-1/2 inch [38 mm], using manual gas tungsten arc welding. It cites the base metals and operating conditions necessary to make the weldment, the filler metal specifications, and joint designs for groove and fillet welds. This SWPS-N was developed primarily for naval applications that require performance to NAVSEA Technical Publication S9074-AQ-GIB-010/248, Requirements for Welding and Brazing Procedure and Performance Qualification.

Single copy price: \$176.00

Obtain an electronic copy from: jpadron@aws.org

Send comments (copy psa@ansi.org) to: jpadron@aws.org

AWS (American Welding Society)

8669 NW 36th St, Miami, FL 33166 | acelaya@aws.org, www.aws.org

Reaffirmation

BSR/AWS C2.25/C2.25M-2012 (R202x), Specification for Thermal Spray Feedstock - Wire and Rods (reaffirmation of ANSI/AWS C2.25/C2.25M-2012 (R2018))

This specification provides the as-manufactured chemical composition classification requirements for solid and composite wires and ceramic rods for thermal spraying. Requirements for standard sizes, marking, manufacturing, and packaging are included.

Single copy price: \$44.00

Obtain an electronic copy from: acelaya@aws.org

Send comments (copy psa@ansi.org) to: acelaya@aws.org

Comment Deadline: March 9, 2026

AWS (American Welding Society)

8669 NW 36th Street #130, Miami, FL 33166 | jp padron@aws.org, www.aws.org

Reaffirmation

BSR/AWS NAVSEA B2.1-8-308 (R202x), Standard Welding Procedure Specification for Naval Applications (SWPS-N) for Gas Tungsten Arc Welding of Austenitic Stainless Steel (S-8), 1/8 inch [3 mm] through 1-1/2 inch [38 mm] Thick, MIL-3XX, in the As-Welded Condition, Primarily Plate and Structural Naval Applications (reaffirmation of ANSI/AWS/NAVSEA B2.1-8-308-2016)

This standard contains the essential welding variables for austenitic stainless steel in the thickness range of 1/8 inch [3 mm] through 1-1/2 inch [38 mm], using manual gas tungsten arc welding. It cites the base metals and operating conditions necessary to make the weldment, the filler metal specifications, and joint designs for groove and fillet welds. This SWPS-N was developed primarily for naval applications that require performance to NAVSEA Technical Publication S9074-AQ-GIB-010/248, Requirements for Welding and Brazing Procedure and Performance Qualification.

Single copy price: \$176.00

Obtain an electronic copy from: jp padron@aws.org

Send comments (copy psa@ansi.org) to: jp padron@aws.org

AWS (American Welding Society)

8669 NW 36th Street, Suite 130, Miami, FL 33166-6672 | j rosario@aws.org, www.aws.org

Revision

BSR/AWS A1.1-202x, Metric Practice Guide for the Welding Industry (revision of ANSI/AWS A1.1-2016)

This metric practice guide is based on the International System of Units (SI) as defined in the U.S. Federal Register notice of July 28, 1998, "Metric System of Measurement: Interpretation of the International System of Units for the United States." It includes the base units, derived units, and rules for their use. Also covered are conversion factors and rules for their use in converting U.S. customary units to SI units. Recommendations are presented for style and usage in such areas as prefixes, punctuation, number grouping, etc. There are also suggestions to industry for managing the transition.

Single copy price: \$48.00

Obtain an electronic copy from: j rosario@aws.org

Send comments (copy psa@ansi.org) to: j rosario@aws.org

Comment Deadline: March 9, 2026

AWS (American Welding Society)

8669 NW 36th Street, Suite 130, Miami, FL 33166-6672 | kbulger@aws.org, www.aws.org

Revision

BSR/AWS A5.39/A5.39M-202x, Specification for Flux and Electrode Combinations for Submerged Arc and Electroslag Joining and Surfacing of Stainless Steel and Nickel Alloys (revision of ANSI/AWS A5.39/A5.39M-2020) This specification prescribes the requirements for the classification of flux-electrode combinations used with submerged arc or electroslag joining or surfacing using stainless steel and nickel alloys. Electrode classification is per AWS A5.9/ A5.9M for solid stainless steel electrodes, A5.14/A5.14M for solid nickel-alloy electrodes, A5.22/A5.22M for cored stainless steel electrodes and A5.34/A5.34M for cored nickel-alloy electrodes. Flux-electrode joining classification is based on the mechanical properties and the composition of weld metal produced with the flux and a specific electrode. Flux-electrode surfacing classification is based on the composition of the weld metal produced with the flux and a specific electrode. The form and usability of the flux are also included. A guide is appended to the specification as a source of information concerning the classification system employed and the intended use of submerged arc and electroslag fluxes and electrodes. This specification makes use of both US Customary Units and the International System of Units (SI). Since these are not equivalent, each system must be used independently of the other.

Single copy price: Non-member: \$46, Member: \$34

Obtain an electronic copy from: kbulger@aws.org

Send comments (copy psa@ansi.org) to: Kevin Bulger

AWS (American Welding Society)

8669 NW 36th Street, Suite 130, Miami, FL 33166-6672 | kbulger@aws.org, www.aws.org

Revision

BSR/AWS C3.3-202x, Recommended Practices for the Design, Manufacture, and Examination of Critical Brazed Components (revision of ANSI/AWS C3.3-2008 (R2016))

This standard lists the necessary steps to assure the suitability of brazed components for critical applications. Although such applications vary widely, they have certain common considerations with respect to materials, design, manufacture, and inspection. It is the intent of this document to identify and explain these common considerations and the best techniques for dealing with them. It is beyond the scope of this document to provide specific details on these techniques, which the user must adapt to fit each particular application.

Single copy price: Member: \$33 / Non-member: \$44

Obtain an electronic copy from: kbulger@aws.org

Send comments (copy psa@ansi.org) to: Kevin Bulger

AWS (American Welding Society)

8669 NW 36th St, Miami, FL 3316 | acelaya@aws.org, www.aws.org

Revision

BSR/AWS D16.1M/D16.1-202x, Specification for Robotic Arc Welding Safety (revision of ANSI/AWS D16.1M/D16.1-2018)

This standard establishes safety requirements with respect to the design, manufacture, maintenance, and operation of arc welding robot systems and ancillary equipment. It also helps to identify and minimize hazards involved in maintaining, operating, integrating, and setting up of arc welding robot systems.

Single copy price: \$38.00

Obtain an electronic copy from: acelaya@aws.org

Send comments (copy psa@ansi.org) to: acelaya@aws.org

Comment Deadline: March 9, 2026

AWS (American Welding Society)

8669 NW 36th Street, Suite 130, Miami, 33166-6672 | eesler@aws.org, www.aws.org

Revision

BSR/AWS D20.1/D20.1M-202x, AWS D20.1/D20.1M (revision of ANSI/AWS D20.1/D20.1M-2019)

This specification provides the general requirements for additive manufacturing of metal components using either powder bed fusion (PBF) or powder directed energy deposition (DED). It provides guidance for the interaction between the Engineer and the Contractor. It includes the design, qualification, fabrication, inspection, and acceptance of additively manufactured components built using these powder processes. A commentary for the specification is included.

Single copy price: Member: \$72 / Non-member: \$96

Obtain an electronic copy from: eesler@aws.org

Send comments (copy psa@ansi.org) to: Exsenet Esler eesler@aws.org

AWWA (American Water Works Association)

6666 W. Quincy Avenue, Denver, CO 80235 | mrohr@awwa.org, www.awwa.org

Revision

BSR/AWWA C230-202x, Stainless-Steel Full-Encirclement Repair and Service Connection Clamps for 2-in.

Through 12-in. (50-mm Through 300-mm) Pipe (revision of ANSI/AWWA C230-2021)

This standard describes fabricated full-encirclement stainless-steel clamps for use in the repair or tapped service connection of potable water, wastewater, and reclaimed water piping systems. They are intended for nominal diameters 2 in. (50 mm) through 12 in. (300 mm). Full-encirclement repair clamps shall be manufactured completely from stainless steel or a combination of stainless-steel band and cast ductile-iron lug, along with stainless-steel or low-alloy carbon steel bolts and nuts, depending on service requirements and the purchaser's documents. Tapped service connection outlets may be provided and shall range from 1/2-in. through 3-in. (12-mm through 75-mm) sizes.

Single copy price: Free

Obtain an electronic copy from: ETSSupport@awwa.org

Send comments (copy psa@ansi.org) to: AWWA, Paul J. Olson (polson@awwa.org)

CSA (CSA America Standards Inc.)

8501 East Pleasant Valley Road, Cleveland, OH 44131-5575 | ansi.contact@csagroup.org, www.csagroup.org

New Standard

BSR/CSA Z83.29-202x, Direct gas-fired circulating heaters for agricultural animal confinement buildings., same as CSA Z83.29 (new standard)

This Standard applies to newly produced direct gas-fired circulating heaters of 400,000 Btu (117 228 W) or less, hereinafter referred to as heaters, constructed entirely of new, unused parts and materials and primarily intended for permanent installation with a fixed piping system in Agricultural Animal Confinement Buildings. All the products of combustion generated by the heater are released into the area being heated. These requirements apply to heaters having a gas supply pressure rating not exceeding 1/2 psi (3.45 kPa) at the gas inlet of the heater.

Single copy price: Free

Obtain an electronic copy from: Ansi.contact@csagroup.org

Send comments (copy psa@ansi.org) to: Ansi.contact@csagroup.org

Comment Deadline: March 9, 2026

CSA (CSA America Standards Inc.)

8501 East Pleasant Valley Road, Cleveland, OH 44131-5575 | ansi.contact@csagroup.org, www.csagroup.org

New Standard

BSR/CSA Z5030-202x, Residential equipment cold load pick up management (new standard)

This Standard describes Cold Load Pick Up Management (CLPUM) performance and testing procedures to help standardize Cold Load Pick Up management requirements in the residential sector based on the loss of load diversity and intervention level (level 1: passive, level 2: active), to support grid management. This Standard is intended to be used by power utility companies, aggregators, original equipment manufacturers (OEMs) and Home Energy Management Systems (HEMS). This standard is also intended to be used by 3rd party certification bodies. This standard defines testing and performance specifications for residential equipment CLPUM as a grid service both in its passive and active forms. The standard focuses on the following technologies: Unidirectional Level 2 and above EV Chargers, space cooling and heating systems, water heaters and home energy management systems. This standard applies to residential equipment CLPUM for unidirectional Level 2 and above EV chargers, space cooling and heating systems, water heaters and home energy management systems installed and / or used in the residential sector. This standard does not apply to technologies that are not listed above, it also does not apply to analog (bi-metallic) thermostats. Finally, this standard will not address the in-rush current phase of the CLPUM.

Single copy price: Free

Obtain an electronic copy from: ansi.contact@csagroup.org

Send comments (copy psa@ansi.org) to: ansi.contact@csagroup.org

CSA (CSA America Standards Inc.)

8501 East Pleasant Valley Road, Cleveland, OH 44131-5575 | ansi.contact@csagroup.org, www.csagroup.org

Reaffirmation

BSR/CSA HGV 4.10 (R202x), Standard for fittings for use in compressed gaseous hydrogen fueling stations (reaffirmation of ANSI/CSA HGV 4.10-2020)

This Standard specifies methods for testing and evaluating fittings for use with compressed hydrogen gas and hydrogen-rich gas mixtures and is developed primarily for hydrogen fuelling station applications. This standard does not apply to stand-alone components such as quick action couplings, flanges or weld fittings, and fittings for handling liquid hydrogen.

Single copy price: Free

Obtain an electronic copy from: ansi.contact@csagroup.org

Send comments (copy psa@ansi.org) to: ansi.contact@csagroup.org

FCI (Fluid Controls Institute)

1300 Sumner Avenue, Cleveland, OH 44115 | fci@fluidcontrolsinstitute.org, www.fluidcontrolsinstitute.org

Revision

BSR/FCI 99-3-202x, Standard for Back Pressure Regulator Capacity (revision of ANSI/FCI 99-3-2020)

This standard provides a guideline for establishing and reporting back pressure regulator capacities for use by manufacturers, users, specifiers, and approval bodies in order to promote consistent presentation of back pressure regulator capacities. This standard does not apply to safety relief valves.

Single copy price: Free

Obtain an electronic copy from: fci@fluidcontrolsinstitute.org

Send comments (copy psa@ansi.org) to: Leslie Schraff, fci@fluidcontrolsintititue.org

Comment Deadline: March 9, 2026

MTConnect (MTConnect Institute)

4660 Rising Fawn Dr, Douglasville, GA 30135 | mbanks@oagi.org, <http://www.amtonline.org>

New Standard

BSR/MTConnect MTC2.5-202x, MTConnect Standard Version 2.6.0 (new standard)

MTConnect is a semantic vocabulary for manufacturing. It defines terms and a data model that supports interoperability between types and brands of equipment and machinery, software and controllers, other assets, personnel, and processes.

Single copy price: Free

Obtain an electronic copy from: mtconnect.org/review

Send comments (copy psa@ansi.org) to: mtconnect.org/review

NSF (NSF International)

789 N. Dixboro Road, Ann Arbor, MI 48105-9723 | arose@nsf.org, www.nsf.org

Revision

BSR/NSF 49-202x (i207r2), Biosafety Cabinetry: Design, Construction, Performance, and Field Certification (revision of ANSI/NSF 49-2024)

This standard applies to Class II (laminar flow) biosafety cabinetry designed to minimize hazards inherent in work with agents assigned to Biosafety Levels 1, 2, 3, or 4. It also defines the tests that shall be passed by such cabinetry to meet this standard.

Single copy price: Free

Obtain an electronic copy from: <https://standards.nsf.org/higherlogic/ws/public/download/82068/49i207r2%20-%20Sporulation%20-%20JC%20Memo%20and%20Ballot.pdf>

Send comments (copy psa@ansi.org) to: Allan Rose <arose@nsf.org>

NSF (NSF International)

789 N. Dixboro Road, Ann Arbor, MI 48105 | mmilla@nsf.org, www.nsf.org

Revision

BSR/NSF 53-202x (i167r2), Drinking Water Treatment Units - Health Effects (revision of ANSI/NSF 53-2024)

The POU and POE systems addressed by this standard are designed to be used for the reduction of specific substances that may be present in drinking water (public or private) considered to be microbiologically safe and of known quality. Systems covered under this standard are intended to reduce substances that are considered established or potential health hazards.

Single copy price: Free

Obtain an electronic copy from: <https://standards.nsf.org/higherlogic/ws/public/download/82125/53i167r2%20-%20PFAS%20Updates%20-%20JC%20memo%20%26%20ballot.pdf>

Send comments (copy psa@ansi.org) to: mmilla@nsf.org

Comment Deadline: March 9, 2026

ULSE (UL Standards and Engagement)

1603 Orrington Ave. Suite 2000, Evanston, IL 60201 | Thomas.Fontalvo@UL.org, <https://ulse.org/>

Reaffirmation

BSR/UL 1097-2012 (R202x), Standard for Safety for Double Insulation Systems for Use in Electrical Equipment (reaffirmation of ANSI/UL 1097-2012 (R2021))

Reaffirmation and continuance of the 6th Edition of the Standard for Safety for Double Insulation Systems for Use in Electrical Equipment, UL 1097, as an standard

Single copy price: Free

Obtain an electronic copy from: <https://csds.ul.org/ProposalAvailable>

Send comments (copy psa@ansi.org) to: Send comments (copy psa@ansi.org) to: Follow the instructions at the following website to enter comments into the CSDS Work Area: <https://csds.ul.com/ProposalAvailable>

ULSE (UL Standards and Engagement)

1603 Orrington Ave, Suite 2000 , Evanston, IL 60201 | Dakota.Sabotka@UL.org, <https://ulse.org/>

Reaffirmation

BSR/UL 1638A-2016 (R202x), Standard for Safety for Visual Signal Appliances for General Signaling Use (reaffirmation of ANSI/UL 1638A-2016 (R2021))

Reaffirmation and continuance of the first Edition of the Standard for Safety for Visual Signal Appliances for General Signaling Use, UL 1638A, as an standard.

Single copy price: Free

Obtain an electronic copy from: <https://csds.ul.com/ProposalAvailable>

Send comments (copy psa@ansi.org) to: Send comments (copy psa@ansi.org) to: Follow the instructions at the following website to enter comments into the CSDS Work Area: <https://csds.ul.com/ProposalAvailable>

ULSE (UL Standards and Engagement)

12 Laboratory Drive , Research Triangle Park, NC 27709 | Adam.Payrot@ul.org, <https://ulse.org/>

Revision

BSR/UL 977-202x, Standard for Fused Power-Circuit Devices (revision of ANSI/UL 977-2020 (R2025))

ULSE proposes a New Edition of UL 977 which includes editorial corrections and updates to align with current style and format.

Single copy price: Free

Obtain an electronic copy from: <https://csds.ul.com/ProposalAvailable>

Send comments (copy psa@ansi.org) to: Send comments (copy psa@ansi.org) to: Follow the instructions at the following website to enter comments into the CSDS Work Area: <https://csds.ul.com/ProposalAvailable>

Comment Deadline: March 9, 2026

ULSE (UL Standards and Engagement)

1603 Orrington Ave, Suite 20000, Evanston, IL 60201 | Susan.P.Malohn@ul.org, <https://ulse.org/>

Revision

BSR/UL 2703-202x, Standard for Safety for Mounting Systems, Mounting Devices, Clamping/Retention Devices, and Ground Lugs for Use with Flat-Plate Photovoltaic Modules and Panels (revision of ANSI/UL 2703-2025)

1. Scope Update in 1.3 to Remove Maximum Voltage; 2. Scope Correction in 1.3; 3. Scope Clarification in 1.4; 4. Section 10.2 Addition of AZ50 as an Approved Corrosion Resistant Coating Similar to G90 Hot-Dipped Galvanized Coating in 10.2; 5. Addition of ZM40 "Hot-dipped Zinc-Aluminum-Magnesium alloy-coating" as an Approved Corrosion Resistant Coating Similar to G90 Hot-Dipped Galvanized Coating in 10.2; 6. Clarification of Installation, Assembly and Maintenance/Inspection Instructions in 26.1; 7. Additional Requirement in Section 26, Installation, Assembly and Maintenance/Inspection Instructions; 8. Relocation of Component Standard

References from Appendix A to the Body of the Standard and Deletion of Appendix A

Single copy price: Free

Obtain an electronic copy from: <https://csds.ul.org/ProposalAvailable>

Send comments (copy psa@ansi.org) to: Follow the instructions in the following website to enter comments into the CSDS Work Area: "https://csds.ul.org/ProposalAvailable";

Comment Deadline: March 24, 2026

ASME (American Society of Mechanical Engineers)

Two Park Avenue, M/S 6-2B, New York, NY 10016-5990 | ansibox@asme.org, www.asme.org

Reaffirmation

BSR/ASME PTC 11-2008 (R202x), Fans (reaffirmation of ANSI/ASME PTC 11-2008 (R2018))

This Code provides standard procedures for conducting and reporting tests on fans, including those of the centrifugal, axial, and mixed flow types.

Single copy price: \$147.00

Obtain an electronic copy from: <https://cstools.asme.org/csconnect/PublicReviewPage.cfm>

Order from: <https://cstools.asme.org/csconnect/PublicReviewPage.cfm>

Send comments (copy psa@ansi.org) to: Donnie Alonzo

ASME (American Society of Mechanical Engineers)

Two Park Avenue, M/S 6-2B, New York, NY 10016-5990 | ansibox@asme.org, www.asme.org

Reaffirmation

BSR/ASME PTC 12.1-2015 (R202x), Closed Feedwater Heaters (reaffirmation of ANSI/ASME PTC 12.1-2015 (R2020))

The object of this Code is to provide the procedures, direction, and guidance for determining the thermohydraulic performance of a closed feedwater heater. It can be utilized to verify contractual performance for a new heater or to calculate performance of an existing heater in comparison to the design point.

Single copy price: \$168.00

Obtain an electronic copy from: <https://cstools.asme.org/csconnect/PublicReviewPage.cfm>

Order from: <https://cstools.asme.org/csconnect/PublicReviewPage.cfm>

Send comments (copy psa@ansi.org) to: Donnie Alonzo

Comment Deadline: March 24, 2026

ASME (American Society of Mechanical Engineers)

Two Park Avenue, M/S 6-2B, New York, NY 10016-5990 | ansibox@asme.org, www.asme.org

Reaffirmation

BSR/ASME PTC 12.2-2010 (R202x), Steam Surface Condensers (reaffirmation of ANSI/ASME PTC 12.2-2010 (R2020))

This Code provides standard directions and rules for conducting and reporting performance tests of watercooled, steam surface condensers, hereafter referred to as condensers. This Code provides explicit test procedures for performing a reasonably accurate, pragmatic level of performance testing.

Single copy price: \$175.00

Obtain an electronic copy from: <https://cstools.asme.org/csconnect/PublicReviewPage.cfm>

Order from: <https://cstools.asme.org/csconnect/PublicReviewPage.cfm>

Send comments (copy psa@ansi.org) to: Donnie Alonzo

ASME (American Society of Mechanical Engineers)

Two Park Avenue, M/S 6-2B, New York, NY 10016-5990 | ansibox@asme.org, www.asme.org

Reaffirmation

BSR/ASME PTC 19.2-2010 (R202x), Pressure Measurement (reaffirmation of ANSI/ASME PTC 19.2-2010 (R2020))

The object of this Supplement is to give instructions and guidance for the accurate determination of pressure values in support of the ASME Performance Test Codes. The choice of method, instruments, required calculations, and corrections to be applied depends on the purpose of the measurement, the allowable uncertainty, and the characteristics of the equipment being tested.

Single copy price: \$115.00

Obtain an electronic copy from: <https://cstools.asme.org/csconnect/PublicReviewPage.cfm>

Order from: <https://cstools.asme.org/csconnect/PublicReviewPage.cfm>

Send comments (copy psa@ansi.org) to: Donnie Alonzo

ASME (American Society of Mechanical Engineers)

Two Park Avenue, M/S 6-2B, New York, NY 10016-5990 | ansibox@asme.org, www.asme.org

Reaffirmation

BSR/ASME PTC 30.1-2007 (R202x), Air-Cooled Steam Condensers (reaffirmation of ANSI/ASME PTC 30.1-2007 (R2020))

This Code provides uniform test methods for conducting and reporting thermal performance characteristics of mechanical draft air-cooled steam condensers (ACC) operating under vacuum conditions.

Single copy price: \$115.00

Obtain an electronic copy from: <https://cstools.asme.org/csconnect/PublicReviewPage.cfm>

Order from: <https://cstools.asme.org/csconnect/PublicReviewPage.cfm>

Send comments (copy psa@ansi.org) to: Donnie Alonzo

Comment Deadline: March 24, 2026

ASME (American Society of Mechanical Engineers)

Two Park Avenue, M/S 6-2B, New York, NY 10016-5990 | ansibox@asme.org, www.asme.org

Reaffirmation

BSR/ASME PTC 30-1991 (R202x), Air-Cooled Heat Exchangers (reaffirmation of ANSI/ASME PTC 30-1991 (R2021))

The purpose of this Code is to provide standard directions and rules for the conduct and report of performance tests on air cooled heat exchangers and the measurement and evaluation of relevant data.

Single copy price: \$126.00

Obtain an electronic copy from: <https://cstools.asme.org/csconnect/PublicReviewPage.cfm>

Order from: <https://cstools.asme.org/csconnect/PublicReviewPage.cfm>

Send comments (copy psa@ansi.org) to: Donnie Alonzo

ASME (American Society of Mechanical Engineers)

Two Park Avenue, M/S 6-2B, New York, NY 10016-5990 | ansibox@asme.org, www.asme.org

Reaffirmation

BSR/ASME PTC 36-2018 (R202x), Measurement of Industrial Sound (reaffirmation of ANSI/ASME PTC 36-2018)

The object of this Code is to describe procedures for measuring and reporting airborne sound emission from stationary sound sources and equipment, or from facilities composed of multiple stationary sound sources.

Single copy price: \$68.00

Obtain an electronic copy from: <https://cstools.asme.org/csconnect/PublicReviewPage.cfm>

Order from: <https://cstools.asme.org/csconnect/PublicReviewPage.cfm>

Send comments (copy psa@ansi.org) to: Donnie Alonzo

ASME (American Society of Mechanical Engineers)

Two Park Avenue, M/S 6-2B, New York, NY 10016-5990 | ansibox@asme.org, www.asme.org

Reaffirmation

BSR/ASME PTC 39-2005 (R202x), Steam Traps (reaffirmation of ANSI/ASME PTC 39-2005 (R2020))

This Code covers steam traps which are devices used for removing condensate and noncondensables from steam systems.

Single copy price: \$109.00

Obtain an electronic copy from: <https://cstools.asme.org/csconnect/PublicReviewPage.cfm>

Order from: <https://cstools.asme.org/csconnect/PublicReviewPage.cfm>

Send comments (copy psa@ansi.org) to: Donnie Alonzo

ASME (American Society of Mechanical Engineers)

Two Park Avenue, M/S 6-2B, New York, NY 10016-5990 | ansibox@asme.org, www.asme.org

Revision

BSR/ASME B18.24-202x, Part Identifying Number (PIN) Code System Standard for B18 Fastener Products (revision of ANSI/ASME B18.24-2023)

This Standard is intended to provide all users (manufacturers, distributors, design and configuration, parts control, inventory control, test and maintenance functions) with the capability to identify externally threaded, internally threaded and nonthreaded fastener products by a preselected order of coding.

Single copy price: Free

Order from: <https://cstools.asme.org/csconnect/PublicReviewPage.cfm>

Send comments (copy psa@ansi.org) to: Lydia Stanford

Comment Deadline: March 24, 2026

ASME (American Society of Mechanical Engineers)

Two Park Avenue, M/S 6-2B, New York, NY 10016-5990 | ansibox@asme.org, www.asme.org

Revision

BSR/ASME PTC 46-202x, Overall Plant Performance (revision of ANSI/ASME PTC 46-2015 (R2025))

This Code provides rules, uniform test methods and procedures for the overall performance testing of electric power plants and generating facilities. This Code applies to any plant size. It can be used to measure the steady state performance of a plant or facility. This Code can be used for the following types of plants and power generating facilities: gas turbine plant, combined cycle, rankine cycle, Combined heat and power, geothermal, photovoltaic, and electrical auxiliary load.

Single copy price: Free

Order from: <https://cstools.asme.org/csconnect/PublicReviewPage.cfm>

Send comments (copy psa@ansi.org) to: Donnie Alonzo

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | s.merten@ieee.org, www.ieee.org

New Standard

BSR/IEEE 145-202x, Standard for Definitions of Terms for Antennas (new standard)

Definitions of terms for antennas and for systems that incorporate an antenna as a component of the system are established in this standard.

Single copy price: Free

Obtain an electronic copy from: N/A

Order from: Suzanne Merten <s.merten@ieee.org>

Send comments (copy psa@ansi.org) to: s.merten@ieee.org

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | s.merten@ieee.org, www.ieee.org

New Standard

BSR/IEEE 473-202x, Recommended Practice for an Electromagnetic Site Survey (10 kHz to 40 GHz) (new standard)

Information and guidance for characterizing radiated levels of electromagnetic (EM) noise or interference that may be present in various environments between 10 kHz and 40 GHz are provided in this recommended practice. Methods that may be used to plan for and execute the characterization of the electromagnetic environment in a particular environment or location are provided. Characterizing the electromagnetic environment is traditionally referred to as a site survey. A site survey can be applicable to congested metropolitan environments, industrial settings, commercial buildings, open fields, remote geographical locations, and in and around ships, aircraft, and vehicles.

Single copy price: \$51.00

Obtain an electronic copy from: <https://ieeexplore.ieee.org/document/11223196>

Order from: <https://ieeexplore.ieee.org/>

Send comments (copy psa@ansi.org) to: s.merten@ieee.org

Comment Deadline: March 24, 2026

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | s.merten@ieee.org, www.ieee.org

New Standard

BSR/IEEE 824-202x, Draft Standard for Series Capacitor Banks in Power Systems (new standard)

This standard represents an update to IEEE 824-2004. Series capacitor bank component and bank duty cycle ratings, equipment insulation levels, protective functions component testing, instruction books, nameplates, and safety are covered in this standard.

Single copy price: Free

Obtain an electronic copy from: N/A

Order from: Suzanne Merten <s.merten@ieee.org>

Send comments (copy psa@ansi.org) to: s.merten@ieee.org

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | s.merten@ieee.org, www.ieee.org

New Standard

BSR/IEEE 3192-202x, Guide for Corrosion Inspection and Evaluation of High-Voltage Direct Current (HVDC) Grounding Electrodes (400 kV to 1100 kV) (new standard)

Methods of corrosion inspection and evaluation of high-voltage direct current (HVDC) grounding electrodes, including general requirements, selection of excavation point, excavation, sampling, corrosion inspection, and evaluation, are described by this guide. This guide is applicable to corrosion inspection and evaluation of HVDC grounding electrodes after excavation with voltage ratings from ± 400 kV to ± 1100 kV.

Single copy price: \$65.00

Obtain an electronic copy from: <https://ieeexplore.ieee.org/document/11322723>

Order from: <https://ieeexplore.ieee.org/>

Send comments (copy psa@ansi.org) to: s.merten@ieee.org

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | s.merten@ieee.org, www.ieee.org

New Standard

BSR/IEEE C37.1.2-202x, Draft Guide for Databases Used in Utility Automation Systems (new standard)

This guide presents database characteristics to be considered by protection and automation engineers in discussions with the information technology specialists on desired database requirements to meet the needs of the power system applications.

Single copy price: Free

Obtain an electronic copy from: N/A

Order from: Suzanne Merten <s.merten@ieee.org>

Send comments (copy psa@ansi.org) to: s.merten@ieee.org

Comment Deadline: March 24, 2026

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | s.merten@ieee.org, www.ieee.org

New Standard

BSR/IEEE C37.251-202x, Standard for Common Protection and Control Settings or Configuration Data Format (COMSET) (new standard)

This standard defines a common format for protection and control configuration or settings data files based on the IEC 61850 System Configuration Language (SCL) format. The format will specify organizational structure and methods of content extension.

Single copy price: Free

Obtain an electronic copy from: N/A

Order from: Suzanne Merten <s.merten@ieee.org>

Send comments (copy psa@ansi.org) to: s.merten@ieee.org

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | s.merten@ieee.org, www.ieee.org

New Standard

BSR/IEEE C57.13.10-202x, Guide for Calibration of Energized Current Transformers for 34.5 kV and Below (new standard)

This guide provides recommendations for the test conditions, technical requirements of calibration equipment, calibration methods, calibration processing and recording of test results to calibrate energized current transformers on voltages up to 34.5 kV ac.

Single copy price: \$58.00

Obtain an electronic copy from: <https://ieeexplore.ieee.org/document/11081418>

Order from: <https://ieeexplore.ieee.org/>

Send comments (copy psa@ansi.org) to: s.merten@ieee.org

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | s.merten@ieee.org, www.ieee.org

New Standard

BSR/IEEE C57.170-202x, Guide for the Condition Assessment of Liquid Immersed Transformers, Reactors and Their Components (new standard)

This guide presents existing condition assessment methodologies that quantify the current condition of liquid immersed 8 transformers, reactors, and their components.

Single copy price: Free

Obtain an electronic copy from: N/A

Order from: Suzanne Merten <s.merten@ieee.org>

Send comments (copy psa@ansi.org) to: s.merten@ieee.org

Comment Deadline: March 24, 2026

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | s.merten@ieee.org, www.ieee.org

Revision

BSR/IEEE C37.74-202x, Standard Requirements for Subsurface, Vault, and Pad-mounted Load-Interrupter Switchgear and Fused Load-Interrupter Switchgear for Alternating Current Systems up to and including 38 kV (revision of ANSI/IEEE C37.74-2014)

Required definitions, ratings, procedures for performing design tests and production tests, and construction requirements for subsurface, vault, and pad-mounted load-interrupter switchgear and fused load-interrupter switchgear for ac systems up to and including 38 kV are covered in this standard.

Single copy price: \$93.00

Obtain an electronic copy from: <https://ieeexplore.ieee.org/document/11027763>

Order from: <https://ieeexplore.ieee.org/>

Send comments (copy psa@ansi.org) to: s.merten@ieee.org

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | s.merten@ieee.org, www.ieee.org

Revision

BSR/IEEE C37.119-202x, Guide for Power System Circuit Breaker Failure Protection (revision of ANSI/IEEE C37.119-2016)

Methods to protect a power system from faults that are not cleared because of failure of a power circuit breaker to operate or interrupt when called upon by a protective relay are described in this guide. The intent is to give the reader a guide in how to detect that a breaker has failed to clear a fault, and how to electrically isolate the fault after the breaker has failed to clear the fault. Additionally, schemes that provide primary protection of the power system from performance failures of the power circuit breaker other than fault clearing failures such as failure to operate, either tripping or closing, manual or automatic, are also described. Such schemes, when applied, are typically integrated as a part of the overall breaker failure protection scheme. Also covered are recent practices that take advantage of new technologies.

Single copy price: \$104.00

Obtain an electronic copy from: <https://ieeexplore.ieee.org/document/11042925>

Order from: <https://ieeexplore.ieee.org/>

Send comments (copy psa@ansi.org) to: s.merten@ieee.org

ITI (INCITS) (InterNational Committee for Information Technology Standards)

700 K Street NW, Suite 600, Washington, DC 20001 | kquigley@itic.org, www.incits.org

New Standard

INCITS 577-202x, Information Technology - Fibre Channel - Security Protocols - 3 (FC-SP-3) (new standard)

Included within this scope: a) updates to current storage security practices; b) enhancements to the protocols; c) corrections and clarifications, and d) any other item as deemed necessary during development.

Single copy price: Free

Obtain an electronic copy from: <https://standards.incits.org/higherlogic/ws/public/download/179106/eb-2025-00392-001-PR-Register-INCITS-577-202x-Cmts-due-03-24-2026.pdf>

Order from: <https://standards.incits.org/higherlogic/ws/public/download/179106/eb-2025-00392-001-PR-Register-INCITS-577-202x-Cmts-due-03-24-2026.pdf>

Send comments (copy psa@ansi.org) to: comments@mail.standards.incits.org

Comment Deadline: March 24, 2026

ULSE (UL Standards and Engagement)

100 Queen Street, Suite 1040, Ottawa, ON K1P 1J9 Canada | sabrina.khrebtov@ul.org, <https://ulse.org/>

Revision

BSR/UL 444-202x, Standard for Safety for Communications Cables (revision of ANSI/UL 444-2023)

Proposed New Six Edition of UL 444: 1. Addition of Optional Oil Rating 2. Optional Flame Designations 3. TPE Physical Properties 4. Update Clause 5.1.3 remove ASTM B189 from the list of Reference publications 5. Restructuring and editorial revisions for proposed new edition

Single copy price: Free

Obtain an electronic copy from: <https://csds.ul.com/ProposalAvailable>

Send comments (copy psa@ansi.org) to: Follow the instructions in the following website to enter comments into the CSDS Work Area <https://csds.ul.com/ProposalAvailable>.

Project Withdrawn

In accordance with clause 4.2.1.3.3 Discontinuance of a standards project of the ANSI Essential Requirements, an accredited standards developer may abandon the processing of a proposed new or revised American National Standard or portion thereof if it has followed its accredited procedures. The following projects have been withdrawn accordingly:

ICC (International Code Council)

4051 Flossmoor Road, Country Club Hills, IL 60478 | kaittaniemi@iccsafe.org, www.iccsafe.org

BSR/ICC 605-202x, Standard for Residential Construction in Regions with Wildfire Hazard (new standard)

Send comments (copy psa@ansi.org) to: Karl Aittaniemi <kaittaniemi@iccsafe.org>

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, 3rd Floor, Piscataway, NJ 08854 | t.belmont@ieee.org, www.ieee.org

BSR/IEEE 367-202x, Recommended Practice for Determining the Electric Power Station Ground Potential Rise and Induced Voltage from a Power Fault (new standard)

Send comments (copy psa@ansi.org) to: Teresa Belmont <t.belmont@ieee.org>

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, 3rd Floor, Piscataway, NJ 08854 | t.belmont@ieee.org, www.ieee.org

BSR/IEEE 2825-202x, Guide for Static Synchronous Series Compensator (SSSC) General Requirements and Test Methods (new standard)

Send comments (copy psa@ansi.org) to: Teresa Belmont <t.belmont@ieee.org>

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, 3rd Floor, Piscataway, NJ 08854 | t.belmont@ieee.org, www.ieee.org

BSR/IEEE C57.124-202x, Recommended Practice for the Detection of Partial Discharge and the Measurement of Apparent Charge in Dry-Type Transformers (new standard)

Send comments (copy psa@ansi.org) to: Teresa Belmont <t.belmont@ieee.org>

NEMA (National Electrical Manufacturers Association)

1812 N Moore Street, Suite 2200, Arlington, VA 22209 | casey.granata@nema.org, www.nema.org

BSR/ESS 1-202x, Protocol for Uniformly Measuring and Expressing the Performance of Energy Storage Systems (new standard)

Send comments (copy psa@ansi.org) to: Casey Granata <casey.granata@nema.org>

Project Withdrawn

ULSE (UL Standards and Engagement)

1603 Orrington Ave, Evanston, IL 60210 | alan.t.mcgrath@ul.org, <https://ulse.org/>

BSR/UL 60335-2-89-202X, Household and Similar Electrical Appliances - Safety - Part 2-89: Particular Requirements for Commercial Refrigerating Appliances and Ice-Makers with an Incorporated or Remote Refrigerant Unit or Motor-Compressor (national adoption of IEC 60335-2-89 with modifications and revision of ANSI/UL 60335-2-89-2021)

Send comments (copy psa@ansi.org) to: Alan McGrath <alan.t.mcgrath@ul.org>

Withdrawal of an ANS by ANSI-Accredited Standards Developer

In accordance with clause 4.2.1.3.2 Withdrawal by ANSI-Accredited Standards Developer of the ANSI Essential Requirements, the following American National Standards have been withdrawn as an ANS.

ASTM (ASTM International)

100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959 | accreditation@astm.org, www.astm.org

ANSI/ASTM E2726/E2726M-2012a (R2017), Test Method for Evaluating the Fire-Test-Response of Deck Structures to Burning Brands (reaffirmation of ANSI/ASTM E2726-2012a)

Send comments (copy psa@ansi.org) to: Questions may be directed to: Meredith Klein <accreditation@astm.org>

B11 (B11 Standards, Inc.)

179 Haw Creek Mews Dr. , Asheville, NC 28805 | cfelinski@b11standards.org, <https://www.b11standards.org/>

B11.TR4-2014, Selection of Programmable Electronic Systems (PES/PLC) for Machine Tools (TECHNICAL REPORT) (revision of technical report)

Send comments (copy psa@ansi.org) to: Questions may be directed to: Chris Felinski <cfelinski@b11standards.org>

GTESS (Georgia Institute of Technology Energy & Sustainability Services)

75 Fifth Street N.W, Suite 3001, Atlanta, GA 30332-0640 | deann@pddd.com, www.innovate.gatech.edu

ANSI/MSE 50028-1-2019, Superior Energy Performance 50001™ Program-Additional Requirements for Energy Management Systems (revision of ANSI/MSE 50021-2016)

Send comments (copy psa@ansi.org) to: Questions may be directed to: Deann Desai <deann@pddd.com>

GTESS (Georgia Institute of Technology Energy & Sustainability Services)

75 Fifth Street N.W, Suite 3001, Atlanta, GA 30332-0640 | deann@pddd.com, www.innovate.gatech.edu

ANSI/MSE 50028-2-2019, Superior Energy Performance(R) 50001 Program - Requirements for verification bodies for use in accreditation or other forms of recognition (revision and redesignation of ANSI/MSE 50028-2016)

Send comments (copy psa@ansi.org) to: Questions may be directed to: Deann Desai <deann@pddd.com>

ULSE (UL Standards and Engagement)

12 Laboratory Drive, Research Triangle Park, NC 27709-3995 | Tony.Partridge@ul.org, <https://ulse.org/>

ANSI/UL 218-2015 (R2025), Standard for Fire Pump Controllers (reaffirmation of ANSI/UL 218-2015 (R2020))

Send comments (copy psa@ansi.org) to: Questions may be directed to: Tony Partridge <Tony.Partridge@ul.org>

Final Actions on American National Standards

The standards actions listed below have been approved by the ANSI Board of Standards Review (BSR) or by an ANSI-Audited Designator, as applicable.

ASABE (American Society of Agricultural and Biological Engineers)

2590 Niles Road, Saint Joseph, MI 49085 | stell@asabe.org, <https://www.asabe.org/>

ANSI/ASABE/ISO 5675-2026, Agricultural tractors and machinery - General purpose quick-action hydraulic couplers (identical national adoption of ISO 5675:2021 and revision of ANSI/ASABE AD5675-2016 (R2020)) Final Action Date: 1/12/2026 | *National Adoption*

ANSI/ASAE S392-2026, Cotton Module Builder and Transporter Standard (revision of ANSI/ASAE S392.2 APR2005 (R2019)) Final Action Date: 1/12/2026 | *Revision*

AWS (American Welding Society)

8669 NW 36th Street, Suite 130, Miami, FL 33166-6672 | jrosario@aws.org, www.aws.org

ANSI/AWS D1.1/D1.1M-2025-AMD1-2026, Structural Welding Code-Steel (revision and redesignation of ANSI/AWS D1.1/D1.1M-2025) Final Action Date: 1/12/2026 | *Revision*

CSA (CSA America Standards Inc.)

8501 East Pleasant Valley Road, Cleveland, OH 44131-5575 | ansi.contact@csagroup.org, www.csagroup.org

ANSI Z21.57-2010 (R2026), Standard for Recreational Vehicle Cooking Gas Appliances (same as CSA Z21.57) (reaffirmation of ANSI Z21.57-2010 (R2021)) Final Action Date: 1/14/2026 | *Reaffirmation*

ANSI/CSA CHMC 1-2026, Test methods for evaluating material compatibility in compressed hydrogen applications - Metals (revision of ANSI/CSA CHMC 1-2014) Final Action Date: 1/14/2026 | *Revision*

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | s.merten@ieee.org, www.ieee.org

ANSI/IEEE 316-2026, Standard Requirements for Direct Current Instrument Shunts (new standard) Final Action Date: 1/12/2026 | *New Standard*

NEMA (ASC C8) (National Electrical Manufacturers Association)

1300 North 17th Street, Suite 900, Arlington, VA 22209 | Khaled.Masri@nema.org, www.nema.org

ANSI NEMA WC 23076 (R2026), Standard for Controlled Impedance Shielded Twisted Pairs in Internal Electrical Cable (reaffirmation and redesignation of ANSI NEMA WC76-2018) Final Action Date: 1/12/2026 | *Reaffirmation*

NSF (NSF International)

789 N. Dixboro Road, Ann Arbor, MI 48105 | smccormick@nsf.org, www.nsf.org

ANSI/NSF 40-2026 (i86r1), Residential Wastewater Treatment Systems (revision of ANSI/NSF 40-2023) Final Action Date: 1/13/2026 | *Revision*

ANSI/NSF 53-2026 (i168r1), Drinking Water Treatment Units - Health Effects (revision of ANSI/NSF 53-2024) Final Action Date: 1/14/2026 | *Revision*

ANSI/NSF 350-2026 (i89r1), Onsite Residential and Commercial Water Reuse Treatment Systems (revision of ANSI/NSF 350-2023) Final Action Date: 1/13/2026 | *Revision*

ANSI/NSF 455-2-2026 (i74r1), Good Manufacturing Practices for Dietary Supplements (revision of ANSI/NSF 455-2-2024) Final Action Date: 1/10/2026 | *Revision*

SIA (Security Industry Association)

8455 Colesville Road, Suite 1200, Silver Spring, MD 20910 | ayusuf@securityindustry.org, www.siaonline.org

ANSI/SIA DC-09-2026, SIA Digital Communication Standard - Internet Protocol Event Reporting (revision of ANSI/SIA DC-09-2023) Final Action Date: 1/13/2026 | *Revision*

ULSE (UL Standards and Engagement)

1603 Orrington Avenue, Evanston, IL 60201 | Vanessa.Johanneson@ul.org, <https://ulse.org/>

ANSI/UL 1004-1-2020 (R2026), Standard for Rotating Electrical Machines - General Requirements (reaffirmation of ANSI/UL 1004-1-2020) Final Action Date: 1/13/2026 | *Reaffirmation*

ANSI/UL 4-2026, Standard for Armored Cable (revision of ANSI/UL 4-2021) Final Action Date: 1/12/2026 | *Revision*

ANSI/UL 217-2026, Standard for Smoke Alarms (revision of ANSI/UL 217-2024) Final Action Date: 1/14/2026 | *Revision*

ANSI/UL 1034-2026, Standard for Burglary-Resistant Electric Locking Mechanisms (revision of ANSI/UL 1034-2015 (R2020)) Final Action Date: 1/15/2026 | *Revision*

VITA (VMEbus International Trade Association (VITA))

929 W. Portobello Avenue, Mesa, AZ 85210 | jing.kwok@vita.com, www.vita.com

ANSI/VITA 42.3-2020 (R2026), XMC PCI Express Protocol Layer Standard (reaffirmation of ANSI/VITA 42.3-2020) Final Action Date: 1/12/2026 | *Reaffirmation*

ANSI/VITA 48.1-2020 (R2026), Mechanical Specification for Microcomputers Using REDI Air Cooling (reaffirmation of ANSI/VITA 48.1-2020) Final Action Date: 1/20/2026 | *Reaffirmation*

ANSI/VITA 57.1-2019 (R2026), FPGA Mezzanine Card (FMC) Standard (reaffirmation of ANSI/VITA 57.1-2019) Final Action Date: 1/12/2026 | *Reaffirmation*

ANSI/VITA 57.4-2018 (R2026), FPGA Mezzanine Card Plus (FMC+) Standard (reaffirmation of ANSI/VITA 57.4-2018) Final Action Date: 1/12/2026 | *Reaffirmation*

ANSI/VITA 62.2-2020 (R2026), Modular Power Supply Standard for 270v Applications (reaffirmation of ANSI/VITA 62.2-2020) Final Action Date: 1/12/2026 | *Reaffirmation*

ANSI/VITA 67.2-2020 (R2026), Coaxial Interconnect on VPX, 8 Position SMPM Configuration (reaffirmation of ANSI/VITA 67.2-2020) Final Action Date: 1/20/2026 | *Reaffirmation*

ANSI/VITA 48.5-2026, Mechanical Standard for Electronic Plug-In Units Using Air-Flow-Through Cooling (revision of ANSI/VITA 48.5-R2010 (R2017)) Final Action Date: 1/12/2026 | *Revision*

Call for Members (ANS Consensus Bodies)

Directly and materially interested parties who wish to participate as a member of an ANS consensus body for the standards listed are requested to contact the sponsoring developer directly in a timely manner.

ANSI Accredited Standards Developer

INCITS Executive Board – ANSI Accredited SDO and U.S. TAG to ISO/IEC JTC 1, Information Technology

The InterNational Committee for Information Technology Standards (INCITS), an ANSI accredited SDO, is the forum of choice for information technology developers, producers and users for the creation and maintenance of formal de jure IT standards. INCITS' mission is to promote the effective use of Information and Communication Technology through standardization in a way that balances the interests of all stakeholders and increases the global competitiveness of the member organizations.

The INCITS Executive Board serves as the consensus body with oversight of its 40+ Technical Committees. Additionally, the INCITS Executive Board has the international leadership role as the U.S. Technical Advisory Group (TAG) to ISO/IEC JTC 1, Information Technology.

Membership in the INCITS Executive Board is open to all directly and materially interested parties in accordance with INCITS membership rules. To learn more about participating on the INCITS Executive Board, contact Jennifer Garner at jgarner@itic.org or visit <http://www.incits.org/participation/executive-board> for more information.

Membership in all interest categories is always welcome; however, the INCITS Executive Board seeks to broaden its membership base in the following categories:

- Producer – Hardware or Semiconductor
- Producer – Software or Services
- Producer - Telecom or Electronics
- Distributor
- Service Provider
- User/Consumer
- Consultants
- Government
- Standards Development Organizations and Consortia
- Academic Institution
- General Interest

ANSI Accredited Standards Developer

SCTE (Society of Cable Telecommunications Engineers)

SCTE, an ANSI-accredited SDO, is the primary organization for the creation and maintenance of standards for the cable telecommunications industry. SCTE's standards mission is to develop standards that meet the needs of cable system operators, content providers, network and customer premises equipment manufacturers, and all others who have an interest in the industry through a fair, balanced and transparent process.

SCTE is currently seeking to broaden the membership base of its ANS consensus bodies and is interested in new members in all membership categories to participate in new work in fiber-optic networks, advanced advertising, 3D television, and other important topics. Of particular interest is membership from the content (program and advertising) provider and user communities.

Membership in the SCTE Standards Program is open to all directly and materially affected parties as defined in SCTE's membership rules and operating procedures.

More information is available at www.scte.org or by e-mail from standards@scte.org.

ANSI Accredited Standards Developer

AWS - American Welding Society

The American Welding Society (AWS) A1 Committee on Metric Practice is actively seeking participation from the interest categories of user, general interest, and educator. To apply or obtain additional information please contact Jennifer Rosario at jrosario@aws.org. For more information, see www.aws.org.

ANSI Accredited Standards Developer

AWS - American Welding Society

The American Welding Society (AWS) A5 Committee on Filler Metals and Allied Materials is actively seeking participation from the interest categories of user, general interest, and distributor. To apply or obtain additional information please contact Kevin Bulger at kbulger@aws.org by June 30, 2026. For more information, see www.aws.org.

ANSI Accredited Standards Developer

AWS - American Welding Society

The American Welding Society (AWS) C3 Committee on Brazing and Soldering is actively seeking participation from the interest categories of user, general interest, and educator. To apply or obtain additional information please contact Kevin Bulger at kbulger@aws.org by June 30, 2026. For more information, see www.aws.org.

ANSI Accredited Standards Developer

AWS - American Welding Society

The American Welding Society (AWS) D3 Committee on Welding in Marine Construction is actively seeking participation from the interest categories of user, general interest, and educator. To apply or obtain additional information please contact Kevin Bulger at kbulger@aws.org by June 30, 2026. For more information, see www.aws.org.

ANSI Accredited Standards Developer

AWS - American Welding Society

The American Welding Society (AWS) D14 Committee on Machinery and Equipment is actively seeking participation from the interest categories of user, general interest, and educator. To apply or obtain additional information please contact Kevin Bulger at kbulger@aws.org by June 30, 2026. For more information, see www.aws.org.

ANSI Accredited Standards Developer

NCPDP - National Council for Prescription Drug Programs

National Council for Prescription Drug Programs (NCPDP)

Enrollment in the 2026 Consensus Group opens Monday, January 12, 2026 and closes at 8:00 p.m. EST on Friday, February 13, 2026. Information concerning the Consensus Group registration process is available by contacting:

Margaret Weiker
 National Council for Prescription Drug Programs
 9240 East Raintree Drive, Scottsdale, AZ 85260
 Phone: (480) 477-1000
 Email:mweiker@ncpdp.org

[Click here to view list of standards](#)

AHRI (Air-Conditioning, Heating, and Refrigeration Institute)

2311 Wilson Boulevard, Suite 400, Arlington, VA 22201 | jyeh2@ahrinet.org, www.ahrinet.org

BSR/AHRI Standard 551/591-202x (SI), Performance Rating of Water-Chilling and Heat Pump Water-Heating Packages Using the Vapor Compression Cycle (revision of ANSI/AHRI Standard 551/591-2023 (SI))

ASABE (American Society of Agricultural and Biological Engineers)

2590 Niles Road, Saint Joseph, MI 49085 | stell@asabe.org, [https://www.asabe.org/](http://www.asabe.org)

BSR/ASABE/ISO 20383-2025-202x, Tractors and machinery for agriculture Speed Identification Sign (SIS) (identical national adoption of ISO 20383:2025 and revision of ANSI/ASABE/ISO 20383-2017 OCT2019 (R2023))

ASME (American Society of Mechanical Engineers)

Two Park Avenue, M/S 6-2B, New York, NY 10016-5990 | ansibox@asme.org, www.asme.org

BSR/ASME PTC 6-202x, Steam Turbines (new standard)

ASME (American Society of Mechanical Engineers)

Two Park Avenue, M/S 6-2B, New York, NY 10016-5990 | ansibox@asme.org, www.asme.org

BSR/ASME PTC 11-2008 (R202x), Fans (reaffirmation of ANSI/ASME PTC 11-2008 (R2018))

ASME (American Society of Mechanical Engineers)

Two Park Avenue, M/S 6-2B, New York, NY 10016-5990 | ansibox@asme.org, www.asme.org

BSR/ASME PTC 12.1-2015 (R202x), Closed Feedwater Heaters (reaffirmation of ANSI/ASME PTC 12.1-2015 (R2020))

ASME (American Society of Mechanical Engineers)

Two Park Avenue, M/S 6-2B, New York, NY 10016-5990 | ansibox@asme.org, www.asme.org

BSR/ASME PTC 12.2-2010 (R202x), Steam Surface Condensers (reaffirmation of ANSI/ASME PTC 12.2-2010 (R2020))

ASME (American Society of Mechanical Engineers)

Two Park Avenue, M/S 6-2B, New York, NY 10016-5990 | ansibox@asme.org, www.asme.org

BSR/ASME PTC 19.2-2010 (R202x), Pressure Measurement (reaffirmation of ANSI/ASME PTC 19.2-2010 (R2020))

ASME (American Society of Mechanical Engineers)

Two Park Avenue, M/S 6-2B, New York, NY 10016-5990 | ansibox@asme.org, www.asme.org

BSR/ASME PTC 30.1-2007 (R202x), Air-Cooled Steam Condensers (reaffirmation of ANSI/ASME PTC 30.1-2007 (R2020))

ASME (American Society of Mechanical Engineers)

Two Park Avenue, M/S 6-2B, New York, NY 10016-5990 | ansibox@asme.org, www.asme.org

BSR/ASME PTC 30-1991 (R202x), Air-Cooled Heat Exchangers (reaffirmation of ANSI/ASME PTC 30-1991 (R2021))

ASME (American Society of Mechanical Engineers)

Two Park Avenue, M/S 6-2B, New York, NY 10016-5990 | ansibox@asme.org, www.asme.org

BSR/ASME PTC 36-2018 (R202x), Measurement of Industrial Sound (reaffirmation of ANSI/ASME PTC 36-2018)

ASME (American Society of Mechanical Engineers)

Two Park Avenue, M/S 6-2B, New York, NY 10016-5990 | ansibox@asme.org, www.asme.org

BSR/ASME PTC 39-2005 (R202x), Steam Traps (reaffirmation of ANSI/ASME PTC 39-2005 (R2020))

ASME (American Society of Mechanical Engineers)

Two Park Avenue, M/S 6-2B, New York, NY 10016-5990 | ansibox@asme.org, www.asme.org

BSR/ASME PTC 46-202x, Overall Plant Performance (revision of ANSI/ASME PTC 46-2015 (R2025))

ASSP (ASC A10) (American Society of Safety Professionals)

520 N. Northwest Hwy., Park Ridge, IL 60068 | LBauerschmidt@assp.org, www.assp.org

BSR/ASSP A10.37-202x, Debris Net Systems Used During Construction and Demolition Operations (revision and redesignation of ANSI/ASSE A10.37-2016)

ASSP (Safety) (American Society of Safety Professionals)

520 N. Northwest Highway, Park Ridge, IL 60068 | LBauerschmidt@assp.org, www.assp.org

BSR/ASSP Z310.1-202x, Risk Management - Guidelines for Assessing and Managing Risks (new standard)

AWS (American Welding Society)

8669 NW 36th Street, Suite 130, Miami, FL 33166-6672 | jrosario@aws.org, www.aws.org

BSR/AWS A1.1-202x, Metric Practice Guide for the Welding Industry (revision of ANSI/AWS A1.1-2016)

AWS (American Welding Society)

8669 NW 36th Street, Suite 130, Miami, FL 33166-6672 | kbulger@aws.org, www.aws.org

BSR/AWS A5.39/A5.39M-202x, Specification for Flux and Electrode Combinations for Submerged Arc and Electroslag Joining and Surfacing of Stainless Steel and Nickel Alloys (revision of ANSI/AWS A5.39/A5.39M-2020)

AWS (American Welding Society)

8669 NW 36th Street #130, Miami, FL 33166 | jpadron@aws.org, www.aws.org

BSR/AWS B2.1-8-318 (R202x), Standard Welding Procedure Specification for Naval Applications (SWPS-N) for Gas Tungsten Arc Welding of Austenitic Stainless Steel (S-8), 1/8 inch [3 mm] through 1-1/2 inch [38 mm] Thick, MIL-3XX, in the As-Welded Condition, Primarily Pipe for Naval Applications (reaffirmation of ANSI/AWS/NAVSEA B2.1-8-318-2016)

AWS (American Welding Society)

8669 NW 36th St, Miami, FL 3316 | acelaya@aws.org, www.aws.org

BSR/AWS C2.25/C2.25M-2012 (R202x), Specification for Thermal Spray Feedstock - Wire and Rods (reaffirmation of ANSI/AWS C2.25/C2.25M-2012 (R2018))

AWS (American Welding Society)

8669 NW 36th Street, Suite 130, Miami, FL 33166-6672 | kbulger@aws.org, www.aws.org

BSR/AWS C3.3-202x, Recommended Practices for the Design, Manufacture, and Examination of Critical Brazed Components (revision of ANSI/AWS C3.3-2008 (R2016))

AWS (American Welding Society)

8669 NW 36th Street, Suite 130, Miami, 33166-6672 | eesler@aws.org, www.aws.org

BSR/AWS D20.2/D20.2M-202x, Specification for Additive Manufacturing (AM) of Metal Components Using Wire Directed Energy Deposition (DED) (new standard)

AWS (American Welding Society)

8669 NW 36th Street #130, Miami, FL 33166 | jpadron@aws.org, www.aws.org

BSR/AWS NAVSEA B2.1-8-308 (R202x), Standard Welding Procedure Specification for Naval Applications (SWPS-N) for Gas Tungsten Arc Welding of Austenitic Stainless Steel (S-8), 1/8 inch [3 mm] through 1-1/2 inch [38 mm] Thick, MIL-3XX, in the As-Welded Condition, Primarily Plate and Structural Naval Applications (reaffirmation of ANSI/AWS/NAVSEA B2.1-8-308-2016)

FCI (Fluid Controls Institute)

1300 Sumner Avenue, Cleveland, OH 44115 | fci@fluidcontrolsinstitute.org, www.fluidcontrolsinstitute.org

BSR/FCI 99-3-202x, Standard for Back Pressure Regulator Capacity (revision of ANSI/FCI 99-3-2020)

ITI (INCITS) (InterNational Committee for Information Technology Standards)

700 K Street NW, Suite 600, Washington, DC 20001 | kquigley@itic.org, www.incits.org

INCITS 577-202x, Information Technology - Fibre Channel - Security Protocols - 3 (FC-SP-3) (new standard)

MTConnect (MTConnect Institute)

4660 Rising Fawn Dr, Douglasville, GA 30135 | mbanks@oagi.org, <http://www.amtonline.org>

BSR/MTConnect MTC2.5-202x, MTConnect Standard Version 2.6.0 (new standard)

NSF (NSF International)

789 N. Dixboro Road, Ann Arbor, MI 48105 | mmilla@nsf.org, www.nsf.org

BSR/NSF 42-202x (i136r2), Drinking Water Treatment Units - Aesthetic Effects (revision of ANSI/NSF 42-2023)

NSF (NSF International)

789 N. Dixboro Road, Ann Arbor, MI 48105-9723 | arose@nsf.org, www.nsf.org

BSR/NSF 49-202x (i207r2), Biosafety Cabinetry: Design, Construction, Performance, and Field Certification (revision of ANSI/NSF 49-2024)

NSF (NSF International)

789 N. Dixboro Road, Ann Arbor, MI 48105 | mmilla@nsf.org, www.nsf.org

BSR/NSF 53-202x (i167r2), Drinking Water Treatment Units - Health Effects (revision of ANSI/NSF 53-2024)

NSF (NSF International)

789 N. Dixboro Road, Ann Arbor, MI 48105 | mmilla@nsf.org, www.nsf.org

BSR/NSF 53-202x (i169r2), Drinking Water Treatment Units - Health Effects (revision of ANSI/NSF 53-2024)

NSF (NSF International)

789 N. Dixboro Road, Ann Arbor, MI 48105 | mmilla@nsf.org, www.nsf.org

BSR/NSF 55-202x (i68r2), Ultraviolet Microbiological Water Treatment Systems (revision of ANSI/NSF 55-2024)

NSF (NSF International)

789 N. Dixboro Road, Ann Arbor, MI 48105-9723 | ajump@nsf.org, www.nsf.org

BSR/NSF/CAN 50-202x (i220r1), 50-20XX: Equipment and Chemicals for Swimming Pools, Spas, Hot Tubs, and Other Recreational Water Facilities (revision of ANSI/NSF/CAN 50-2025)

NSF (NSF International)

789 N. Dixboro Road, Ann Arbor, MI 48105-9723 | ajump@nsf.org, www.nsf.org

BSR/NSF/CAN 50-202x (i225r1), 50-20XX: Equipment and Chemicals for Swimming Pools, Spas, Hot Tubs, and Other Recreational Water Facilities (revision of ANSI/NSF/CAN 50-2025)

NSF (NSF International)

789 N. Dixboro Road, Ann Arbor, MI 48105-9723 | ajump@nsf.org, www.nsf.org

BSR/NSF/CAN 50-202x (i232r1), 50-20XX: Equipment and Chemicals for Swimming Pools, Spas, Hot Tubs, and Other Recreational Water Facilities (revision of ANSI/NSF/CAN 50-2025)

ULSE (UL Standards and Engagement)

12 Laboratory Drive, Research Triangle Park, NC 27709-3995 | michael.niedermayer@ul.org, <https://ulse.org/>

BSR/UL 136-202x, Standard for Pressure Cookers (revision of ANSI/UL 136-2019)

American National Standards (ANS) Announcements

Transfer of ANS Maintenance by an ANSI Accredited Standards Developers

SDI (Canvass) - Steel Deck Institute

When the American Iron and Steel Institute (ANSI/SDI AISI) withdrew as an ANSI-Accredited Standards Developer on December 31, 2023 and transferred responsibility for all of its American National Standards to the Steel Deck Institute (SDI), it was expected that some of those standards would be further transferred to other standards developers.

Effective January 12, 2026, the SDI transfers the following American National Standard to the Steel Framing Industry Association (SFIA):

ANSI/SDI AISI S902-2024: Test Standard for Determining the Effective Area of Cold-Formed Steel Compression Members

For inquiries please contact: Thomas Sputo, Steel Deck Institute (SDI (Canvass)) | 3616 NW 97th Blvd, Gainesville, FL 32606 | (352) 378-0448, tsputo50@gmail.com

American National Standards (ANS) Process

Please visit ANSI's website (www.ansi.org) for resources that will help you to understand, administer and participate in the American National Standards (ANS) process. Documents posted at these links are updated periodically as new documents and guidance are developed, whenever ANS-related procedures are revised, and routinely with respect to lists of proposed and approved ANS. The main ANS-related link is www.ansi.org/asd and here are some direct links as well as highlights of information that is available:

Where to find Procedures, Guidance, Interpretations and More...

Please visit ANSI's website (www.ansi.org)

- ANSI Essential Requirements: Due process requirements for American National Standards (always current edition):
www.ansi.org/essentialrequirements
- ANSI Standards Action (weekly public review announcements of proposed ANS and standards developer accreditation applications, listing of recently approved ANS, and proposed revisions to ANS-related procedures):
www.ansi.org/standardsaction
- Accreditation information – for potential developers of American National Standards (ANS):
www.ansi.org/sdoaccreditation
- ANS Procedures, ExSC Interpretations and Guidance (including a slide deck on how to participate in the ANS process and the BSR-9 form):
www.ansi.org/asd
- Lists of ANSI-Accredited Standards Developers (ASDs), Proposed ANS and Approved ANS:
www.ansi.org/asd
- American National Standards Key Steps:
www.ansi.org/anskeysteps
- American National Standards Value:
www.ansi.org/ansvalue
- ANS Web Forms for ANSI-Accredited Standards Developers:
<https://www.ansi.org/portal/psawebforms/>
- Information about standards Incorporated by Reference (IBR):
<https://ibr.ansi.org/>
- ANSI - Education and Training:
www.standardslearn.org

Meeting Notices (Standards Developers)

ANSI Accredited Standards Developer

ASA (ASC S1) - Acoustical Society of America - Acoustics

Meeting Time: May 2026

2026 ASA Standards Spring Meeting Schedule

MAY

ASACOS and Steering meetings are being held virtually. For access via ZOOM, please contact Nancy A. Blair-DeLeon, ASA Standards Manager at nblairdeleon@acousticalsociety.org.

Meeting of ASACOS Steering: Tuesday, 5/5/2026, 11:00 AM EST, Virtual via ZOOM

Meeting of ASACOS: Tuesday, 5/5/2026, 2:00 PM EST, Virtual via ZOOM

ASA Plenary and Accredited Standards Committee meetings will be held in conjunction with the 190th Meeting of the Acoustical Society of America at the Philadelphia Marriott Downtown Hotel, Philadelphia, Pennsylvania. For more information, visit our website at <https://asastandards.org/#meetings> or email us at Standards@acousticalsociety.org.

ASA Standards Plenary Tuesday, 05/12/2026, 8:00 AM EST, Philadelphia, PA

ASC S12, Noise: Tuesday, 05/12/2026, 9:15 AM EST, Philadelphia, PA

ASC S2, Mechanical Vibration and Shock: Tuesday, 05/12/2026, 10:30 AM EST, Philadelphia, PA

ASC S3, Bioacoustics: Tuesday, 05/12/2026, 12:15 PM EST, Philadelphia, PA

ASC S3/SC1, Animal Bioacoustics: Tuesday, 05/12/2026, 1:30 PM EST, Philadelphia, PA

ASC S1, Acoustics: Tuesday, 05/12/2026, 2:45 PM EST, Philadelphia, PA

ANSI Accredited Standards Developer

ASSP (Safety) - American Society of Safety Professionals

Meeting Time: February 19, 2026, April 16, 2026

Meetings: February 19, 2026, April 16, 2026

The American Society of Safety Professionals (ASSP) is the secretariat for the ASSP Z16 Committee for Safety and Health Metrics and Performance Measures. There are two upcoming, virtual Z16 committee meetings. The first is on Thursday, February 19, 2026. The second is on Thursday, April 16, 2026. Those interested in participating can contact ASSP for additional information at L.Bauerschmidt@assp.org.

Meeting Notices (Standards Developers)

ANSI Accredited Standards Developer

B11 - B11 Standards, Inc.

Meeting Time: February 10th (8:30am-5:00pm EDT) through February 11th (8:00am – 12:00 pm EDT)

Our B11 Standards Development Committee Meeting is to be hosted at MI Metals in Oldsmar, FL from February 10th (8:30 am-5:00 pm EDT) through February 11th (8:00 am – 12:00 pm EDT). Remote attendance capabilities will be provided.

For any inquiries or Zoom access information, please contact Chris Felinski, B11 Standards, Inc. (cfelinski@b11standards.org) / 571-276-0346

American National Standards Under Continuous Maintenance

The ANSI Essential Requirements: Due Process Requirements for American National Standards provides two options for the maintenance of American National Standards (ANS): periodic maintenance (see clause 4.7.1) and continuous maintenance (see clause 4.7.2). Continuous maintenance is defined as follows:

The standard shall be maintained by an accredited standards developer. A documented program for periodic publication of revisions shall be established by the standards developer. Processing of these revisions shall be in accordance with these procedures. The published standard shall include a clear statement of the intent to consider requests for change and information on the submittal of such requests. Procedures shall be established for timely, documented consensus action on each request for change and no portion of the standard shall be excluded from the revision process. In the event that no revisions are issued for a period of four years, action to reaffirm or withdraw the standard shall be taken in accordance with the procedures contained in the ANSI Essential Requirements. The Executive Standards Council (ExSC) has determined that for standards maintained under the Continuous Maintenance option, separate PINS announcements are not required. The following ANSI Accredited Standards Developers have formally registered standards under the Continuous Maintenance option.

- AAMI (Association for the Advancement of Medical Instrumentation)
- AARST (American Association of Radon Scientists and Technologists)
- AGA (American Gas Association)
- AGSC (Auto Glass Safety Council)
- ASC X9 (Accredited Standards Committee X9, Incorporated)
- ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.)
- ASME (American Society of Mechanical Engineers)
- ASTM (ASTM International)
- GBI (Green Building Initiative)
- HL7 (Health Level Seven)
- Home Innovation (Home Innovation Research Labs)
- IAPMO (International Association of Plumbing & Mechanical Officials)
- IES (Illuminating Engineering Society)
- ITI (InterNational Committee for Information Technology Standards)
- MHI (Material Handling Industry)
- NBBPVI (National Board of Boiler and Pressure Vessel Inspectors)
- NCPDP (National Council for Prescription Drug Programs)
- NFRC (National Fenestration Rating Council)
- NISO (National Information Standards Organization)
- NSF (NSF International)
- PHTA (Pool and Hot Tub Alliance)
- RESNET (Residential Energy Services Network, Inc.)
- SAE (SAE International)
- TCNA (Tile Council of North America)
- TIA (Telecommunications Industry Association)
- TMA (The Monitoring Association)
- ULSE (UL Standards & Engagement)

To obtain additional information with regard to these standards, including contact information at the ANSI Accredited Standards Developer, please visit ANSI Online at www.ansi.org/asd, select “American National Standards Maintained Under Continuous Maintenance.” Questions? psa@ansi.org.

ANSI-Accredited Standards Developers (ASD) Contacts

The addresses listed in this section are to be used in conjunction with standards listed in PINS, Call for Comment, Call for Members and Final Actions. This section is a list of developers who have submitted standards for this issue of *Standards Action* – it is not intended to be a list of all ANSI-Accredited Standards Developers. Please send all address corrections to the PSA Department at psa@ansi.org.

AAFS

American Academy of Forensic Sciences
410 North 21st Street
Colorado Springs, CO 80904

www.aafs.org

Teresa Ambrosius
tambrosius@aafs.org

AHRI

Air-Conditioning, Heating, and Refrigeration Institute
2311 Wilson Boulevard, Suite 400
Arlington, VA 22201

www.ahrinet.org

Jerry Yeh
jyeh2@ahrinet.org

ANS

American Nuclear Society
1111 Pasquinelli Drive, Suite 350
Westmont, IL 60559

www.ans.org

Kathryn Murdoch
kmurdoch@ans.org

ASABE

American Society of Agricultural and Biological Engineers
2590 Niles Road
Saint Joseph, MI 49085

<https://www.asabe.org/>

Sadie Stell
stell@asabe.org

ASABE

American Society of Agricultural and Biological Engineers
2950 Niles Road
St. Joseph, MI 49085

<https://www.asabe.org/>

Sydney Ingeson
ingeson@asabe.org

ASME

American Society of Mechanical Engineers
Two Park Avenue, M/S 6-2B
New York, NY 10016

www.asme.org

Terrell Henry
ansibox@asme.org

ASSP (ASC A10)

American Society of Safety Professionals
520 N. Northwest Hwy.
Park Ridge, IL 60068

www.assp.org

Lauren Bauerschmidt
LBauerschmidt@assp.org

ASSP (Safety)

American Society of Safety Professionals
520 N. Northwest Highway
Park Ridge, IL 60068

www.assp.org

Lauren Bauerschmidt
LBauerschmidt@assp.org

AWS

American Welding Society
8669 NW 36th St
Miami, FL 3316

www.aws.org

Ady Celaya
acelaya@aws.org

AWS

American Welding Society
8669 NW 36th Street #130
Miami, FL 33166

www.aws.org

Jennifer Padron
jp padron@aws.org

AWS

American Welding Society
8669 NW 36th Street, Suite 130
Miami, 33166

www.aws.org

Exsenet Esler
eesler@aws.org

AWS

American Welding Society
8669 NW 36th Street, Suite 130
Miami, FL 33166

www.aws.org

Jennifer Rosario
jrosario@aws.org

Kevin Bulger
kbulger@aws.org

AWWA

American Water Works Association
6666 W. Quincy Avenue
Denver, CO 80235

www.awwa.org

Madeline Rohr
mrohr@awwa.org

CSA

CSA America Standards Inc.
8501 East Pleasant Valley Road
Cleveland, OH 44131

www.csagroup.org

Thuy Ton
ansi.contact@csagroup.org

FCI

Fluid Controls Institute
1300 Sumner Avenue
Cleveland, OH 44115

www.fluidcontrolsinstitute.org

Leslie Schraff
fci@fluidcontrolsinstitute.org

IEEE

Institute of Electrical and Electronics Engineers
445 Hoes Lane
Piscataway, NJ 08854

www.ieee.org

Suzanne Merten
s.merten@ieee.org

IEEE

Institute of Electrical and Electronics Engineers
445 Hoes Lane, 3rd Floor
Piscataway, NJ 08854

www.ieee.org

Teresa Belmont
t.belmont@ieee.org

IIAR

International Institute of All-Natural Refrigeration
1001 North Fairfax Street
Alexandria, VA 22314

www.iiar.org

Tony Lundell
tony_lundell@iiar.org

ITI (INCITS)

InterNational Committee for Information Technology Standards
700 K Street NW, Suite 600
Washington, DC 20001
www.incits.org

Kim Quigley
kquigley@itic.org

MTConnect

MTConnect Institute
4660 Rising Fawn Dr
Douglasville, GA 30135
<http://www.amtonline.org>

Michelle Banks
mbanks@oagi.org

NEMA (ASC C8)

National Electrical Manufacturers Association
1300 North 17th Street, Suite 900
Arlington, VA 22209
www.nema.org

Khaled Masri
Khaled.Masri@nema.org

NSF

NSF International
789 N. Dixboro Road
Ann Arbor, MI 48105
www.nsf.org

Allan Rose
arose@nsf.org

Amy Jump
ajump@nsf.org

Monica Milla
mmilla@nsf.org

Rachel Brooker
rbrooker@nsf.org

Shannon McCormick
smccormick@nsf.org

SIA

Security Industry Association
8455 Colesville Road, Suite 1200
Silver Spring, MD 20910
www.siaonline.org

Adom Yusuf
ayusuf@securityindustry.org

ULSE

UL Standards & Engagement
100 Queen St. Suite 1040
Ottawa, ON K1P 1
<https://ulse.org/>

ULSE

UL Standards & Engagement
100 Queen Street, Suite 1040
Ottawa, ON K1P 1
<https://ulse.org/>

Sabrina Khrebtov
sabrina.khrebtov@ul.org

ULSE

UL Standards & Engagement
12 Laboratory Drive
Research Triangle Park, NC 27709
<https://ulse.org/>

Doreen Stocker
Doreen.Stocker@ul.org

Grayson Flake
Grayson.Flake@ul.org

Michael Niedermayer
michael.niedermayer@ul.org

Vickie Hinton
Vickie.T.Hinton@ul.org

ULSE

UL Standards & Engagement
12 Laboratory Drive
Research Triangle Park, NC <https://ulse.org/>

Akhira Watson
akhira.watson@ul.org

ULSE

UL Standards & Engagement
12 Laboratory Drive
Research Triangle Park, NC 27709
<https://ulse.org/>

Adam Payrot
Adam.Payrot@ul.org

ULSE

UL Standards & Engagement
1603 Orrington Ave, Suite 2000
Evanston, IL 60201
<https://ulse.org/>

Isabella Brodzinski
isabella.brodzinski@ul.org

ULSE

UL Standards & Engagement
1603 Orrington Ave, Suite 2000
Evanston, IL 60201
<https://ulse.org/>

Dakota Sabotka
Dakota.Sabotka@UL.org

ULSE

UL Standards & Engagement
1603 Orrington Ave, Suite 2000
Evanston, IL 60201
<https://ulse.org/>

Susan Malohn
Susan.P.Malohn@ul.org

ULSE

UL Standards & Engagement
1603 Orrington Avenue
Evanston, IL 60201
<https://ulse.org/>

Vanessa Johanneson
Vanessa.Johanneson@ul.org

ULSE

UL Standards & Engagement
47173 Benicia Street
Fremont, CA 94538
<https://ulse.org/>

Derrick Martin
Derrick.L.Martin@ul.org

ULSE

UL Standards and Engagement
1603 Orrington Ave. Suite 2000
Evanston, IL 60201
<https://ulse.org/>

Thomas Fontalvo
Thomas.Fontalvo@UL.org

VITA

VMEbus International Trade Association (VITA)
929 W. Portobello Avenue
Mesa, AZ 85210
www.vita.com

Jing Kwok
jing.kwok@vita.com

ISO & IEC Draft International Standards

This section lists proposed standards that the International Organization for Standardization (ISO) and the International Electrotechnical Commission (IEC) are considering for approval. The proposals have received substantial support within the technical committees or subcommittees that developed them and are now being circulated to ISO and IEC members for comment and vote.

COMMENTS

Comments regarding ISO documents should be sent to ANSI's ISO Team (isot@ansi.org); comments on ISO documents must be submitted electronically in the approved ISO template and as a Word document as other formats will not be accepted.

Those regarding IEC documents should be sent to the USNC/IEC team at ANSI's New York offices (usnc@ansi.org). The final date for offering comments is listed after each draft.

ACCESSING ISO AND IEC DRAFTS

ISO Drafts are available for purchase via the ANSI Web Store at <https://webstore.ansi.org>. IEC Drafts can be made available by contacting ANSI's Customer Service department. Please email your request for an IEC Draft to sales@ansi.org. When making your request, please provide the date of the Standards Action issue in which the IEC Draft document you are requesting appears.

ISO Standards

Aircraft and space vehicles (TC 20)

ISO/DIS 25082-1, Space systems - Assessment of GNSS-based positioning system - Part 1: Definitions and system engineering procedures for the establishment and assessment of performances - 4/4/2026, \$125.00

Anaesthetic and respiratory equipment (TC 121)

ISO 4135:2022/DAmd 1.2, - Amendment 1: Anaesthetic and respiratory equipment - Vocabulary - Amendment 1 - 10/6/2025, \$29.00

Cranes (TC 96)

ISO/DIS 10245-4, Cranes - Limiting and indicating devices - Part 4: Jib cranes - 4/9/2026, \$40.00

Dentistry (TC 106)

ISO/DIS 7260, Dentistry - Protective filtering devices intended for use with powered polymerization activators - 4/9/2026, \$67.00

Environmental management (TC 207)

ISO/DIS 14070-1, Greenhouse Gas (GHG) emission measurements in urban environments - Part 1: GHG concentration measurements in urban atmospheres with surface-based observing networks - 4/9/2026, \$88.00

Ergonomics (TC 159)

ISO/DIS 15534-1, Ergonomic design for the safety of machinery - Part 1: Principles for determining the dimensions required for openings for whole-body access into machinery - 4/6/2026, \$58.00

ISO/DIS 15534-2, Ergonomic design for the safety of machinery - Part 2: Principles for determining the dimensions required for access openings - 4/6/2026, \$82.00

ISO/DIS 15534-3, Ergonomic design for the safety of machinery - Part 3: Anthropometric data - 4/6/2026, \$33.00

Floor coverings (TC 219)

ISO/DIS 9405, Textile floor coverings - Assessment of changes in appearance - 4/3/2026, \$46.00

Geotechnics (TC 182)

ISO/DIS 18674-9, Geotechnical investigation and testing - Geotechnical monitoring by field instrumentation - Part 9: Measurement of displacements by geodetic means - 4/4/2026, \$107.00

Governance of organizations (TC 309)

ISO/DIS 37014, Governance maturity model - Controlled groups of organizational entities - Guidance - 4/10/2026, \$107.00

Health Informatics (TC 215)

ISO/DIS 27789, Health informatics - Audit trails for electronic health records - 4/6/2026, \$112.00

Hydrogen energy technologies (TC 197)

ISO/DIS 17268-2, Gaseous hydrogen land vehicle refuelling connection devices - Part 2: Flow capacities greater than 120 g/s - 4/6/2026, \$125.00

Internal combustion engines (TC 70)

ISO/DIS 8178-4, Reciprocating internal combustion engines - Exhaust emission measurement - Part 4: Test cycles and emission calculations for different engine applications - 3/30/2026, \$258.00

Leather (TC 120)

ISO/DIS 16131, Leather - Upholstery leather characteristics - Selection of leather for furniture - 4/6/2026, \$46.00

ISO/DIS 20942, Leather - Full chrome upper leather - Specification and test methods - 4/4/2026, \$46.00

Mechanical vibration and shock (TC 108)

ISO/DIS 2631-1, Mechanical vibration and shock - Evaluation of human exposure to whole-body vibration - Part 1: General requirements - 4/6/2026, \$125.00

Optics and optical instruments (TC 172)

ISO/DIS 15362, Stereomicroscopes - Information provided to the user - 4/10/2026, \$40.00

Pigments, dyestuffs and extenders (TC 256)

ISO/DIS 18451-1, Pigments, dyestuffs and extenders - Vocabulary - Part 1: General terms - 4/9/2026, \$82.00

ISO/DIS 18451-2, Pigments, dyestuffs and extenders - Vocabulary - Part 2: Classification of colouring materials according to colouristic and chemical aspects - 4/9/2026, \$67.00

Plastics (TC 61)

ISO/DIS 178, Plastics - Determination of flexural properties - 4/10/2026, \$88.00

ISO/DIS 25795, Plastics - Determination of fracture toughness (Jlc) - The load separation criterion-based method - 4/10/2026, \$82.00

Plastics pipes, fittings and valves for the transport of fluids (TC 138)

ISO/DIS 15494.2, Plastics piping systems for industrial applications - Polybutene (PB), polyethylene (PE), polyethylene of raised temperature resistance (PE-RT), crosslinked polyethylene (PE-X), polypropylene (PP) - Metric series for specifications for components and the system - 6/20/2025, \$165.00

ISO/DIS 4433-1, Thermoplastics piping systems - Preliminary evaluation of the resistance to chemicals - Part 1: Test method - 4/4/2026, \$67.00

Project, programme and portfolio management (TC 258)

ISO 21512:2024/DAm 1, - Amendment 1: Project, programme and portfolio management - Earned value management implementation guidance - Amendment 1 - 4/4/2026, \$29.00

ISO/DIS 21511, Project, programme and portfolio management - Work breakdown structures - 4/2/2026, \$77.00

Road vehicles (TC 22)

ISO/DIS 13228, Road vehicles - Test method for automotive LiDAR - 4/2/2026, \$112.00

Rubber and rubber products (TC 45)

ISO/DIS 48-10, Rubber, vulcanized or thermoplastic - Determination of hardness - Part 10: Measurements at other than standard temperatures - 4/6/2026, \$53.00

ISO/DIS 7617-3.2, Plastics-coated fabrics for upholstery - Part 3: Specification for polyurethane-coated woven fabrics - 8/4/2025, \$53.00

Sharing economy (TC 324)

ISO/DIS 42501, Sharing economy - General trustworthiness and safety requirements for digital platforms - 4/4/2026, \$62.00

Springs (TC 227)

ISO/DIS 16249, Springs - Symbols - 4/9/2026, \$93.00

Timber structures (TC 165)

ISO/DIS 12578, Timber structures - Glued laminated timber - Component performance requirements - 4/3/2026, \$62.00

ISO/DIS 22390, Timber structures - Laminated veneer lumber - Structural properties - 4/9/2026, \$53.00

Water quality (TC 147)

ISO/DIS 22125-1, Water quality - Technetium-99 - Part 1: Test method using liquid scintillation counting - 4/9/2026, \$88.00

ISO/IEC JTC 1, Information Technology

ISO/IEC DIS 5962, Information technology - SPDX® Specification V3.0 - 4/9/2026, \$203.00

ISO/IEC DIS 25023, Systems and software engineering - Systems and software Quality Requirements and Evaluation (SQuaRE) - Measurement of product quality - 4/9/2026, \$134.00

ISO/IEC DIS 4922-3, Information security - Secure multiparty computation - Part 3: Mechanisms based on garbled circuits - 4/9/2026, \$77.00

IEC Standards

All-or-nothing electrical relays (TC 94)

94/1183/FDIS, IEC 63522-19 ED1: Electrical relays - Tests and measurements - Part 19: Electrical endurance, 02/27/2026

Audio, video and multimedia systems and equipment (TC 100)

100/4439/CD, IEC TS 63625 ED1: Synchronization of metadata in the content delivery chain, 04/10/2026

Automatic controls for household use (TC 72)

72/1524(F)/FDIS, IEC 60730-2-15 ED4: Automatic electrical controls - Part 2-15: Particular requirements for automatic electrical air flow, water flow and water level sensing controls, 02/06/2026

Cables, wires, waveguides, r.f. connectors, and accessories for communication and signalling (TC 46)

46F/738/FDIS, IEC 61169-1-3 ED1: Radio-frequency connectors - Part 1-3: Electrical test methods - Surge withstand - Surge protective devices built in a coaxial connector - Performance requirements and testing methods, 02/27/2026

46/1075/CDV, IEC 62037-7 ED2: Passive RF and microwave devices, intermodulation level measurement - Part 7: Field measurements of passive intermodulation, 04/10/2026

Electric welding (TC 26)

26/780(F)/FDIS, Withdrawn, 02/27/2026

Electrical accessories (TC 23)

23B/1596/CDV, IEC 60669-2-1 ED6: Switches for household and similar fixed electrical installations - Part 2-1: Particular requirements - Electronic control devices, 04/10/2026

23H/592/FDIS, IEC 63066 ED1: Low-voltage docking connectors for removable energy storage units, 02/27/2026

23E/1414/FDIS, IEC 63508 ED1: CDD Database - Circuit-breakers and similar equipment for household use, 02/27/2026

23K/133/FDIS, IEC 63552 ED1: Switching device for islanding (SDFI), 02/27/2026

Electrical equipment in medical practice (TC 62)

62B/1406/NP, PNW 62B-1406 ED1: Medical electrical equipment - Medical image display systems - Part 4: Acceptance and constancy tests for colour medical image displays, 04/10/2026

Electrical installations of buildings (TC 64)

64/2815/FDIS, IEC 60364-8-82/AMD1 ED1: Amendment 1 - Low-voltage electrical installations - Part 8-82: Functional aspects - Prosumer's low-voltage electrical installations, 02/27/2026

Electroacoustics (TC 29)

29/1227/CDV, IEC 60601-2-66 ED4: Medical electrical equipment - Part 2-66: Particular requirements for the basic safety and essential performance of hearing aids and hearing aid systems, 04/10/2026

Fibre optics (TC 86)

86B/5180/FDIS, IEC 61753-021-03 ED1: Fibre optic interconnecting devices and passive components - Performance standard - Part 021-03: Single-mode fibre optic connectors terminated as pigtails and patchcords for category OP - Outdoor protected environment, 02/27/2026

86B/5169/CDV, IEC 61755-2-4 ED2: Fibre optic interconnecting devices and passive components - Connector optical interfaces - Part 2-4: Connection parameters of non-dispersion shifted single-mode physically contacting fibres - Non-angled for reference connection applications, 04/10/2026

86B/5168/CDV, IEC 63267-3-1 ED1: Fibre optic interconnecting devices and passive components - Connector optical interfaces for enhanced macrobend multimode fibres - Part 3-1: Connector parameters of physically contacting 50 µm core diameter fibres - Non-angled 2,5 mm and 1,25 mm diameter cylindrical full zirconia ferrules, 04/10/2026

86B/5167/CDV, IEC 63647-1 ED1: Fibre optic interconnecting devices and passive components - Performance Standard for Railway Rolling Stock Application - Part 1: General and Guidance, 04/10/2026

86B/5186/CD, IEC 63698-1 ED1: Fibre optic interconnecting devices and passive components - Performance standard for automotive applications - Part 1: General and guidance, 03/13/2026

Fire hazard testing (TC 89)

89/1641/CDV, IEC 60695-5-2 ED2: Fire hazard testing - Part 5-2: Corrosion damage effects of fire effluent - Summary and relevance of test methods, 04/10/2026

Flat Panel Display Devices (TC 110)

110/1826/CD, IEC 63145-30 ED1: Eyewear display - Part 30: Durability test methods, 03/13/2026

Hydraulic turbines (TC 4)

4/544/FDIS, IEC 63230 ED1: Fatigue assessment of hydraulic turbine runners: from design to quality assurance, 02/27/2026

Lightning protection (TC 81)

81/804/CD, IEC 62858 ED3: Lightning density based on lightning location systems - General principles, 03/13/2026

Measuring equipment for electromagnetic quantities (TC 85)

85/988/FDIS, IEC 62792 ED2: Measurement method for the output of electroshock weapons, 02/27/2026

Methods for the Assessment of Electric, Magnetic and Electromagnetic Fields Associated with Human Exposure (TC 106)

106/730/CD, IEC/IEEE PAS 62209-5 ED1: Methods for validation of SAR measurement systems for hand-held and body-mounted wireless communication devices (Frequency range of 4 MHz to 10 GHz), 03/13/2026

Nuclear instrumentation (TC 45)

45B/1107/CD, IEC 62523 ED2: Radiation protection instrumentation - Cargo/vehicle radiographic inspection system, 03/13/2026

Power electronics (TC 22)

22E/302/CD, IEC 63532 ED1: INTERLINK CONVERTER (ILC) connecting AC and DC distribution systems - Safety and Performance Requirements, 03/13/2026

Power transformers (TC 14)

14/1204/FDIS, IEC 60076-4 ED2: Power transformers - Part 4: Lightning impulse and switching impulse tests of power transformers and reactors, 02/27/2026

Primary cells and batteries (TC 35)

35/1590(F)/FDIS, IEC 60086-1 ED14: Primary batteries - Part 1: General, 01/30/2026

35/1591(F)/FDIS, IEC 60086-2-1 ED1: Primary batteries - Part 2 -1: Physical and electrical specifications of batteries with aqueous electrolyte, 01/30/2026

35/1593/CD, IEC 60086-6 ED2: Primary batteries - Part 6: Guidance on environmental aspects, 04/10/2026

Printed Electronics (TC 119)

119/566/CDV, IEC 62899-202-14 ED1: Printed electronics - Part 202-14: Materials - Measurement methods for conductive ink properties specific to screen printing, 04/10/2026

119/570/NP, PNW 119-570 ED1: Electrical Performance of Writable Conductive Inks for Pens, 04/10/2026

Semiconductor devices (TC 47)

47E/887/FDIS, IEC 60747-16-11 ED1: Semiconductor devices - Part 16-11: Microwave integrated circuits - Power detectors, 02/27/2026

47E/888/CD, IEC 60747-5-6/AMD1 ED2: Amendment 1 - Semiconductor devices - Part 5-6: Optoelectronic devices - Light emitting diodes, 03/13/2026

Solar photovoltaic energy systems (TC 82)

82/2564/DTS, IEC TS 63092-3 ED1: Photovoltaics in buildings - Part 3: Determination methodology for the solar heat gain coefficient of building-integrated photovoltaic modules, 03/13/2026

Standard voltages, current ratings and frequencies (TC 8)

8B/281/CD, IEC TS 62898-5 ED1: Guidelines for the operation and control of microgrid clusters, 03/13/2026

(TC)

CIS/F/914/CDV, CISPR 14-2/AMD1 ED3: Amendment 1 - Electromagnetic compatibility - Requirements for household appliances, electric tools and similar apparatus - Part 2: Immunity - Product family standard, 04/10/2026

(TC 129)

129/59/DTR, IEC TR 63439-1-2 ED1: Robotics for electricity generation, transmission and distribution systems -Part 1-2: State-of-the art and standardization roadmap for electric power system robots, 03/13/2026

Terminology (TC 1)

1/2715/FDIS, IEC 60050-193 ED1: International Electrotechnical Vocabulary (IEV) - Part 193: Circular economy and material efficiency, 02/27/2026

ISO/IEC JTC 1, Information Technology

(TC)

JTC1-SC25/3345/CDV, ISO/IEC 11801-6/AMD1 ED1: Amendment 1 - Information technology - Generic cabling for customer premises - Part 6: Distributed building services, 04/10/2026

JTC1-SC41/574/CD, ISO/IEC 30152 ED1: IoT and digital twins - Guidance on the connection to data spaces, 04/10/2026

Newly Published ISO & IEC Standards

Listed here are new and revised standards recently approved and promulgated by ISO - the International Organization for Standardization – and IEC – the International Electrotechnical Commission. Most are available at the ANSI Electronic Standards Store (ESS) at www.ansi.org. All paper copies are available from Standards resellers (<http://webstore.ansi.org/faq.aspx#resellers>).

ISO Standards

Agricultural food products (TC 34)

[ISO 7889:2026](#), Yoghurt - Enumeration of characteristic microorganisms - Colony-count technique, \$143.00

[ISO 16958:2026](#), Milk, milk products, infant formula and adult nutritionals - Determination of fatty acids composition - Capillary gas chromatographic method, \$258.00

[ISO 19615:2026](#), Meat and fish products - Determination of total volatile basic nitrogen - Semi-micro nitrogen determination method, \$96.00

[ISO 19643:2026](#), Meat and meat products - Determination of nitrite and nitrate content - Continuous flow analysis (CFA) method, \$96.00

[ISO 24914:2026](#), Microbiology of the food chain - Loop-mediated isothermal amplification (LAMP) for the detection of microorganisms and associated genetic markers - General requirements and definitions, \$143.00

Air quality (TC 146)

[ISO 22262-2:2026](#), Air quality - Bulk materials - Part 2: Quantitative determination of asbestos by gravimetric and microscopical methods, \$258.00

Building construction (TC 59)

[ISO 19067:2026](#), Building and civil engineering sealants - Determination of changes in colour after laboratory accelerated weathering procedures, \$96.00

Building environment design (TC 205)

[ISO 24359-1:2026](#), Building commissioning process planning - Part 1: New buildings, \$227.00

Chain of custody - General terminology and models (TC 308)

[ISO 22095:2020/Amd 1:2026](#), - Amendment 1: Chain of custody - General terminology and models - Amendment 1, \$26.00

Concrete, reinforced concrete and pre-stressed concrete (TC 71)

[ISO 18319-1:2026](#), Fibre-reinforced polymer (FRP) reinforcement for concrete structures - Part 1: Specifications of FRP sheets, \$63.00

Equipment for fire protection and fire fighting (TC 21)

[ISO 21927-6:2026](#), Smoke and heat control systems - Part 6: Specification for pressure differential systems, \$291.00

Fire safety (TC 92)

[ISO 11925-2:2026](#), Reaction to fire tests - Ignitability of products subjected to direct impingement of flame - Part 2: Single-flame source test, \$227.00

Industrial automation systems and integration (TC 184)

[ISO 8000-119:2026](#), Data quality - Part 119: Application of ISO 8000-115 to transport unit identifiers, \$63.00

Occupational health and safety management systems (TC 283)

[ISO/PAS 45007:2026](#), Occupational health and safety management - Risks arising from climate change and climate change action - Guidance for organizations, \$227.00

Optics and optical instruments (TC 172)

[ISO 11986:2026](#), Ophthalmic optics - Contact lenses and contact lens care products - Determination of preservative uptake and release, \$63.00

[ISO 11987:2026](#), Ophthalmic optics - Contact lenses - Determination of shelf-life, \$96.00

Plastics (TC 61)

[ISO 294-5:2026](#), Plastics - Injection moulding of test specimens of thermoplastic materials - Part 5: Preparation of standard specimens for investigating anisotropy, \$63.00

Powder metallurgy (TC 119)

[ISO 3325:2026](#), Sintered metal materials, excluding hardmetals - Determination of transverse rupture strength, \$63.00

Project, programme and portfolio management (TC 258)

[ISO 21513:2026](#), Project, programme and portfolio management - Guidance on post-project and post-programme evaluation, \$193.00

Road vehicles (TC 22)

[ISO 10604:2026](#), Road vehicles - Measuring procedure for aiming of luminous beams of front lighting devices, \$143.00

[ISO 18581:2026](#), Compressed natural gas (CNG) and liquefied natural gas (LNG) equipment and accessories - CNG and LNG propulsion systems for small craft - Installation requirements, \$227.00

[ISO 15830-2:2022/Amd 1:2026](#), - Amendment 1: Road vehicles - Design and performance specifications for the WorldSID 50th percentile male side-impact dummy - Part 2: Mechanical subsystems - Amendment 1: Head centre of gravity, \$26.00

Rubber and rubber products (TC 45)

[ISO 1436:2026](#), Rubber hoses and hose assemblies - Wire-braid-reinforced hydraulic types for oil-based or water-based fluids - Specification, \$143.00

Ships and marine technology (TC 8)

[ISO 18962:2026](#), Ships and marine technology - Installation and operational requirements for swappable batteries on ships, \$63.00

(TC 340)

[ISO 16923:2026](#), Natural gas fuelling stations - Compressed natural gas (CNG) stations for fuelling vehicles, \$258.00

[ISO 16924:2026](#), Natural gas fuelling stations - Liquefied natural gas (LNG) stations for fuelling road vehicles, \$324.00

Thermal insulation (TC 163)

[ISO 20812:2026](#), Thermal insulation products for buildings - Cellular glass products - Specification, \$96.00

Tourism and related services (TC 228)

[ISO 18060:2026](#), Sustainable tourism - Indicators for organizations in the tourism value chain - Requirements and guidance for use, \$227.00

ISO Technical Reports

Health Informatics (TC 215)

[ISO/TR 4419:2026](#), Health informatics - Pathways for human-computer interaction in electronic health information record systems to reduce clinician burden, \$193.00

Transport information and control systems (TC 204)

[ISO/TR 17739-1:2026](#), Intelligent transport systems - Roadside infrastructure supported location-based services on nomadic and mobile devices for urban connected automated mobility - Part 1: General information and use case definition, \$258.00

ISO Technical Specifications

Nanotechnologies (TC 229)

[ISO/TS 11353:2026](#), Nanotechnologies - A test method for detection of nano-object(s) release from mask media, \$193.00

ISO/IEC JTC 1, Information Technology

[ISO/IEC 9995-1:2026](#), Information technology - Keyboard layouts for text and office systems - Part 1: General principles governing keyboard layouts, \$143.00

[ISO/IEC 19896-2:2026](#), Information security, cybersecurity and privacy protection - Requirements for the competence of IT security conformance assessment body personnel - Part 2: Knowledge and skills requirements for testers and validators according to ISO/IEC 19790 and ISO/IEC 24759, \$143.00

[ISO/IEC 30134-2:2026](#), Information technology - Data centres key performance indicators - Part 2: Power usage effectiveness (PUE), \$227.00

[ISO/IEC 9995-11:2026](#), Information technology - Keyboard layouts for office systems - Part 11: Functionality and labelling of dead keys, \$96.00

[ISO/IEC/IEEE 8802-1AX:2021](#), Telecommunications and exchange between information technology systems - Requirements for local and metropolitan area networks - Part 1AX: Link aggregation, \$324.00

IEC Standards

Laser equipment (TC 76)

[IEC 60825-SER Ed. 1.0 b:2026](#), Safety of laser products - ALL PARTS, \$4662.00

Other

[CISPR/TR 30-3 Ed. 1.0 en:2026](#), Test method on electromagnetic emissions - Part 3: Electronic control gear for LED light sources - Built-in control gear, \$228.00

Rotating machinery (TC 2)

[IEC 60034-SER Ed. 1.0 b:2026](#), Rotating electrical machines - ALL PARTS, \$15280.00

[IEC 60034-26 Ed. 2.0 en:2026](#), Rotating electrical machines - Part 26: Effects of unbalanced voltages on the performance of three-phase cage induction motors, \$57.00

[IEC 60034-26 Ed. 2.0 b:2026](#), Rotating electrical machines - Part 26: Effects of unbalanced voltages on the performance of three-phase cage induction motors, \$57.00

[S+ IEC 60034-26 Ed. 2.0 en:2026 \(Redline version\)](#), Rotating electrical machines - Part 26: Effects of unbalanced voltages on the performance of three-phase cage induction motors, \$97.00

International Electrotechnical Commission (IEC)

CALL FOR MEMBERS – USNC TAG to IEC/TC 94

The USNC Technical Advisory Group (TAG) to IEC/TC 94 would like to grow its membership. Individuals who are interested in joining the USNC TAG to IEC/TC 94 are invited to contact Suhey Estevez at SEstevez@ansi.org as soon as possible.

Please see the scope for the IEC/ TC 94 below:

Scope: TC 94 - Electrical relays

Standardization

- to prepare international standards applicable to electromechanical and solid state electrical relays (e.g. electromechanical relays, solid state relay, reed contacts, reed switches, reed relay, time relays and technology combinations of these) used in the various fields of electrical Engineering.
- products covered by the scope are elementary relays (e.g. electromechanical relays, solid state relays, coupling relays, reed relays), reed contacts, reed switches, time relays and technology combinations of these.
- electrical relays are normally produced in very large numbers as components of electromechanical or electronic equipment and eventually submitted to Quality Assurance requirements based on sampling techniques.
- excluded from TC 94 scope are all devices covered by standards of TC 95 (Measuring relays and protection equipment)

Registration of Organization Names in the United States

The Procedures for Registration of Organization Names in the United States of America (document ISSB 989) require that alphanumeric organization names be subject to a 90-day Public Review period prior to registration. For further information, please contact the Registration Coordinator at (212) 642-4975.

When organization names are submitted to ANSI for registration, they will be listed here alphabetically.

Alphanumeric names appearing for the first time are printed in bold type. Names with confidential contact information, as requested by the organization, list only public review dates.

Public Review

NOTE: Challenged alphanumeric names are underlined. The Procedures for Registration provide for a challenge process, which follows in brief. For complete details, see Section 6.4 of the Procedures.

A challenge is initiated when a letter from an interested entity is received by the Registration Coordinator. The letter shall identify the alphanumeric organization name being challenged and state the rationale supporting the challenge. A challenge fee shall accompany the letter. After receipt of the challenge, the alphanumeric organization name shall be marked as challenged in the Public Review list. The Registration Coordinator shall take no further action to register the challenged name until the challenge is resolved among the disputing parties.

Proposed Foreign Government Regulations

Call for Comment

U.S. manufacturers, exporters, trade associations, U.S. domiciled standards development organizations and conformity assessment bodies, consumers, or U.S. government agencies may be interested in proposed foreign technical regulations notified by Member countries of the World Trade Organization (WTO). In accordance with the WTO Agreement on Technical Barriers to Trade (TBT Agreement), Members are required to notify to the WTO Secretariat in Geneva, Switzerland proposed technical regulations that may significantly affect trade. In turn, the Secretariat circulates the notifications along with the full texts. The purpose of the notification requirement is to provide global trading partners with an opportunity to review and comment on the regulations before they become final. The USA Enquiry Point for the WTO TBT Agreement is located at the National Institute of Standards and Technology (NIST) in the Standards Coordination Office (SCO). The Enquiry Point relies on the WTO's ePing SPS&TBT platform to distribute the notified proposed foreign technical regulations (notifications) and their full texts available to U.S. stakeholders. Interested U.S. parties can register with ePing to receive e-mail alerts when notifications are added from countries and industry sectors of interest to them. The USA WTO TBT Enquiry Point is the official channel for distributing U.S. comments to the network of WTO TBT Enquiry Points around the world. U.S. business contacts interested in commenting on the notifications are asked to review the comment guidance prior to submitting comments. For non-notified foreign technical barriers to trade for non-agricultural products, stakeholders are encouraged to reach out as early as possible to the Office of Trade Agreements Negotiations and Compliance (TANC) in the International Trade Administration (ITA) at the Department of Commerce (DOC), which specializes in working with U.S. stakeholders to remove unfair foreign government-imposed trade barriers. The U.S. Department of Agriculture's Foreign Agricultural Service actively represents the interests of U.S. agriculture in the WTO committees on Agriculture, Sanitary and Phytosanitary (SPS) measures and Technical Barriers to Trade (TBT). FAS alerts exporters to expected changes in foreign regulations concerning food and beverage and nutrition labeling requirements, food packaging requirements, and various other agriculture and food related trade matters. Working with other Federal agencies and the private sector, FAS coordinates the development and finalization of comments on measures proposed by foreign governments to influence their development and minimize the impact on U.S. agriculture exports. FAS also contributes to the negotiation and enforcement of free trade agreements and provides information about tracking regulatory changes by WTO Members. The Office of the United States Trade Representative (USTR) WTO & Multilateral Affairs (WAMA) office has responsibility for trade discussions and negotiations, as well as policy coordination, on issues related technical barriers to trade and standards-related activities.

Online Resources:

WTO's ePing SPS&TBT platform: <https://epingalert.org/>

Register for ePing: <https://epingalert.org/en/Account/Registration>

WTO committee on Agriculture, Sanitary and Phytosanitary (SPS) measures:

https://www.wto.org/english/tratop_e/sps_e/sps_e.htm

WTO Committee on Technical Barriers to Trade (TBT): https://www.wto.org/english/tratop_e/tbt_e/tbt_e.htm

USA TBT Enquiry Point: <https://www.nist.gov/standardsgov/usa-wto-tbt-enquiry-point>

Comment guidance:

<https://www.nist.gov/standardsgov/guidance-us-stakeholders-commenting-notifications-made-wto-members-tbt-committee>

NIST: <https://www.nist.gov/>

TANC: <https://www.trade.gov/office-trade-agreements-negotiation-and-compliance-tanc>

Examples of TBTs: https://tcc.export.gov/report_a_barrier/trade_barrier_examples/index.asp.

Report Trade Barriers: https://tcc.export.gov/Report_a_Barrier/index.asp.

USDA FAS: <https://www.fas.usda.gov/about-fas>

FAS contribution to free trade agreements: <https://www.fas.usda.gov/topics/trade-policy/trade-agreements>

Tracking regulatory changes: <https://www.fas.usda.gov/tracking-regulatory-changes-wto-members>

USTR WAMA: <https://ustr.gov/trade-agreements/wto-multilateral-affairs/wto-issues/technical-barriers-trade>

Contact the USA TBT Enquiry Point at (301) 975-2918; E usatbtep@nist.gov or notifyus@nist.gov.

Appeals Activity Summary

2025 Appeal and Complaint Decisions Issued

Below is a summary of appeal and complaint decisions issued in 2025. Questions may be directed to psa@ansi.org.

ANSI Board of Standards Review (BSR) Appeals

The ANSI Board of Standards Review did not issue any appeals decisions in 2025.

ANSI Executive Standards Council (ExSC) Appeals and Complaints

1. Complaint filed by Mr. Ivanov, Impulse Storm Ltd., against NFPA, challenging NFPA's approval, as an ANSI Audited Designator, of NFPA 2010-2025 *Standard for Fixed Aerosol Fire-Extinguishing Systems* as an American National Standard (ANS). Complaint dismissed.

ANSI Appeals Board Appeals

The ANSI Appeals Board did not issue any appeals decisions in 2025.

U.S. National Committee (USNC) to the IEC Appeals

1. Appeal filed on behalf of Mr. Dunn and Mr. Sands with the USNC Council of the USNC TMC's decision dismissing an appeal of actions taken by the International Society of Automation (ISA), a USNC TMC-appointed USNC TAG Administrator. Appeal dismissed.

IIAR HC-202x

Safety Standard for Closed-Circuit Refrigeration Systems Utilizing Hydrocarbon Refrigerants

IIAR HC Public Review #4 Draft

Only **struck-through** [(removals) e.g., ~~heat~~]
or **underlined** [(additions) e.g., mixtures]
can be commented on.

International Institute of All-Natural Refrigeration

1001 North Fairfax Street, Suite 503

Alexandria, VA 22314

Phone: (703) 312-4200

Fax: (703) 312-0065

www.iiar.org

Safety Standard for Closed-Circuit Refrigeration Systems Utilizing Hydrocarbon Refrigerants

Chapter 6. Machinery Rooms

6.14.7 Emergency Ventilation

6.14.7.1 *Emergency mechanical ventilation systems shall provide airflow not less than the quantity obtained by the following equation ~~or 15 air changes per hour based on the gross machinery room volume, whichever is greater.~~

$$Q = 100 \sqrt{G}$$

Where:

Q Airflow rate (ft³/min)

G Mass of refrigerant charge (lbs.) in the largest independent refrigeration circuit of the system, any part of which is in the machinery room.

~~EXCEPTION: Where not prohibited by the AHJ, emergency mechanical ventilation shall not be required for a refrigeration system has a refrigerant charge less than 150 grams.~~

Chapter 13. Refrigerant Detection and Alarms

13.3 Design and Testing. Hydrocarbon detectors shall be listed or ~~approved for the gas being monitored and calibrated in accordance with manufacturer's instructions.~~ certified, either individually, or as part of refrigeration equipment or a subassembly, by an approved nationally recognized testing laboratory for the gas being monitored and calibrated in accordance with manufacturer's instructions..

(Informative) Appendix A:

A.6.14.7.1 ~~The refrigerant charge limit of 150 grams is based on UL 60355-89.~~

A.12.3.1 An example of a sensing device that should be designed to fail safe is a ~~high liquid level shutdown system that is designed to prevent the carryover of liquid refrigerant to compressors. If the high liquid level shutdown system were to fail, a control should be activated to cause the associated compressors to shut down until the failed component is repaired or replaced.~~ Level 1 hydrocarbon detection system. If a Level 1 detection system were to fail, an alarm that reports to a monitored location should be activated until the failed component is repaired or replaced.

[Note – The recommended changes to the standard which include the current text of the relevant section(s) indicate deletions by use of ~~strikeout~~ and additions by gray highlighting. Rationale statements are in *italics* and only used to add clarity; these statements will NOT be in the finished publication.]

NSF/ANSI 42:

Drinking Water Treatment Units — Aesthetic Effects

4 Materials

4.2 Materials evaluation

4.2.3 Exposure

4.2.3.1 The system or component(s) of a system shall be installed, flushed, ~~and conditioned, and~~ operated in accordance with the manufacturer's instructions using the exposure water specified in Section 4.2.2 at an initial inlet static pressure of 340 kPa (50 psig). Nonpressurized systems, e.g., pour through products, shall be exposed at atmospheric pressure. ~~If it is determined during the initial flush that the manufacturer's instructions take longer than 4 hrs to complete, then the daily water changes after sample collection shall be one unit volume.~~

4.2.3.2 The system or component(s) shall be refilled with the exposure water specified in Section 4.2.2 and maintained for 24 h at a temperature of 23 ± 2 °C (73 ± 3 °F). A water sample shall then be collected in accordance with Section 4.2.3.3. The system or component(s) shall be flushed according to ~~Section 4.2.3.1 the manufacturer's instructions~~, refilled, and maintained for another 24 h at a temperature of 23 ± 2 °C (73 ± 3 °F). A second water sample shall be collected in accordance with Section 4.2.3.3. The system or component(s) shall again be flushed according to ~~Section 4.2.3.1 the manufacturer's instructions~~, refilled, and maintained for a third period of 24 h at a temperature of 23 ± 2 °C (73 ± 3 °F). A third water sample shall be collected in accordance with Section 4.2.3.3.

~~For pour through systems with media, the water sample shall be collected from the product reservoir only. For pour through systems without media, the water sample shall be collected by emptying both the raw and product water storage reservoirs completely and then sub-sampling.~~

NSF/ANSI 53:

Drinking Water Treatment Units — Health Effects

4 Materials

4.2 Materials evaluation

4.2.3 Exposure

4.2.3.1 The system or component(s) of a system shall be installed, flushed, and conditioned, and operated in accordance with the manufacturer's instructions using the exposure water specified in Section 4.2.2 at an initial inlet static pressure of 340 kPa (50 psig). Nonpressurized systems, e.g. pour through products, shall be exposed at atmospheric pressure. If it is determined during the initial flush that the manufacturer's instructions take longer than 4 hrs to complete, then the daily water changes after sample collection shall be one unit volume.

4.2.3.2 The system or component(s) shall be refilled with the exposure water specified in Section 4.2.2 and maintained for 24 h at a temperature of 23 ± 2 °C (73 ± 3 °F). A water sample shall then be collected in accordance with Section 4.2.3.3. The system or component(s) shall be flushed according to Section 4.2.3.1 the manufacturer's instructions, refilled, and maintained for another 24 h at a temperature of 23 ± 2 °C (73 ± 3 °F). A second water sample shall be collected in accordance with Section 4.2.3.3. The system or component(s) shall again be flushed according to Section 4.2.3.1 the manufacturer's instructions, refilled, and maintained for a third period of 24 h at a temperature of 23 ± 2 °C (73 ± 3 °F). A third water sample shall be collected in accordance with Section 4.2.3.3.

For pour through systems with media, the water sample shall be collected from the product reservoir only. For pour through systems without media, the water sample shall be collected by emptying both the raw and product water storage reservoirs completely and then sub-sampling.

NSF/ANSI 55:

Ultraviolet Microbiological Water Treatment Systems

4 Materials

4.2 Materials evaluation

4.2.3 Exposure

The lamp shall be on during exposure testing, when appropriate.

4.2.3.1 The system or component(s) of a system shall be installed, flushed, and conditioned, and operated in accordance with the manufacturer's instructions using the exposure water specified in Section 4.2.2 at an initial inlet static pressure of 340 kPa (49 psig). If it is determined during the initial flush that the manufacturer's instructions take longer than 4 hrs to complete, then the daily water changes after sample collection shall be one unit volume.

4.2.3.2 The system or component(s) shall be refilled with the exposure water specified in Section 4.2.2 and maintained for 24 h at a temperature of 23 ± 2 °C (73 ± 4 °F). A water sample shall then be collected in accordance with Section 4.2.3.3. The system or component(s) shall be flushed according to Section 4.2.3.1 the manufacturer's instructions, refilled, and maintained for another 24 h at a temperature of 23 ± 2 °C (73 ± 4 °F). A second water sample shall be collected in accordance with Section 4.2.3.3. The system or component(s) shall again be flushed according to Section 4.2.3.1 the manufacturer's instructions, refilled, and maintained for a third period of 24 h at a temperature of 23 ± 2 °C (73 ± 4 °F). A third water sample shall be collected in accordance with Section 4.2.3.3.

For pour through systems with media, the water sample shall be collected from the product reservoir only. For pour through systems without media, the water sample shall be collected by emptying both the raw and product water storage reservoirs completely and then sub-sampling.

Rationale: *Systems with longer flushing instructions could be exposed longer than 24 h as specified in the current standard, which could affect contaminant leaching during the exposure period. The proposed language clarifies that for material evaluation in NSF/ANSI 42, 53, and 55, products with longer flushes will have water changed daily, but the full flushing instructions may not be performed in order to maintain the 24h exposure.*

Not for publication. This document is part of the NSF standard development process. This draft text is for circulation for review and/or approval by an NSF Standards Committee and has not been published or otherwise officially adopted. All rights reserved. This document may be reproduced for informational purposes only.

[Note – the recommended changes to the standard which include the current text of the relevant section(s) indicate deletions by use of ~~strikeout~~ and additions by ~~grey highlighting~~. Rationale Statements are in *italics* and only used to add clarity; these statements will NOT be in the finished publication.]

NSF/ANSI/CAN Standard
for Water Systems -

Equipment and Chemicals for Swimming Pools, Spas, Hot Tubs, and other Recreational Water Facilities

.

.

20 Water quality testing devices

.

.

.

20.2.6 Reagent shelf life

.

.

.

The shelf life for the reagents and components of a colorimeter/titrator/spectrophotometer, test strip, and similar WQTD shall be at least as long as specified by the manufacturer when the reagents and components are tested in accordance with Section [N-11.15](#).

When tested with reagents and components stored for the manufacturer specified shelf life (± 2 wk), the accuracy, and repeatability of the WQTD shall meet the requirements of Annex [N-11](#).

After initial testing of the WQTD, it shall be stored in accordance with the manufacturer's instructions and retested at the manufacturer's prescribed shelf life (± 2 wk) for compliance to these requirements in Section [20](#) and Annex [N-11](#).

For WQTD reagents and components with a manufacturer's shelf life claim of greater than two years, intermediate shelf life testing shall be performed in accordance with Section N-11.15. Testing shall be performed at 1 year shelf life (± 2 wk) and at the manufacturer's prescribed shelf life (± 2 wk).

For reagent based WQTD devices intended for permanent outdoor installation:

- As described above, the reagents shall be stored for the manufacturer specified shelf life (± 2 wk), then tested for accuracy, and repeatability to the requirements of Annex [N-11](#).
- An additional test for accuracy and repeatability shall be performed on reagent that has been stored at 110 ± 5 °F or the manufacturer's recommended maximum storage temperature for the maximum amount of time that the reagent can be stored *in situ* in the WQTD per the manufacturer's instructions.

Not for publication. This document is part of the NSF standard development process. This draft text is for circulation for review and/or approval by an NSF Standards Committee and has not been published or otherwise officially adopted. All rights reserved. This document may be reproduced for informational purposes only.

[Note – the recommended changes to the standard which include the current text of the relevant section(s) indicate deletions by use of ~~strikeout~~ and additions by ~~grey highlighting~~. Rationale Statements are in *italics* and only used to add clarity; these statements will NOT be in the finished publication.]

NSF/ANSI/CAN Standard
for Water Systems -

Equipment and Chemicals for Swimming Pools, Spas, Hot Tubs, and other Recreational Water Facilities

6 Filters

6.1.11 Test media

6.1.11.1 *Cryptosporidium parvum* oocyst reduction

6.1.11.1.1 A filter manufacturer may make a *C. parvum* log reduction claim up to the minimum verified during testing in accordance with this standard ~~a maximum of 1.0 log~~. A filter claimed by the manufacturer to reduce *C. parvum* shall be tested in accordance with Section [N-2.9](#). The verified *C. parvum* log reduction determined in accordance with Section [N-2.9](#) shall be noted on the data plate:

Rationale: proposing to remove the restriction on performance claims insofar as performance can be validated by this standard. If a filter can perform at a level higher than 1.0 log, it should be able to claim it.

Based on the maximum influent challenge seeding requirements of 6.1.11.4 (and §5.3 of NSF419-2024), influent concentrations higher than 1×10^4 times the typical detection limit (i.e. 4-log) are prohibited due to perceived risk of overseeding leading to artificially high reduction values. As such nominal influent targets are typically 3.5 log to account for method repeatability, which puts the capability to demonstrate at least a 3 log reduction (99.9%) within reach of capable sand, DE, cartridge type filters.

- regenerative precoat media-type filters that release filter cake and reposition into a new filter cake without replacement of the filter aid shall be tested for conformance with the *Cryptosporidium* reduction requirements of Section [N-2.9](#) with new precoat and again after the media has been conditioned as described in Section [6.1.9.1](#).

6.1.11.1.2 For filter types other than membrane filters, polystyrene latex microspheres, as referenced in the test method for bag and cartridge filter systems in NSF/ANSI 419 shall be an acceptable surrogate for live *C. parvum* oocyst.

Rationale: clarifying language that membrane filters should still be tested with *Bacillus endospores*. NSF419 is the basis for this section in general and 419 established the organism requirements for membranes.

Not for publication. This document is part of the NSF standard development process. This draft text is for circulation for review and/or approval by an NSF Standards Committee and has not been published or otherwise officially adopted. All rights reserved. This document may be reproduced for informational purposes only.

6.1.11.6 If a filter has been validated for a reduction of *C. parvum* in accordance with Section [6.1.11.1](#) and Section [N-2.9](#), the installation and operating instructions shall contain the following information:

- For cartridge, precoat, and sand-type filters, the validated log reduction, shall be indicated via the following statement:

"This filter has demonstrated the ability to provide a [X.X]-log 4.0-log reduction of Cryptosporidium parvum at a flow rate of [XXX] GPM when tested with 3-μm polystyrene microspheres."

- For membrane filters, the validated log reduction shall be indicated via the following statement:

*"This filter has demonstrated the ability to provide a [X.X]-log reduction of Cryptosporidium parvum at a flow rate of [XXX] GPM when tested with *Bacillus atrophaeus* endospores."*

- cleaning instructions, including but not limited to any backwash, rinse, filter to drain, or auxiliary recirculation steps. Minimum and maximum flow rates and times shall be included for each step
- remediation instructions specific to the handling of waste, rinse, and/or backwash water that may contain *C. parvum*. These instructions must include a statement that all waste, rinse and backwash water generated by this filter must be directed to a sanitary sewer
- the allowable range of pressure drop through the filter, what pressure drop, or flow reduction indicates cleaning is required, and the terminal pressure drop requiring changeout of the media.

6.1.11.7 If a filter has been validated for a reduction of *C. parvum* in accordance with Section [6.1.11.2](#) and Section [N-2.9](#), the data plate shall contain the following information:

- For cartridge, precoat, and sand-type filters, the validated log reduction shall be indicated on the data plate via the following statement:

"This filter has demonstrated the ability to provide a 1.0-log reduction of Cryptosporidium parvum when tested with 3-μm polystyrene microspheres."

- For membrane filters, the validated log reduction shall be indicated on the data plate via the following statement:

*"This filter has demonstrated the ability to provide a 1.0-log reduction of Cryptosporidium parvum when tested with *Bacillus atrophaeus* endospores."*

- name and grade of media used during the validation testing of *C. parvum* reduction and a statement that use of any other media invalidates the *C. parvum* reduction claim of the filter
- the data plate shall also include the following statement:

"Follow the cleaning and remediation instructions provided in the operating manual for safe handling of filter cleaning and wastewater. All waste, rinse, and/or backwash water generated by this filter must be directed to a sanitary sewer."

N-2.9 Test method for *Cryptosporidium parvum* oocyst reduction

Not for publication. This document is part of the NSF standard development process. This draft text is for circulation for review and/or approval by an NSF Standards Committee and has not been published or otherwise officially adopted. All rights reserved. This document may be reproduced for informational purposes only.

Systems that are comprised of more than one filter shall have each filter evaluated according to its filter type test method, and a system log reduction may be awarded with consideration given to flow rates and log reduction values of the individual components.

N-2.9.1 Cartridge, bag, and full-steam type filters

Cartridge, bag, and full-steam membrane filters shall be evaluated according to NSF/ANSI 419, Section 5: *Bag and cartridge filter systems* and Section 6: *Microfiltration (MF) and ultrafiltration (UF) membrane modules*.

As specified in NSF/ANSI 419, Section N-2.3.2: *Challenge test results for bag and cartridge filters*, the log reduction value assigned to a filter shall be the minimum value obtained from all test conditions.

The manufacturer of the filter may claim a 1.0-log reduction of *C. parvum*; the claim shall not exceed the minimum observed LRV_{condition}.

.

.

N-2.9.2.6 Acceptance criteria

The geometric means of the triplicate analyses of the microsphere test samples shall be log transformed to calculate the LRV of each of the conditions tested, LRV_{condition}:

- initial startup of filter
- $50 \pm 5\%$ of pressure differential
- $90 \pm 5\%$ of pressure differential
- immediately after cleaning
- 1 void volume after cleaning
- 2 void volumes after cleaning
- 3 void volumes after cleaning
- 5 min of operation after cleaning.

The manufacturer of the filter may claim a 1.0-log reduction of *C. parvum* not exceeding the minimum observed LRV_{condition}.

.

.

N-2.9.3.6 Acceptance criteria

The geometric means of the triplicate analyses of the microsphere test samples shall be log transformed to calculate the LRV of each of the conditions tested, LRV_{condition}:

- initial startup of filter
- $50 \pm 5\%$ of pressure differential
- $90 \pm 5\%$ of pressure differential
- immediately after cleaning
- 1 void volume after cleaning
- 2 void volumes after cleaning
- 3 void volumes after cleaning
- 5 min of operation after cleaning.

The manufacturer of the filter may claim a 1.0-log reduction of *C. parvum*; the claim shall not exceed the

Not for publication. This document is part of the NSF standard development process. This draft text is for circulation for review and/or approval by an NSF Standards Committee and has not been published or otherwise officially adopted. All rights reserved. This document may be reproduced for informational purposes only.

minimum observed LRV_{condition}.

N-2.9.3.7 Membrane filtration

Membrane systems shall meet the requirements of NSF/ANSI 419. The manufacturer of the filter may claim up to a 4.0-log reduction of C. parvum; the claim shall not exceed the minimum observed LRV_{condition}.

Rationale: *When testing membrane filters per NSF 419, the prescribed challenge organism is Bacillus endospores, with a maximum feed concentration of 6.5 log, which allows for demonstration of performance over 6 log. However, NSF 419 (and the LT2ESWTR) imposes strict non-destructive performance testing at the factory and subsequent application of a quality control release value for marked filters. Additionally, in the field daily direct integrity tests and continuous monitoring of combined filter effluent is required. So, setting the limit at 4 log sets an equal level between technologies within NSF 50, and also recognizes the lack of operational regulation for membrane filters in a swimming pool setting.*

Not for publication. This document is part of the NSF standard development process. This draft text is for circulation for review and/or approval by an NSF Standards Committee and has not been published or otherwise officially adopted. All rights reserved. This document may be reproduced for informational purposes only.

[Note – the recommended changes to the standard which include the current text of the relevant section(s) indicate deletions by use of ~~strikeout~~ and additions by ~~grey highlighting~~. Rationale Statements are in *italics* and only used to add clarity; these statements will NOT be in the finished publication.]

NSF/ANSI/CAN Standard
for Water Systems -

Equipment and Chemicals for Swimming Pools, Spas, Hot Tubs, and other Recreational Water Facilities

.

.

3 Definitions

.

.

Cold Tank (Cold Plunge Pool): a temperature-controlled basin filled with water below 65°F, designed for short-duration immersion to promote recovery, reduce inflammation, and stimulate circulation.

.

.

15 Ultraviolet light process equipment

.

.

15.6 Operation and installation instructions

15.6.1 Drawings and a parts list for easy identification and ordering of replacement parts shall be furnished with each unit and shall include:

- model number of the unit
- instructions for proper size selection and installation
- whether the system has a mechanical cleaning system or requires an external chemical cleaning system installed per Section [15.13.1](#)
- operation and maintenance instructions
- a statement of the manufacturer's warranty
- applicable caution statements (prominently displayed)
- ventilation requirements (if applicable)
- cross-connection protection (if the unit is physically connected to a potable water supply)
- maximum daily operation time (if not designed for continuous operation)

Not for publication. This document is part of the NSF standard development process. This draft text is for circulation for review and/or approval by an NSF Standards Committee and has not been published or otherwise officially adopted. All rights reserved. This document may be reproduced for informational purposes only.

- a warning, if the potential exists for release of high dosages of substances that may endanger bathers
- For units suitable for use in cold tank systems, a statement identifying the level of disinfection efficacy as demonstrated in accordance with Section 15.8 as well as the allowable temperature range.
-
-

15.7 Data plate

Data plate shall be permanent; easy to read; and securely attached, cast, or stamped onto the unit at a location readily accessible after normal installation. Data plate(s) shall contain the following:

- equipment name and function(s)
- manufacturer's name and contact information (address, phone number, website, or prime supplier)
- model number designation
- electrical requirements for operational volts, amps, and hertz of the unit
- serial number or year of construction
- maximum rated operating pressure in kPa (psi)
- prominently displayed caution statement:

"UV light is harmful to eyes and exposed skin; turn off electrical supply before opening unit."

- caution statement that the unit should be used with registered or approved disinfection chemicals to impart required residual concentrations
- model and number of UV lamp(s)
- maximum daily operation time (if not designed for continuous operation)
- maximum design flow rate in GPM (LPM)
 - the manufacturer may clearly indicate more than one flow rating if dependent on end use applications (cold tank, swimming pool/spa)
- a statement identifying if the unit is suitable for residential supplemental disinfection, supplemental (for all pools and spas) disinfection, or for secondary disinfection, in a minimum 16 point font:

"This unit has been certified to NSF/ANSI/CAN 50 for [disinfection level]."

- for units suitable for use in cold tank systems, a statement identifying if the unit is suitable for residential supplemental disinfection, supplemental (for all pools and spas) disinfection, or for secondary disinfection, as well as the allowable temperature range, in a minimum 16 pt font:

Not for publication. This document is part of the NSF standard development process. This draft text is for circulation for review and/or approval by an NSF Standards Committee and has not been published or otherwise officially adopted. All rights reserved. This document may be reproduced for informational purposes only.

"Cold Tanks (minimum temperature ____ °): This unit has been certified to NSF/ANSI/CAN 50 for [disinfection level]".

15.8 Disinfection efficacy

15.8.1 All systems, including those intended for use in cold tanks exclusively or cold tanks in addition to swimming pool and/or hot tub applications shall be evaluated for disinfection efficacy. Per Section [15.12](#), residential and supplemental (for all pools and spas) disinfection efficacy testing shall be performed after the system and lamp have accumulated 3,000 h of operation.

UV systems intended for cold tank applications that use low pressure or low pressure high output lamps shall be tested in accordance with 15.8.1, 15.8.2 or 15.8.3 at the manufacturer's lowest recommended water temperature ($\pm 2^{\circ}\text{F}$). The results from this testing may be applied to usage in pool/spa applications, or the manufacturer may elect to perform additional testing in accordance with 15.8.1, 15.8.2 or 15.8.3 at pool/spa temperature levels to support those applications.

Systems that use medium pressure lamps, or systems that can demonstrate no loss of UV intensity when used with water having a temperature at the lowest level claimed by the manufacturer for use in cold tank systems, do not need to perform testing in accordance with 15.8.1, 15.8.2 or 15.8.3 at the manufacturer's lowest recommended water temperature ($\pm 2^{\circ}\text{F}$).

15.12 Life test

When tested in accordance with the life test described in Annex [N-9](#), a minimum of 8,000 operating hours shall be accumulated among the three units; no less than 3,000 operating hours shall be accumulated on one of the three units. At the conclusion of the testing, the units with 3,000 operating hours shall be evaluated to the operational protection, pressure, and disinfection efficacy requirements of this section.

Life testing shall be conducted within the operating temperatures of its intended end use; cold tank or swimming pool $75 \pm 10^{\circ}\text{F}$ ($24 \pm 6^{\circ}\text{C}$) or cold tank/swimming pools and spas and hot tubs, 65 to 104°F (18 to 40°C).

Life testing is not required on UV units being tested for *Cryptosporidium* inactivation (see Section [15.18](#)) because the NSF/EPA ETV UV protocol and US EPA UVDGM Error! Bookmark not defined. requires a 100-h burn-in for the lamp prior to testing.

Normative Annex 8

Test methods for the evaluation of process equipment

Not for publication. This document is part of the NSF standard development process. This draft text is for circulation for review and/or approval by an NSF Standards Committee and has not been published or otherwise officially adopted. All rights reserved. This document may be reproduced for informational purposes only.

N-8.1.3 Specific test waters

- 1) The test water shall be balanced prior to the addition of challenge constituents and microorganisms. The water shall have the following characteristics.

Parameter	Type	Value
pH	pools/spas	7.2 to 7.6
alkalinity	pools/spas	60 to 100 ppm (CaCO ₃)
hardness	pools/spas	200 to 400 ppm (CaCO ₃)
temperature	pools/spas	65 to 85 °F (18 to 29 °C)
	cold tanks	The manufacturer's lowest recommended temperature ±2°F
turbidity	pools/spas	< 2.0 NTU
total/FAC	pools/spas	0 ppm
TDS	pools/spas	per manufacturer's use instructions

Testing at cold tank temperatures is required only for low pressure or low pressure high output UV lamps systems as specified in Section 15.8.

- 2) The following elements shall be added to the test waters while the disinfection efficacy of the process equipment is determined:
 - grease and oil as 18 to 22 mg/L baby oil
 - Kjeldahl nitrogen as 8.5 to 9.0 mg/L urea
 - two microbiological organisms, *E. faecium* (strain PRD (ATCC #6569), formerly *Streptococcus faecalis*) and *P. aeruginosa* (ATCC #27313)). Other challenge organisms may be used in order to address manufacturer claims.

Rationale: Adds testing and marking/manual requirements for UV systems intended for use in cold tank systems.

BSR/UL 94, Standard for Safety for Tests for Flammability of Plastic Materials for Parts in Devices and Appliances

1. Addition of New Paragraph B2.3.1 to Annex B

PROPOSAL

B2.3.1 For products with a mechanical recycled component, a Quality Assurance (QA) program as specified in the sub-section 6.4 of the Standard for Evaluation of Sustainable Polymeric Materials for use in Electrical Equipment UL 746S, titled “Quality Assurance (QA) Program” shall be established and maintained for the alternate manufacturing location.

ULSE Inc. copyrighted material. Not authorized for further reproduction without permission from ULSE Inc.

BSR/UL 136, Standard for Safety for Pressure Cookers

1. Cover Misalignment Test

PROPOSAL

4.3 The cover shall be constructed to comply with all of the following:

- a) The cover shall be removable only after the pressure within the cooker is 0.58 psig (4 kPa); and
- b) The opening of the cover when the cooker is under pressure shall not result in hazardous displacement of the cover or escape of steam or liquid that would result in burn or injury to persons.

ULSE Inc. copyrighted material. Not authorized for further reproduction without permission from ULSE Inc.

BSR/UL UL 514C, Standard for Safety for Nonmetallic Outlet Boxes, Flush-Device Boxes, and Covers**Topic 6: 68.1 Conduit Bodies (PR43194)****PROPOSAL****68 Conduit Bodies – Device mounting**

68.1 A conduit body having a volume exceeding 100 cubic inches (1639 cm³) shall not have provision for mounting switches, fuseholders, or other control devices.

68.1A A conduit body having provision for more than two conduit entries shall not have provision for mounting devices.

68.21B A conduit body having a volume of 100 cubic inches or less and having provision for no more than two conduit entries shall be permitted to have provision for mounting a wiring device only when the conduit body is marked in accordance with 92.1.5 and the volume is verified in accordance with Dimensions, Section 8.

Topic 8: 92.1.1 (e) Details (PR43192)**PROPOSAL****92 Details****92.1 General**

92.1.1 All markings shall be legible. All product markings shall be permanent and visible after the product is installed. The following types of markings or the equivalent are considered permanent:

- a) Etched,
- b) Molded,
- c) Die stamped,
- d) Paint stenciled, ~~or~~
- e) Indelibly sStamped ~~or~~
- f) eOn a pressure sensitive label secured by adhesive and complying with the Standard for Marking and Labeling Systems, UL 969.

BSR/UL 2367, Standard for Safety for Solid State Overcurrent Protectors**2. Addition of new general performance section****PROPOSAL**

10A.3 The cheesecloth referenced in 10A.2 shall be bleached cheesecloth running 14 – 15 yd²/lb (approximately 26 – 28 m²/kg) and having what is known as a count of 32 by 28, that is, for any square inch, 32 threads in one direction and 28 threads in the other direction.

10A.3 10A.4 Unless otherwise specified in the test, the input connections of the device shall be connected to a source with a short circuit current capability of at least 250 A (1000 / V) and a power capacity of at least 250 VA.

10A.4 10A.5 At the manufacturer's option, the same or separate samples may be used for each test in Sections 11-18, except that a minimum of five samples of the minimum, mean, and maximum ratings shall be subjected to the Calibration Test. See 11.4.

10.5 10.6 Prior to and following the tests specified in Table 10A.1, each sample shall be subjected to the Calibration Test in Section 11. See 11.8.

4. Update to the shipping and storage temperature range**PROPOSAL**

21.1 A solid-state overcurrent protector shall be rated as follows:

- a) Voltage range (DC, AC, or both);
- b) Maximum continuous current;
- c) Protective current;
- d) Operating ambient temperature range; **and**
- e) Shipping and storage ambient temperatures range; and
- f) Volt-Amperes (optional).

ANSI Accredited Standards Developer

NCPDP - National Council for Prescription Drug Programs

Enrollment in the 2026 Consensus Group opens Monday, January 12, 2026 and closes at 8:00 p.m. EST on Friday, February 13, 2026. Information concerning the Consensus Group registration process is available by contacting:

Margaret Weiker
National Council for Prescription Drug Programs
9240 East Raintree Drive, Scottsdale, AZ 85260
Phone: (480) 477-1000
Email: mweiker@ncpdp.org

Standards:

Audit Transaction Standard – supports an electronic audit transaction that facilitates requests, responses, and final outcomes transmissions for both “Desk Top” claim audits and for in-store audit notices.

Batch Standard Subrogation - provides a uniform approach to efficiently process post-payment subrogation claims and eliminate the numerous custom formats used in the industry today.

Benefit Integration Standard - supports the communication of accumulator data (such as deductible and out of pocket) between Benefit Partners to administer integrated benefits for a member.

Billing Unit Standard - provides a consistent and well-defined billing unit for use in pharmacy transactions. This results in time savings and accuracy in billing and reimbursement.

Financial Information Reporting Standard – provides a process whereby financial information is moved from one PBM to another when a patient changes benefit plans.

Formulary and Benefit Standard – provides a standard means for pharmacy benefit payers (including health plans and Pharmacy Benefit Managers) to communicate formulary and benefit information to prescribers via technology vendor systems.

Manufacturer Rebate Standard – provides a standardized format for the electronic submission of rebate information from Pharmacy Management Organizations (PMOs) to Pharmaceutical Industry Contracting Organizations (PICOs).

Medicaid Pharmacy Encounters Reporting – provides standardization of data content and file layout for reporting of Medicaid Managed Care Organization pharmacy claims to a state agency.

Post Adjudication Standard – provides a format for supplying detailed drug or utilization claim information after the claim has been adjudicated.

Prescription Drug Monitoring Programs (PDMP) Reporting Standard – developed to report controlled substance and other required drug information to assist healthcare providers to deter prescription drug abuse to ensure access for patients with valid medical needs.

Prescription Transfer Standard – developed to create file formats for the purpose of electronically transferring prescriptions between pharmacies.

Prior Authorization Transfer Standard – developed to define the file format and correct usage for electronically transferring existing prior authorization data between payer/processors when transitioning clients, performing system database or platform changes, or other scenarios where an existing prior authorization record is stored in one location and needs to be moved to another.

Product Identifiers Standard – developed to provide a standard for consistent formatting and utilization of product identifiers in healthcare and to provide clarification for maintenance of these specific product identifiers.

Standards (con'td):

Real-Time Prescription Benefit Standard – developed a real-time pharmacy benefit inquiry from a provider EMR application to: leverage pharmacy industry standards and technology infrastructure, to deliver an accurate, pharmacy specific, “Patient Pay Amount” for a proposed medication and quantity and to collaboratively align stakeholders.

Retiree Drug Subsidy Standard – developed to assist in the automation of summarized drug cost and related data transfer from one processor/pharmacy benefit manager to another processor/ pharmacy benefit manager for continuation of the CMS Retiree Drug Subsidy (RDS) cost data reporting by the receiving entity.

SCRIPT Standard – developed for transmitting prescription information electronically between prescribers, providers, and other entities.

Specialized Standard – developed for transmitting information electronically between prescribers, providers, and other entities. The standard addresses the electronic transmission of census information about a patient between a facility and a pharmacy, medication therapy management transactions between providers, payers, pharmacies, and other entities. It will include other transactions for electronic exchanges between these entities in the future.

Specialty Pharmacy Data Reporting Standard - provides a standardized format for the data submitted by specialty pharmacy to drug manufacturers/others to support programs and agreements between the parties.

State Medicaid Provider File Standard - developed a standard by which state Medicaid agencies or other entities could communicate their provider data with the MCOs/PBMs in a consistent and streamlined manner.

Telecommunication Standard – developed a standardized format for electronic communication of claims and other transactions between pharmacy providers, insurance carriers, third-party administrators, and other responsible parties.

Uniform Healthcare Payer Data Standard – developed a standard format for pharmacy claim data to support the reporting requirements of claim data to states or their designees.