VOL. 56, NO. 46 **NOVEMBER 14, 2025**

CONTENTS

Project Initiation Notification System (PINS)

Section 2.5.1 of the ANSI Essential Requirements (www.ansi.org/essentialrequirements) describes the Project Initiation Notification System (PINS) and includes requirements associated with a PINS Deliberation. Following is a list of PINS notices submitted for publication in this issue of ANSI Standards Action by ANSI-Accredited Standards Developers (ASDs). Please also review the section in Standards Action entitled "American National Standards Maintained Under Continuous Maintenance" for information about American National Standards (ANS) maintained under the continuous maintenance option, as a PINS to initiate a revision of such standards is not required. Use the following Public Document Library url to access PDF & EXCEL reports of approved & proposed ANS: List of Approved and Proposed ANS. Directly and materially interested parties wishing to receive more information or to submit comments are to contact the sponsoring ANSI-Accredited Standards Developer directly within 30 calendar days of the publication of this PINS announcement.

AAFS (American Academy of Forensic Sciences)

Teresa Ambrosius <a href="mailto:tambrosius@aafs.org | 410 North 21st Street | Colorado Springs, CO 80904 www.aafs.org

Revision

BSR/ASB Std 038-202x, Standard for Internal Validation of Forensic DNA Analysis Methods (revision of ANSI/ASB Std 038-2020)

Stakeholders: Forensic DNA Professionals; criminal justice community

Project Need: This document is the revision of ANSI/ASB Std 038 and provides general requirements to practitioners in the DNA field seeking to perform internal validation of all forensic DNA analysis methods. Internal validation is needed to establish the uses and limitations of a methodology prior to laboratory implementation. This standard is a normative reference for other standards that cover specific methods in DNA testing.

Interest Categories: Academics and Researchers, General Interest, Jurisprudence and Criminal Justice, Producer, User - Government, User - Non-Government

This standard provides the general requirements for performing internal validation of all forensic DNA analysis methods within a forensic DNA laboratory.

AAFS (American Academy of Forensic Sciences)

Teresa Ambrosius <ambrosius@aafs.org> | 410 North 21st Street | Colorado Springs, CO 80904 www.aafs.org

Revision

BSR/ASB Std 077-202x, Standard for the Development and Internal Validation of Forensic Serological Methods (revision of ANSI/ASB Std 077-2020)

Stakeholders: Forensic DNA Professionals; criminal justice community

Project Need: This document is the revision of ANSI/ASB Std 077 and provides requirements for practitioners in the DNA field seeking to perform developmental and internal validations for forensic serological methods used to evaluate body fluids, stains, or residues. Validation is critical for demonstrating reliability of test results and for identifying potential limitations of a method prior to laboratory implementation.

Interest Categories: Academics and Researchers, General Interest, Jurisprudence and Criminal Justice, Producer, User - Government, User - Non-Government

This standard provides requirements for developmental and internal validations of forensic serological methods to evaluate body fluids, stains, or residues related to forensic investigations.

AAFS (American Academy of Forensic Sciences)

Teresa Ambrosius tambrosius@aafs.org | 410 North 21st Street | Colorado Springs, CO 80904 www.aafs.org

New Standard

BSR/ASB Std 110-202x, Standard for Training in Forensic Serological Methods (new standard)

Stakeholders: Forensic DNA Professionals; criminal justice community

Project Need: This document is the revision of ANSI/ASB Std 110 and provides training program requirements to practitioners in the field. The proper detection and identification of appropriate biological samples on an evidence item is a key step in evaluating items to subject to DNA testing. Proper training is needed to ensure the identification of relevant biological materials that may aid in a forensic investigation.

Interest Categories: Academics and Researchers, General Interest, Jurisprudence and Criminal Justice, Producer, User - Government, User - Non-Government

This standard provides the general requirements for a forensic serology training program to evaluate body fluids, stains, or residues related to forensic investigations.

ARESCA (American Renewable Energy Standards and Certification Association)

George Kelly <secretary@aresca.us> | 256 Farrell Farm Road | Norwich, VT 05055 www.aresca.us

National Adoption

BSR/ARESCA 61400-24-202x, Wind energy generation systems - Part 24: Lightning protection (identical national adoption of IEC 61400-24;202x)

Stakeholders: U.S. wind developers and investors, Certified Verification Agents (CVAs), Bureau of Safety and Environmental Enforcement (BSEE), Bureau of Ocean Energy Management (BOEM), U.S. Department of the Interior (DOI)

Project Need: The ambitious plans for development of wind energy projects require a consistent and comprehensive set of industry-based consensus standards. This IEC document is directly applicable as an ANS for such projects.

Interest Categories: End users, OEMs, Industry, General interest

Identical adoption of IEC 61400-24;202x.

ARESCA (American Renewable Energy Standards and Certification Association)

George Kelly <secretary@aresca.us> | 256 Farrell Farm Road | Norwich, VT 05055 www.aresca.us

National Adoption

BSR/ARESCA 61400-4-1-202x, Wind energy generation systems - Part 4-1: Reliability assessment of drivetrain components in wind turbines (identical national adoption of IEC 61400-4-1;202x)

Stakeholders: U.S. wind developers and investors, Certified Verification Agents (CVAs), Bureau of Safety and Environmental Enforcement (BSEE), Bureau of Ocean Energy Management (BOEM), U.S. Department of the Interior (DOI)

Project Need: The ambitious plans for development of wind energy projects requires a consistent and comprehensive set of industry-based consensus standards. This IEC document is directly applicable as an ANS for such projects.

Interest Categories: End users, OEMs, Industry, General interest

Identical adoption of IEC 61400-4-1;202x.

ARESCA (American Renewable Energy Standards and Certification Association)

George Kelly <secretary@aresca.us> | 256 Farrell Farm Road | Norwich, VT 05055 www.aresca.us

National Adoption

BSR/ARESCA 61400-25-2-202x, Wind energy generation systems - Part 25-2: Communications for monitoring and control of wind power plants - Information models (identical national adoption of IEC 61400-25-2;202x) Stakeholders: U.S. wind developers and investors, Certified Verification Agents (CVAs), Bureau of Safety and Environmental Enforcement (BSEE), Bureau of Ocean Energy Management (BOEM), U.S. Department of the Interior (DOI)

Project Need: The ambitious plans for development of wind energy projects requires a consistent and comprehensive set of industry-based consensus standards. This IEC document is directly applicable as an ANS for such projects.

Interest Categories: End users, OEMs, Industry, General interest

Identical adoption of IEC 61400-25-2;202x.

ARESCA (American Renewable Energy Standards and Certification Association)

George Kelly <secretary@aresca.us> | 256 Farrell Farm Road | Norwich, VT 05055 www.aresca.us

National Adoption

BSR/ARESCA 61400-27-3-202x, Wind energy generation systems - Part 27-3: Structure and validation procedure of frequency domain models for harmonic propagation studies (identical national adoption of IEC 61400-27-3;202x) Stakeholders: U.S. wind developers and investors, Certified Verification Agents (CVAs), Bureau of Safety and Environmental Enforcement (BSEE), Bureau of Ocean Energy Management (BOEM), U.S. Department of the Interior (DOI)

Project Need: The ambitious plans for development of wind energy projects requires a consistent and comprehensive set of industry-based consensus standards. This IEC document is directly applicable as an ANS for such projects.

Interest Categories: End users, OEMs, Industry, General interest

Identical adoption of IEC 61400-27-3;202x.

ARESCA (American Renewable Energy Standards and Certification Association)

George Kelly <secretary@aresca.us> | 256 Farrell Farm Road | Norwich, VT 05055 www.aresca.us

National Adoption

BSR/ARESCA 61400-27-4-202x, Wind energy generation systems - Part 27-4: Structure and validation procedure of Electromagnetic Transients (EMT) models (identical national adoption of IEC 61400-27-4;202x)

Stakeholders: U.S. wind developers and investors, Certified Verification Agents (CVAs), Bureau of Safety and Environmental Enforcement (BSEE), Bureau of Ocean Energy Management (BOEM), U.S. Department of the Interior (DOI)

Project Need: The ambitious plans for development of wind energy projects requires a consistent and comprehensive set of industry-based consensus standards. This IEC document is directly applicable as an ANS for such projects.

Interest Categories: End users, OEMs, Industry, General interest

Identical adoption of IEC 61400-27-4;202x.

ARESCA (American Renewable Energy Standards and Certification Association)

George Kelly <secretary@aresca.us> | 256 Farrell Farm Road | Norwich, VT 05055 www.aresca.us

National Adoption

BSR/ARESCA 61400-28-2-202x, Wind energy generation systems - Part 28-2: Decommissioning and preparation for recycling (identical national adoption of IEC 61400-28-2;202x)

Stakeholders: U.S. wind developers and investors, Certified Verification Agents (CVAs), Bureau of Safety and Environmental Enforcement (BSEE), Bureau of Ocean Energy Management (BOEM), U.S. Department of the Interior (DOI)

Project Need: The ambitious plans for development of wind energy projects requires a consistent and comprehensive set of industry-based consensus standards. This IEC document is directly applicable as an ANS for such projects.

Interest Categories: End users, OEMs, Industry, General interest

Identical adoption of IEC 61400-28-2;202x.

ARESCA (American Renewable Energy Standards and Certification Association)

George Kelly <secretary@aresca.us> | 256 Farrell Farm Road | Norwich, VT 05055 www.aresca.us

National Adoption

BSR/ARESCA 61400-50-5-202x, Wind energy generation systems - Part 50-5: Use of scanning doppler lidars for wind measurements (identical national adoption of IEC 61400-50-5;202x)

Stakeholders: U.S. wind developers and investors, Certified Verification Agents (CVAs), Bureau of Safety and Environmental Enforcement (BSEE), Bureau of Ocean Energy Management (BOEM), U.S. Department of the Interior (DOI)

Project Need: The ambitious plans for development of wind energy projects requires a consistent and comprehensive set of industry-based consensus standards. This IEC document is directly applicable as an ANS for such projects.

Interest Categories: End users, OEMs, Industry, General interest

Identical adoption of IEC 61400-50-5;202x.

ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.)

Tanisha Meyers-Lisle <tmlisle@ashrae.org> | 180 Technology Parkway | Peachtree Corners, GA 30092 www.ashrae.org

New Standard

BSR/ASHRAE Standard 236P-202x, Method of Test for Control Programming Conformance with HVAC Sequences of Operation (new standard)

Stakeholders: Building automation system manufacturers, contractors, and design engineers, building owners and operators.

Project Need: This proposed standard intends to improve the HVAC controls delivery process by establishing a mechanism for pre-testing and validating manufacturer-developed control programming prior to field installation, leading to improved energy efficiency and thermal comfort in commercial buildings.

Interest Categories: Manufacturers, Users and General Interest

This standard applies to the programming of building automation system controllers intended to implement standardized control sequences such as are included in ASHRAE Guideline 36. This standard defines a series of test scripts detailing test conditions for applicable control points to be evaluated against expected responses, with pass/fail criteria for each test.

ASTM (ASTM International)

Meredith Klein <accreditation@astm.org> | 100 Barr Harbor Drive, PO Box C700 | West Conshohocken, PA 19428-2959 www. astm.org

New Standard

BSR/ASTM WK96828-202x, Reinstatement of F1882-15, Standard Specification for Residential Basketball Systems (Withdrawn 2024) (new standard)

Stakeholders: Recreational Basketball Equipment Industry

Project Need: F1882 was unintentionally withdrawn. The standard is still used in the basketball industry.

Interest Categories: Producer, User, General Interest

F1882 was unintentionally withdrawn. The standard is still used in the basketball industry.

BHMA (Builders Hardware Manufacturers Association)

Tony Gambrall <agambrall@kellencompany.com> | 529 14th Street NW, Suite 1280 | Washington, DC 20045 www. buildershardware.com

Revision

BSR/BHMA A156.2-202x, Standard for Bored and Preassembled Locks and Latches (revision of ANSI/BHMA A156.2 -2022)

Stakeholders: Consumers, door and hardware manufacturers, building and construction

Project Need: Update per five-year revision cycle

Interest Categories: User, Government, General Interest, Testing Laboratory, Producer

This Standard establishes performance requirements for bored and preassembled locks and latches, and includes dimensional criteria, operational tests, strength tests, cycle tests, security tests and material evaluation tests.

BHMA (Builders Hardware Manufacturers Association)

Tony Gambrall <agambrall@kellencompany.com> | 529 14th Street NW, Suite 1280 | Washington, DC 20045 www. buildershardware.com

Revision

BSR/BHMA A156.12-202x, Standard for Interconnected Locks (revision of ANSI/BHMA A156.12-2022)

Stakeholders: Consumers, door and hardware manufacturers, building and construction

Project Need: Update per five-year revision cycle.

Interest Categories: User, Government, General Interest, Testing Laboratory, Producer

This Standard establishes performance requirements for Interconnected Locks and includes operational, cycle, strength, material evaluation and security tests.

BHMA (Builders Hardware Manufacturers Association)

Tony Gambrall <agambrall@kellencompany.com> | 529 14th Street NW, Suite 1280 | Washington, DC 20045 www. buildershardware.com

Revision

BSR/BHMA A156.13-202x, Standard for Mortise Locks and Latches (revision of ANSI/BHMA A156.13-2022)

Stakeholders: Consumers, door and hardware manufacturers, building and construction

Project Need: Update per five-year revision cycle.

Interest Categories: User, Government, General Interest, Testing Laboratory, Producer

This Standard establishes performance requirements for Series 1000 and Narrow Stile Mortise Locks and Latches and includes operational, cycle, strength, material evaluation, security and dimensional criteria.

BHMA (Builders Hardware Manufacturers Association)

Tony Gambrall <agambrall@kellencompany.com> | 529 14th Street NW, Suite 1280 | Washington, DC 20045 www. buildershardware.com

Revision

BSR/BHMA A156.25-202x, Standard for Electrified Locking Devices (revision of ANSI/BHMA A156.25-2023)

Stakeholders: Consumers, door and hardware manufacturers, building and construction

Project Need: Update per five-year revision cycle

Interest Categories: User, Government, General Interest, Testing Laboratory, Producer

This Standard establishes requirements for the locking devices, whose mechanical aspects are described in the applicable BHMA product Standards; in addition, where the input or controlling device or both are an integral part of the locking device, they shall also be tested with the locking device covered by this Standard. This Standard includes requirements for cyclical, security, operational, strength, and environmental tests for these products.

BIFMA (Business and Institutional Furniture Manufacturers Association)

Anthony Serge <aserge@bifma.org> | 678 Front Avenue NW, Suite 150 | Grand Rapids, MI 49504-5368 www.bifma.org

Revision

BSR/BIFMA X5.5-202x, Desk and Table Products (revision of ANSI/BIFMA X5.5-2021)

Stakeholders: Furniture manufacturers, suppliers, specifiers, test labs and users

Project Need: This standard is intended to provide manufacturers, specifiers, and users with a common basis for evaluating the safety, durability, and structural adequacy of Desk and Table Products.

Interest Categories: Producers/Manufacturers, Engineering & Damp; Testing/Standards User, Supply Chain, General Interest

This standard is intended to provide manufacturers, specifiers, and users with a common basis for evaluating the safety, durability and structural performance of desk and table products intended for use in commercial office, institutional and educational environments; including retail spaces, restaurants, and cafeterias. It provides test methods and performance requirements for desk and table products.

BIFMA (Business and Institutional Furniture Manufacturers Association)

Anthony Serge <aserge@bifma.org> | 678 Front Avenue NW, Suite 150 | Grand Rapids, MI 49504-5368 www.bifma.org

Revision

BSR/BIFMA X6.5-202x, Home Office and Occasional-Use Desk, Table and Storage Products (revision of ANSI/BIFMA X6.5-2022)

Stakeholders: Furniture manufacturers, suppliers, specifiers, test labs and users

Project Need: This standard is intended to provide manufacturers, specifiers, and users with a common basis for evaluating the safety, durability, and structural adequacy of Home Office and Occasional-Use Desk, Table and Storage Products

Interest Categories: Producers/Manufacturers, Engineering & Damp; Testing/Standards User, Supply Chain, General Interest

This standard provides a common basis for evaluating the safety, durability and structural performance of home office and occasional-use desk, table and storage products intended for use in commercial and home offices. It provides test methods and performance requirements for home office and occasional-use desk, table, and storage products.

CSA (CSA America Standards Inc.)

Thuy Ton <ansi.contact@csagroup.org> | 8501 East Pleasant Valley Road | Cleveland, OH 44131-5575 www.csagroup.org

National Adoption

BSR/CSA HGV 4.2-202x, Hoses for Hydrogen Gas Vehicle Dispensing Systems (national adoption with modifications of ISO 19880-5:25)

Stakeholders: Manufacturers, consumers, certifiers

Project Need: Industry needs certified High Flow hoses, preferably by the end of 2026, multiple suppliers exist now.

Interest Categories: Fuel suppliers, manufacturers, general interest, regulatory authority, research/testing, consumer/user interest

This Standard specifies requirements for materials, design, manufacture, and testing, of hoses and hose assemblies used for dispensing compressed gaseous hydrogen to vehicles of up to the H70 designation and at flow capacities up to and including 300 g/s.

- Adopt ISO 19880-5:2025 into new HGV 4.2 with North American deviations and also include high-flow requirements as proposed by WG 22:
- Cold gas into warm hose test;
- Deadhead due to heat of compression test;
- Hydrogen gas impulse with flex test.

DirectTrust[™] (DirectTrust.org, Inc.)

Taylor Davis taylor Davis taylor Davis taylor.davis@directtrust.org | 1629 K Street NW, Suite 300 | Washington, DC 20006 | www.DirectTrust.org

Revision

BSR/DS2020-03-101-202x, Event Notifications via the Direct Standard® (revision of ANSI/DS2020-03-101-2025) Stakeholders: (a) Healthcare Sector; (b) Government Sector; (c) Payer Sector; (d) Consumer Sector; (e) Socialcare Sector; (f) General Interest and Advocacy; (g) Information Technology Sector; (h) Interoperability and Systems Integration Sector

Project Need: Enhancements and revisions to requirements and recommendations in the implementation guide are needed based on input received from stakeholders who are and have implemented Event Notifications via the Direct Standard® or are in the process of implementing this specification.

Interest Categories: Healthcare Sector; Government Sector; Payer Sector; Consumer Sector; Socialcare Sector; General Interest and Advocacy; Information Technology Sector; Interoperability and Systems Integration Sector

DirectTrust Standards have developed and published an implementation guide for actors in the healthcare ecosystem who will use the Direct Standard® for the communication of various transactions in support of Encounter and Event Notifications as established in CMS Interoperability and Patient Access rule. The Event Notifications via the Direct Standard® implementation guide establishes payload and metadata standards for Direct Secure Messaging between care facilities and downstream providers, as well as subscription services that act as intermediaries in this flow. In order to ensure effective interoperability and limit burdensome workflows, standardization of these messages is essential.

ESTA (Entertainment Services and Technology Association)

Richard Nix <standards@esta.org> | 271 Cadman Plaza, P.O. Box 23200 | Brooklyn, NY 11202-3200 www.esta.org

Revision

BSR/ES1.7-202x, Event Safety - Weather Preparedness (revision of ANSI ES1.7-2021)

Stakeholders: This standard has impact on those who design and produce events, provide equipment or services for events, work at or attend events, particularly in areas pertaining to event safety.

Project Need: ANSI ES1.7-2021 requires revisions to maintain consistency with current technologies and recommended practices.

Interest Categories: Equipment manufacturers, Equipment suppliers, Dealer and rental companies, Event producers, Event workers, Performing artists, and general interest

The scope of this standard covers the consideration, development, and use of event planning strategies that mitigate weather-related risks associated with live events, and with their associated temporary special event structures. Its scope includes both indoor and outdoor events, because each have considerations for the event participants. Its scope includes only public-access events, and private events where jurisdictional permits are required. This document is one part of a larger collection of standards relating to special event safety.

ESTA (Entertainment Services and Technology Association)

Richard Nix <standards@esta.org> | 271 Cadman Plaza, P.O. Box 23200 | Brooklyn, NY 11202-3200 www.esta.org

Revision

BSR/ES1.9-202x, Event Safety - Crowd Management (revision of ANSI ES1.9-2020)

Stakeholders: This standard impacts event designers and producers, equipment and service providers, and those who attend, perform, or work at events. This standard has particular impact to aspects of safety with respects to crowd management.

Project Need: This project revises the current version ANSI ES1.9-2020 to include information that updates or enhances current recommended practices.

Interest Categories: Designers; Dealer or rental companies Equipment providers; Event producers, Event workers; General interest; Insurance companies, and Performing artists

The scope of this standard is to define "crowd management" as distinguished from "crowd control", to provide an overview of crowd management theory and vocabulary, and to apply these terms to certain reasonably foreseeable risks that arise during live events. The standard is intended both to identify minimum requirements and provide questions and suggestions that help event organizers make reasonable choices under the circumstances of their event.

PHTA (Pool and Hot Tub Alliance)

Blake Pavlik bpavlik@phta.org | 1650 King Street, Suite 602 | Alexandria, VA 22314 www.PHTA.org

Revision

BSR/PHTA/ICC-7-202x, Standard for Suction Entrapment Avoidance in Swimming Pools, Wading Pools, Spas, Hot Tubs and Catch Basins (revision of ANSI/PHTA/ICC-7-2020)

Stakeholders: Designers, builders, installers, and operators of swimming pools, wading pools, spas, hot tubs and catch basins; professionals of vacuum limiting systems; manufacturers of safety vacuum release devices/systems; manufacturers of swimming pool and spa circulation devices/components, swimming pool and spa pumps; and automatic pump shut-off devices/systems; service companies; test labs and test lab engineers; parties interested in entrapment avoidance issues; building and health code officials; and consumers.

Project Need: As deaths and injuries have occurred when swimmers were pulled into unprotected discharge pipes or return side piping, the Consumer Product Safety Commission (CPSC) has requested that PHTA develop or amend voluntary standards to reduce these hazards and recommend performance requirements. This revision will provide minimum safety guidelines for return side entrapment avoidance and coordinate these requirements with performance tests in the most current published version of APSP-16 standard for Suction Outlet Fitting Assemblies (SOFA) for Use in Pools, Spas and Hot Tubs.

Interest Categories: Producer, User-Government, User-Consumer, General Interest

This standard covers design and performance criteria for all openings or fittings that allow water to enter or exit bodies of water including but not limited to return fittings, discharge openings, balance line openings between vessels and other gravity equalization piping, circulation systems, including components, devices, and related technology, installed to protect against entrapment hazards in residential and public swimming pools, wading pools, field-constructed spas and hot tubs, elevated pools, aquatic recreation facilities and any other bather-accessible body of water, including but not limited to, catch pools, infinity edge basins, water features and piping that interconnects such bodies of water. Pump-control systems and backflow prevention will be addressed.

SCTE (Society of Cable Telecommunications Engineers)

Natasha Aden <naden@scte.org> | 140 Philips Road | Exton, PA 19341-1318 www.scte.org

Revision

BSR/SCTE 98-202x, Test Method for Withstand Tightening Torque – F Male (revision of ANSI/SCTE 98-2020)

Stakeholders: Cable Telecommunications Industry

Project Need: Update to current technology

Interest Categories: User, Producer, General Interest

This test procedure applies as a method for determining whether a Male F connector withstands a specified torque when mated to a known F Female test port fixture. The scope is to measure the "F" Male interface torque and/or to determine the amount of torque that will cause one or more of the following conditions to occur; stripping of the internal threads, damage to the male interface; failure of the nut hex-flats.

Call for Comment on Standards Proposals

American National Standards

This section solicits public comments on proposed draft new American National Standards, including the national adoption of ISO and IEC standards as American National Standards, and on proposals to revise, reaffirm or withdraw approval of existing American National Standards. A draft standard is listed in this section under the ANSI-accredited standards developer (ASD) that sponsors it and from whom a copy may be obtained. Comments in connection with a draft American National Standard must be submitted in writing to the ASD no later than the last day of the comment period specified herein. Such comments shall be specific to the section (s) of the standard under review and include sufficient detail so as to enable the reader to understand the commenter's position, concerns and suggested alternative language, if appropriate. Please note that the ANSI Executive Standards Council (ExSC) has determined that an ASD has the right to require that interested parties submit public review comments electronically, in accordance with the developer's procedures.

Ordering Instructions for "Call-for-Comment" Listings

- 1. Order from the organization indicated for the specific proposal.
- 2. Use the full identification in your order, including the BSR prefix; for example, Electric Fuses BSR/SAE J554.
- 3. Include remittance with all orders.
- 4. BSR proposals will not be available after the deadline of call for comment.

Comments should be addressed to the organization indicated, with a copy to the Board of Standards Review, American National Standards Institute, 25 West 43rd Street, New York, NY 10036. e-mail: psa@ansi.org

* Standard for consumer products

Comment Deadline: December 14, 2025

ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.)

180 Technology Parkway, Peachtree Corners, GA 30092 | cking@ashrae.org, www.ashrae.org

Addenda

BSR/ASHRAE Addendum c to Standard 209-2024, Energy Simulation Aided Design for Buildings except Low-Rise Residential Buildings (addenda to ANSI/ASHRAE Standard 209-2024)

This addendum makes changes to Section 6.6, Modeling Cycle #6.

Click here to view these changes in full

Send comments (copy psa@ansi.org) to: http://www.ashrae.org/standards-research--technology/public-review-drafts

ASME (American Society of Mechanical Engineers)

Two Park Avenue, M/S 6-2B, New York, NY 10016-5990 | ansibox@asme.org, www.asme.org

Revision

BSR/ASME Y14.41-202x, Digital Product Definition Data Practices (revision of ANSI/ASME Y14.41-2019)

This Standard establishes requirements and references documents applicable to the preparation and revision of digital product definition data and datasets, hereafter referred to as datasets. This Standard defines exceptions and additional requirements to existing ASME standards for using product definition dataset(s) or drawing graphic sheet(s) in digital format.

Click here to view these changes in full

Send comments (copy psa@ansi.org) to: Fred Constantino

NENA (National Emergency Number Association)

1700 Diagonal Road, Suite 500, Alexandria, VA 22314 | crm@nena.org, www.nena.org

Revision

BSR/NENA STA-011.2-202x, NENA Standards for 9-1-1 Professional Education (revision and redesignation of ANSI/NENA STA-011.1-2021)

Currently, there is no standard guidance for colleges or universities that seek to develop degree programs for Public Safety Telecommunicators. Further, there are few if any programs that focus on training persons with the required knowledge to work on 9-1-1 Systems. With the increased attention in both areas, the increase of training standards and the need to ensure the 9-1-1 industry has a reliable work force both for PSAP operations and to manage, design, construct and maintain the 9-1-1 system and its many components, the opportunity exists for NENA to provide critically important guidance to those institutions interested in starting such programs. Click here to view these changes in full

Send comments (copy psa@ansi.org) to: Download and submit comments at https://dev.nena. org/higherlogic/ws/public/document?document_id=38329&wg_id=7f25e42e-de2f-4b22-a2a1-08407fb96049

NSF (NSF International)

789 N. Dixboro Road, Ann Arbor, MI 48105 | mmilla@nsf.org, www.nsf.org

Revision

BSR/NSF 53-202x (i164r2), Drinking Water Treatment Units - Health Effects (revision of ANSI/NSF 53-2024) The POU and POE systems addressed by this standard are designed to be used for the reduction of specific substances that may be present in drinking water (public or private) considered to be microbiologically safe and of known quality. Systems covered under this standard are intended to reduce substances that are considered established or potential health hazards.

Click here to view these changes in full

Send comments (copy psa@ansi.org) to: Monica Milla <mmilla@nsf.org>

NSF (NSF International)

789 N. Dixboro Road, Ann Arbor, MI 48105 | mmilla@nsf.org, www.nsf.org

Revision

BSR/NSF 58-202x (i112r2), Reverse Osmosis Drinking Water Treatment Systems (revision of ANSI/NSF 58 -2024)

The point-of-use (POU) RO drinking water treatment systems addressed by this standard are designed to be used for the reduction of specific substances that may be present in drinking water (public or private) considered to be microbiologically safe and of known quality. Systems covered by this standard are intended for reduction of total dissolved solids (TDS) and other contaminants specified herein.

Click here to view these changes in full

Send comments (copy psa@ansi.org) to: Monica Milla <mmilla@nsf.org>

ULSE (UL Standards and Engagement)

12 Laboratory Drive, Research Triangle Park, NC 27709-3995 | Vickie.T.Hinton@ul.org, https://ulse.org/

National Adoption

BSR/UL 60079-25-202x, Standard for Safety for Explosive Atmospheres - Part 25: Intrinsically Safe Electrical Systems (national adoption of IEC 60079-25 with modifications and revision of ANSI/UL 60079-25-2011 (R2024))

Revisions to the proposal document dated July 25, 2025, per responses to comments received.

Click here to view these changes in full

Send comments (copy psa@ansi.org) to: https://csds.ul.com/ProposalAvailable

ULSE (UL Standards and Engagement)

12 Laboratory Drive, Research Triangle Park, NC 27709-3995 | Doreen.Stocker@ul.org, https://ulse.org/

National Adoption

BSR/UL 62841-3-14-202x, Standard for Safety for Electric Motor-Operated Hand-Held Tools, Transportable Tools and Lawn and Garden Machinery - Safety - Part 3-14: Particular Requirements for Transportable Drain Cleaners (identical national adoption of IEC 62841-3-14REV1AMD 1 and revision of ANSI/UL 62841-3-14-2019 (R2023)) Proposed adoption of Amendment 1:2024-10 of the First Edition of IEC 62841-3-14:2017, Electric motor-operated hand-held tools, transportable tools and lawn and garden machinery - Safety - Part 3-14: Particular requirements for transportable drain cleaners, as a revision of the First Edition of UL 62841-3-14. Click here to view these changes in full

Send comments (copy psa@ansi.org) to: https://csds.ul.com/Home/ProposalsDefault.aspx

ULSE (UL Standards and Engagement)

100 Queen Street, Suite 1040, Ottawa, ON K1P 1J9 Canada | hilal.elmisilmani@ul.org, https://ulse.org/

New Standard

BSR/UL 1309A-202x, Standard for Safety for Cable for Use in Mobile Installations (new standard)
This standard covers Type P cables up through 2000 volts which may be used in accordance with Article 337 of the National Electrical Code (NEC), ANSI/NFPA 70. Cables complying with this Standard are eligible to be marked with the designation "Type P". Cable marked Type P is a cross-linked polyolefin insulated, single or multi conductor cable, with an equipment grounding conductor only applicable to multiconductor cables, overall nonmetallic jacket and may be armored and sheathed or unarmored. Type P cable can be used on mobile installations such as land drilling rigs, or other similar equipment and for industrial installations under engineering supervision.

Click here to view these changes in full

Send comments (copy psa@ansi.org) to: Follow the instructions on the following website to enter comments into the CSDS Work Area: https://csds.ul.org/ProposalAvailable

ULSE (UL Standards and Engagement)

100 Queen Street, Suite 1040, Ottawa, ON K1P 1J9 Canada | sabrina.khrebtov@ul.org, https://ulse.org/

Revision

BSR/UL 30-202X, Standard for Safety for Metallic and Nonmetallic Safety Cans for Flammable and Combustible Liquids (revision of ANSI/UL 514C-2024)

(1) Type 1 Safety Can.

Click here to view these changes in full

Send comments (copy psa@ansi.org) to: Follow the instructions on the following website to enter comments into the CSDS Work Area: https://csds.ul.com/ProposalAvailable

ULSE (UL Standards and Engagement)

1603 Orrington Ave, Evanston, IL 60210 | alan.t.mcgrath@ul.org, https://ulse.org/

Revision

BSR/UL 244B-202X, Standard for Field Installed and/or Field Connected Appliance Controls (revision of ANSI/UL 244B-2024)

ANSI/ISA MC 96.1, Temperature-Measurement Thermocouples, has been withdrawn and replaced with ANSI/ASTM E230/E230M, Standard Specification and Temperature-Electromotive Force (emf) Tables for Standardized Thermocouples. This proposal reflects this replacement.

Click here to view these changes in full

Send comments (copy psa@ansi.org) to: Alan McGrath <alan.t.mcgrath@ul.org>

ULSE (UL Standards and Engagement)

12 Laboratory Drive, Research Triangle Park, NC 27709-3995 | Tony.Partridge@ul.org, https://ulse.org/

Revision

BSR/UL 810A-202x, Standard for Electrochemical Capacitors (revision of ANSI/UL 810A-2012 (R2022))

Proposed Second Edition and Adoption of UL 810A in Canada

Click here to view these changes in full

Send comments (copy psa@ansi.org) to: Follow the instructions in the following website to enter comments into the CSDS Work Area: https://csds.ul.com/Home/ProposalsDefault.aspx

Comment Deadline: December 29, 2025

AAFS (American Academy of Forensic Sciences)

410 North 21st Street, Colorado Springs, CO 80904 | tambrosius@aafs.org, www.aafs.org

Withdrawal

ANSI/ASB Std 053, Standard for Report Content in Forensic Toxicology (withdrawal of ANSI/ASB Std 053-2020) This document delineates the requirements for reporting results from forensic toxicology analyses. Specifically, it is intended for the subdisciplines of human performance toxicology (e.g., driving-under-the-influence of alcohol or drugs and drug-facilitated crimes), postmortem forensic toxicology, non-regulated employment drug testing, courtordered toxicology (e.g., probation and parole, drug courts, child services), and general forensic toxicology (e.g., non-lethal poisonings or intoxications). The document does not apply to the reporting of breath alcohol testing results.

Single copy price: Free

Obtain an electronic copy from: tambrosius@aafs.org Send comments (copy psa@ansi.org) to: asb@aafs.org

AGMA (American Gear Manufacturers Association)

1001 N. Fairfax Street, Suite 500, Alexandria, VA 22314 | olson@motionpower.org, www.agma.org

National Adoption

BSR/AGMA ISO 10828, Worm gears - Worm profiles and gear mesh geometry (identical national adoption of ISO 10828:2024)

This document describes the thread profiles of the five most common worm profile types and provides formulae of their axial profiles. The five worm profile types covered in this document are designated by the letters A, C, I, K, and N. This document provides the formulae to calculate the path of contact, the conjugate profile of the worm wheel, the lines of contact, the radius of curvature and the velocities at points of contact. The application of those formulae to calculate parameters used in load capacity calculations are provided in 11.11.

Single copy price: \$287.00

Obtain an electronic copy from: Tech@motionpower.org

Send comments (copy psa@ansi.org) to: Todd Praneis, Tech@motionpower.org

ASME (American Society of Mechanical Engineers)

Two Park Avenue, M/S 6-2B, New York, NY 10016-5990 | ansibox@asme.org, www.asme.org

Revision

BSR/ASME B36.10-202x, Welded and Seamless Wrought Steel Pipe (revision of ANSI/ASME B36.10-2022)

This Standard covers the standardization of dimensions of welded and seamless wrought steel pipe for high or low temperatures and pressures.

Single copy price: Free

Obtain an electronic copy from: https://cstools.asme.org/csconnect/PublicReviewPage.cfm

Send comments (copy psa@ansi.org) to: Lydia Stanford

ASME (American Society of Mechanical Engineers)

Two Park Avenue, M/S 6-2B, New York, NY 10016-5990 | ansibox@asme.org, www.asme.org

Revision

BSR/ASME B36.19-202x, Welded and Seamless Wrought Stainless Steel Pipe (revision of ANSI/ASME B36.19 -2022)

This Standard covers the standardization of dimensions of welded and seamless wrought stainless steel pipe for high or low temperatures and pressures.

Single copy price: Free

Obtain an electronic copy from: https://cstools.asme.org/csconnect/PublicReviewPage.cfm

Send comments (copy psa@ansi.org) to: Lydia Stanford

BHMA (Builders Hardware Manufacturers Association)

529 14th Street NW, Suite 1280, Washington, DC 20045 | agambrall@kellencompany.com, www.buildershardware.com

Revision

BSR/BHMA A156.15-202x, Standard for Release Devices - Closer Holder, Electromagnetic and Electromechanical (revision of ANSI/BHMA A156.15-2021)

This Standard establishes requirements for door closers combined with hold-open devices or free-swinging door closers combined with releasing devices and includes performance tests covering operational, cyclical and finish criteria.

Single copy price: \$36.00 (non-member); \$18.00 (member) Obtain an electronic copy from: agambrall@kellencompany.com

Send comments (copy psa@ansi.org) to: Same

BHMA (Builders Hardware Manufacturers Association)

529 14th Street NW, Suite 1280, Washington, DC 20045 | agambrall@kellencompany.com, www.buildershardware.com

Revision

BSR/BHMA A156.23-202x, Standard for Electromagnetic Locks (revision of ANSI/BHMA A156.23-2021)

This Standard establishes requirements for electromagnetic locks and includes cyclical, dynamic, operational and strength tests. This product is used for access control.

Single copy price: \$36.00 (non-member); \$18.00 (member)

Obtain an electronic copy from: agambrall@kellencompany.com

Send comments (copy psa@ansi.org) to: Same

BICSI (Building Industry Consulting Service International)

8610 Hidden River Parkway, Tampa, FL 33637 | publications@bicsi.org, www.bicsi.org

Revision

BSR/BICSI 006-202x, Distributed Antenna System (DAS) Design and Implementation Best Practices (revision of ANSI/BICSI 006-2019)

This standard provides industry and service provider neutral requirements and acceptable best practices for the design and installation of a DAS. For brevity, as used in this document, the terms distributed antenna system or DAS includes other in-building wireless and similar systems, such as radiating cable and small-cell networks.

Single copy price: Free

Obtain an electronic copy from: publications@bicsi.org

Send comments (copy psa@ansi.org) to: Allen Dean <publications@bicsi.org>

CSA (CSA America Standards Inc.)

8501 East Pleasant Valley Road, Cleveland, OH 44131-5575 | ansi.contact@csagroup.org, www.csagroup.org

Reaffirmation

BSR Z21.57-2010 (R202x), Standard for Recreational Vehicle Cooking Gas Appliances (same as CSA Z21.57) (reaffirmation of ANSI Z21.57-2010 (R2021))

This standard applies to newly produced compact cooking gas appliances hereinafter referred to as units or appliances, constructed of entirely new, unused parts and materials, intended for installation in recreational vehicles, including recreational park trailers: (a) For use with propane gases only; or (b) For use with natural gas convertible for use with propane gas. This standard applies to cooking appliances designed to be recessed into, placed upon and attached to the construction of a recreational vehicle.

Single copy price: Free

Obtain an electronic copy from: ansi.contact@csagroup.org

Send comments (copy psa@ansi.org) to: ansi.contact@csagroup.org

CSA (CSA America Standards Inc.)

8501 East Pleasant Valley Road, Cleveland, OH 44131-5575 | ansi.contact@csagroup.org, www.csagroup.org

Revision

BSR Z21.10.1 CSA 4.1-202x, Gas Water Heaters, Volume I, Storage Water Heaters with Input Ratings of 75,000 Btu per Hour or Less (same as CSA 4.1) (revision of ANSI Z21.10.1-2019 (R2024))

Details test and examination criteria for automatic storage water heaters with input ratings of 75,000 Btu per hour (21 980 W) or less for use with natural, manufactured and mixed gases, liquefied petroleum gases, and LP gas-air mixtures.

Single copy price: Free

Obtain an electronic copy from: ansi.contact@csagroup.org

Send comments (copy psa@ansi.org) to: ansi.contact@csagroup.org

CSA (CSA America Standards Inc.)

8501 East Pleasant Valley Road, Cleveland, OH 44131-5575 | ansi.contact@csagroup.org, www.csagroup.org

Revision

BSR/CSA Z21.47-CSA 2.3-202x, Gas-fired central furnaces (same as CSA 2.3) (revision of ANSI/CSA Z21.47/CSA 2.3-2021)

Details test and examination criteria for automatically operating gas-fired central furnaces for use for installation in residential, commercial, and industrial structures including furnaces for direct vent, recreational vehicle, outdoor, and manufactured (mobile) homes. This Standard applies to Category I, Category II, Category III, and Category IV central furnaces. In Canada, this Standard applies to gas fired central furnaces having inputs up to and including 400,000 Btu/hr (117 228 W).

Single copy price: Free

Obtain an electronic copy from: ansi.contact@csagroup.org

Send comments (copy psa@ansi.org) to: ansi.contact@csagroup.org

ESTA (Entertainment Services and Technology Association)

271 Cadman Plaza, P.O. Box 23200, Brooklyn, NY 11202-3200 | standards@esta.org, www.esta.org

New Standard

BSR/E1.37-8-202x, Entertainment Technology - IPv4 and IPv6 Network Configuration Messages for E1.20 RDM (new standard)

Provide configuration messages for common IPv4/IPv6 and related network settings in devices that use the Remote Device Management suite of communications (ANSI E1.20 RDM and ANSI E1.33 RDMnet).

Single copy price: Free

Obtain an electronic copy from: https://tsp.esta.org/tsp/documents/public_review_docs.php Send comments (copy psa@ansi.org) to: Richard Nix <standards@esta.org>

ESTA (Entertainment Services and Technology Association)

271 Cadman Plaza, P.O. Box 23200, Brooklyn, NY 11202-3200 | standards@esta.org, www.esta.org

Revision

BSR/ES1.4-202x, Event Safety - Event Fire Safety Requirements (revision of ANSI ES1.4-2021)

This standard applies to fire safety in the live event industry. Fire safety is the identification and assessment of event-specific fire risks, and the effects that fire and smoke will have to the life safety of all persons who may be affected. It includes those measures required to minimize the likelihood of a fire starting, means of escape (egress), fire safety monitoring, and the methods used to limit the development, spread, and effects of fire. This standard does not address: (a) requirements related to certifying fire fighters and their associated training; (b) requirements related to the construction of firefighting equipment; (c) requirements related to the construction, use, and maintenance of motorized fire fighting apparatus; (d) technical requirements of any equipment used for communications, illumination, signs or other hardware; or (e) installation of fixed fire alarm and suppression systems.

Single copy price: Free

Obtain an electronic copy from: https://tsp.esta.org/tsp/documents/public_review_docs.php

Send comments (copy psa@ansi.org) to: Richard Nix <standards@esta.org>

ESTA (Entertainment Services and Technology Association)

271 Cadman Plaza, P.O. Box 23200, Brooklyn, NY 11202-3200 | standards@esta.org, www.esta.org

Revision

BSR/E1.6-1-202x, Entertainment Technology - Powered Hoist Systems (revision of ANSI E1.6-1-2021) ANSI E1.6-2-2020 is part of the E1.6-powered entertainment rigging suite of standards. It covers the design, inspection, and maintenance of serially manufactured electric link chain hoists used in the entertainment industry. This standard does not cover attachment to the load or to the overhead structure. Controls used for multiple hoist operation are excluded from the scope of this part of the standard.

Single copy price: Free

Obtain an electronic copy from: https://tsp.esta.org/tsp/documents/public_review_docs.php

Send comments (copy psa@ansi.org) to: Richard Nix <standards@esta.org>

ESTA (Entertainment Services and Technology Association)

271 Cadman Plaza, P.O. Box 23200, Brooklyn, NY 11202-3200 | standards@esta.org, www.esta.org

Revision

BSR/E1.6-3-202x, Selection and Use of Electric Chain Hoists in the Entertainment Industry (revision of ANSI/E1.6 -3-2019)

This standard establishes minimum safety requirements for the selection and use of serially manufactured electric link-chain hoists in the entertainment industry. This standard is intended to reduce injury and provide for the protection of life, limb and property. This standard does not address the design or maintenance of these hoists.

Single copy price: Free

Obtain an electronic copy from: https://tsp.esta.org/tsp/documents/public_review_docs.php Send comments (copy psa@ansi.org) to: Richard Nix <standards@esta.org>

ESTA (Entertainment Services and Technology Association)

271 Cadman Plaza, P.O. Box 23200, Brooklyn, NY 11202-3200 | standards@esta.org, www.esta.org

Revision

BSR/E1.27-2-202x, Entertainment Technology - Recommended Practice for Permanently Installed Control Cables for Use with ANSI E1.11 (DMX512-A) and USITT DMX512/1990 Products (revision of ANSI E1.27-2-2009 (R2019))

E1.27-2 covers cables permanently installed to carry control messages conforming to ANSI E1.11 and USITT DMX512.

Single copy price: Free

Obtain an electronic copy from: https://tsp.esta.org/tsp/documents/public_review_docs.php

Send comments (copy psa@ansi.org) to: Richard Nix <standards@esta.org>

ESTA (Entertainment Services and Technology Association)

271 Cadman Plaza, P.O. Box 23200, Brooklyn, NY 11202-3200 | standards@esta.org, www.esta.org

Revision

BSR/E1.37-7-202x, Additional Message Sets for E1.20 (RDM) Gateway and Splitter Configuration (revision of ANSi E1.37-7-2019)

This standard provides additinal Get/Set Parameter Messages for use with the E1.20 Remote Device Management protocol [RDM] and ANSI E1.33 RDMnet protocol [RDMnet]. It contains messages relating to configuring managed splitters, proxy devices, and RDMnet Devices.

Single copy price: Free

Obtain an electronic copy from: https://tsp.esta.org/tsp/documents/public review docs.php

Send comments (copy psa@ansi.org) to: standards@esta.org

ISA (International Society of Automation)

3252 S. Miami Blvd, Suite 102, Durham, NC 27703 | tbailey@isa.org, www.isa.org

National Adoption

BSR/ISA 62381-202x, Automation Systems in the Process Industry - Factory Acceptance Test (FAT), Site Acceptance Test (SAT), and Site Integration Test (SIT) (identical national adoption of IEC 62381:2024) Defines procedures and specifications for the Factory Acceptance Test (FAT), the Site Acceptance Test (SAT), and the Site Integration Test (SIT) of an industrial automation system. These tests are carried out to prove that the automation system meets the requirements of the specification.

Single copy price: \$9.00 USD

Obtain an electronic copy from: standards@isa.org Send comments (copy psa@ansi.org) to: Same

ISA (International Society of Automation)

3252 S. Miami Blvd, Suite 102, Durham, NC 27703 | tbailey@isa.org, www.isa.org

National Adoption

BSR/ISA 62382-202x, Automation Systems in the Process Industry - Electrical and Instrumentation Loop Check (identical national adoption of IEC 62382:2024 and revision of ANSI/ISA 62382-2012)

Defines procedures and specifications for electrical and instrumentation loop check, which comprises the activities between the completion of the loop construction (including installation and point-to-point checks) and the start-up of cold commissioning. This standard is applicable for the construction of new plants and for expansion/retrofits (i.e.. revamping) of E&I (Electrical & Instrument) installations in existing plants (including PLC, BAS, DCS, panel-mounted and field instrumentation). It does not include a detailed checkout of power distribution systems, except as they relate to the loops being checked (i.e., a motor starter or a power supply to a four-wire transmitter).

Single copy price: \$9.00

Obtain an electronic copy from: standards@isa.org Send comments (copy psa@ansi.org) to: Same

MSS (Manufacturers Standardization Society)

441 N. Lee Street, Alexandria, VA 22314 | standards@msshq.org, www.mss-hq.org

Revision

BSR/MSS 44-2025-202x, Steel Pipeline Flanges (revision of ANSI/MSS SP-44-2019)

This Standard Practice covers pressure-temperature ratings, materials, dimensions, tolerances, marking, and testing for steel pipeline flanges. The welding neck type flanges shall be forged steel, and the blind flanges may be made from either forged steel or from steel plate.

Single copy price: Free for members: \$255.00 for non-members

Obtain an electronic copy from: standards@msshq.org

Send comments (copy psa@ansi.org) to: Same

NENA (National Emergency Number Association)

1700 Diagonal Road, Suite 500, Alexandria, VA 22314 | crm@nena.org, www.nena.org

Reaffirmation

BSR/NENA STA-026.5-2016 (R202x), NENA PSAP Master Clock Standard (reaffirmation of ANSI/NENA STA-026.5 -2016 (R2022))

Reaffirmation of the current standard NENA Master Clock Standard, NENA-STA-026.5-2022.

Single copy price: Free

Obtain an electronic copy from: Download and submit comments at https://dev.nena.

org/higherlogic/ws/public/document?document_id=38827&wg_id=85e5bdbb-9f1c-4ad5-9ecc-3e1da12eb38f Send comments (copy psa@ansi.org) to: Download and submit comments at https://dev.nena.

org/higherlogic/ws/public/document?document_id=38827&wg_id=85e5bdbb-9f1c-4ad5-9ecc-3e1da12eb38f

ULSE (UL Standards and Engagement)

12 Laboratory Drive, Research Triangle Park, NC 27709-3995 | Doreen.Stocker@ul.org, https://ulse.org/

National Adoption

BSR/UL 62841-4-1-202x, Standard for Safety for Electric Motor-Operated Hand-Held Tools, Transportable Tools and Lawn and Garden Machinery - Safety - Part 4-1: Particular Requirements for Chain Saws (national adoption of IEC 62841-4-1:2017/AMD1:2024 with modifications and revision of ANSI/UL 62841-4-1-2021)

Proposed adoption of IEC 62841-4-1:2017/AMD1:2024/COR1:2025 with national deviation modification.

Single copy price: Free

Obtain an electronic copy from: https://csds.ul.com/Home/ProposalsDefault.aspx

Send comments (copy psa@ansi.org) to: https://csds.ul.com/Home/ProposalsDefault.aspx

ULSE (UL Standards and Engagement)

100 Queen Street, Suite 1040, Ottawa, Canada, ON K1P 1J9 | Hannah.Kirkland@UL.org, https://ulse.org/

Reaffirmation

BSR/UL 541-2020 (R202x), Standard for Safety for Refrigerated Vending Machines (reaffirmation of ANSI/UL 541-2020)

Reaffirmation and continuance of the Ninth Edition of the Standard for Safety for Refrigerated Vending Machines, UL 541, as an American National Standard.

Single copy price: Free

Obtain an electronic copy from: https://csds.ul.com/ProposalAvailable

Send comments (copy psa@ansi.org) to: Follow the instructions at the following website to enter comments into the CSDS Work Area: https://csds.ul.com/ProposalAvailable

ULSE (UL Standards and Engagement)

12 Laboratory Drive, Research Triangle Park, NC 27709 | Adam.Payrot@ul.org, https://ulse.org/

Reaffirmation

BSR/UL 1429-2020 (R202x), Standard for Safety for Pullout Switches (reaffirmation of ANSI/UL 1429-2020) Reaffirmation and continuance of the 4th Edition of the Standard for Pullout Switches, UL 1429, as an American National Standard.

Single copy price: Free

Obtain an electronic copy from: https://csds.ul.com/ProposalAvailable

Send comments (copy psa@ansi.org) to: Follow the instructions at the following website to enter comments into the CSDS Work Area: https://csds.ul.com/ProposalAvailable

ULSE (UL Standards and Engagement)

12 Laboratory Dr, Research Triangle, NC 27709 | anastasia.letaw@ul.org, https://ulse.org/

Reaffirmation

BSR/UL 2748A-2017 (R202x), Standard for Safety for Arcing Fault Interrupting Devices (reaffirmation of ANSI/UL 2748A-2017 (R2021))

Reaffirmation and continuance of the First Edition of the Standard for Safety for Arcing Fault Interrupting Devices, UL 2748A, as an American National Standard.

Single copy price: Free

Obtain an electronic copy from: https://csds.ul.com/ProposalAvailable

Send comments (copy psa@ansi.org) to: https://csds.ul.com/ProposalAvailable

Comment Deadline: January 13, 2026

ULSE (UL Standards and Engagement)

1603 Orrington Ave, Suite 20000, Evanston, IL 60201 | Susan.P.Malohn@ul.org, https://ulse.org/

National Adoption

BSR/UL 61730-1-202x, Standard for Safety for Photovoltaic (PV) Module Safety Qualification - Part 1: Requirements for Construction (national adoption of IEC 61730-1 with modifications and revision of ANSI/UL

61730-1-2022)

The Third Edition of the UL IEC-Based Standard for Photovoltaic (PV) Module Safety Qualification - Part 1:

Requirements for Construction, UL 61730-1, with US National Differences.

Single copy price: Free

Order from: https://www.shopulstandards.com/

Send comments (copy psa@ansi.org) to: Follow the instructions in the following website to enter comments into

the CSDS Work Area: https://csds.ul.org/ProposalAvailable

Comment Deadline: January 13, 2026

ULSE (UL Standards and Engagement)

1603 Orrington Ave, Suite 20000, Evanston, IL 60201 | Susan.P.Malohn@ul.org, https://ulse.org/

National Adoption

BSR/UL 61730-2-202x, Standard for Safety for Photovoltaic (PV) Module Safety Qualification - Part 2: Requirements for Testing (national adoption of IEC 61730-2 with modifications and revision of ANSI/UL 61730-2 -2025)

The Third Edition of the UL IEC-Based Standard for Photovoltaic (PV) Module Safety Qualification – Part 2:

Requirements for Testing, UL 61730-2, with US National Differences.

Single copy price: Free

Order from: https://www.shopulstandards.com/

Send comments (copy psa@ansi.org) to: Follow the instructions in the following website to enter comments into

the CSDS Work Area: https://csds.ul.org/ProposalAvailable

Project Withdrawn

In accordance with clause 4.2.1.3.3 Discontinuance of a standards project of the ANSI Essential Requirements, an accredited standards developer may abandon the processing of a proposed new or revised American National Standard or portion thereof if it has followed its accredited procedures. The following projects have been withdrawn accordingly:

ATIS (Alliance for Telecommunications Industry Solutions)

1200 G Street NW, Suite 500, Washington, DC 20005 | akarditzas@atis.org, www.atis.org

ATIS 0100036.2013 (R2018), Media Plane Performance Security Impairments Standard for Evolving VoIP/Multimedia Networks (withdrawal of ANSI ATIS 0100036-2013 (R2018))
Send comments (copy psa@ansi.org) to: Anna Karditzas akarditzas@atis.org

ICE (Institute for Credentialing Excellence)

2001 K Street NW, 3rd Floor North, Washington, DC 20006 | Idombrowski@credentialingexcellence.org, www. credentialingexcellence.org

BSR/NOCA 1200-200x, Personnel Certification - Psychometric Requirements (new standard)
Send comments (copy psa@ansi.org) to: Liz Dombrowski < Idombrowski@credentialingexcellence.org>

Final Actions on American National Standards

The standards actions listed below have been approved by the ANSI Board of Standards Review (BSR) or by an ANSI-Audited Designator, as applicable.

AAFS (American Academy of Forensic Sciences)

410 North 21st Street, Colorado Springs, CO 80904 | tambrosius@aafs.org, www.aafs.org

ANSI/ASB BPR 193-2025, Best Practice Recommendations for Determining What Scene and Death Locations a Medicolegal Death Investigation Authority Should Respond to for Investigation. (new standard) Final Action Date: 11/4/2025 | New Standard

AAMI (Association for the Advancement of Medical Instrumentation)

901 N. Glebe Road, Suite 300, Arlington, VA 22203 | tkim@aami.org, www.aami.org

ANSI/AAMI/ISO 15882 (R2025), Sterilization of health care products - Chemical indicators - Guidance for selection, use and interpretation of results (reaffirm a national adoption ANSI/AAMI/ISO 15882-2008 (R2013)) Final Action Date: 11/10/2025 | Reaffirmation

AIA (Aerospace Industries Association)

1000 Wilson Boulevard, Suite 1700, Arlington, VA 22209 | chris.carnahan@aia-aerospace.org, www.aia-aerospace.org

ANSI/AIA NAS9945-2025, Airworthiness Engineering Training and Education (new standard) Final Action Date: 11/10/2025 | New Standard

API (American Petroleum Institute)

200 Massachusetts Ave, NW, Suite 11103, Washington, DC, DC 20001 | montebellon@api.org, www.api.org

ANSI/API STANDARD 2350-2020 (R2025), Overfill Prevention of Storage Tanks in Petroleum Facilities (reaffirmation of ANSI/API STANDARD 2350-2020) Final Action Date: 11/7/2025 | Reaffirmation

ASABE (American Society of Agricultural and Biological Engineers)

2950 Niles Road, Saint Joseph, MI 49085 | wall@asabe.org, https://www.asabe.org/

ANSI/ASABE/USBI S668 NOV2025, Methods for Measurement and Testing of Biochar (new standard) Final Action Date: 11/7/2025 | New Standard

ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.)

180 Technology Pkwy, Peachtree Corners, GA 30092 | mgraham@ashrae.org, www.ashrae.org

ANSI/ASHRAE Addendum k to ANSI/ASHRAE Standard 34-2024, Designation and Safety Classification of Refrigerants (addenda to ANSI/ASHRAE Standard 34-2022) Final Action Date: 11/3/2025 | Addenda

ANSI/ASHRAE Addendum z to ANSI/ASHRAE Standard 15-2024, Safety Standard for Refrigeration Systems (addenda to ANSI/ASHRAE Standard 15-2022) Final Action Date: 11/3/2025 | Addenda

ANSI/ASHRAE/IES Addendum ba to ANSI/ASHRAE/IES Standard 90.1-2022, Energy Standard for Sites and Buildings Except Low-Rise Residential Buildings (addenda to ANSI/ASHRAE/IES Standard 90.1-2022) Final Action Date: 11/3/2025 | Addenda

ANSI/ASHRAE/IES Addendum bq to ANSI/ASHRAE/IES Standard 90.1-2022, Energy Standard for Sites and Buildings Except Low-Rise Residential Buildings (addenda to ANSI/ASHRAE/IES Standard 90.1-2022) Final Action Date: 11/3/2025 | Addenda

ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.)

180 Technology Parkway, Peachtree Corners, GA 30092 | etoto@ashrae.org, www.ashrae.org

ANSI/ASHRAE/IES Addendum bt to ANSI/ASHRAE/IES Standard 90.1-2022, Energy Standard for Sites and Buildings Except Low-Rise Residential Buildings (addenda to ANSI/ASHRAE/IES Standard 90.1-2022) Final Action Date: 11/3/2025 | Addenda

ANSI/ASHRAE/IES Addendum cc to ANSI/ASHRAE/IES Standard 90.1-2022, Energy Standard for Sites and Buildings Except Low-Rise Residential Buildings (addenda to ANSI/ASHRAE/IES Standard 90.1-2022) Final Action Date: 11/3/2025 | Addenda

ANSI/ASHRAE/IES Addendum ci to ANSI/ASHRAE/IES Standard 90.1-2022, Energy Standard for Sites and Buildings Except Low-Rise Residential Buildings (addenda to ANSI/ASHRAE/IES Standard 90.1-2022) Final Action Date: 11/3/2025 | Addenda

ANSI/ASHRAE/IES Addendum cm to ANSI/ASHRAE/IES Standard 90.1-2022, Energy Standard for Sites and Buildings Except Low-Rise Residential Buildings (addenda to ANSI/ASHRAE/IES Standard 90.1-2022) Final Action Date: 11/3/2025 | Addenda

ANSI/ASHRAE/IES Addendum da to ANSI/ASHRAE/IES Standard 90.1-2022, Energy Standard for Sites and Buildings Except Low-Rise Residential Buildings (addenda to ANSI/ASHRAE/IES Standard 90.1-2022) Final Action Date: 11/3/2025 | Addenda

ANSI/ASHRAE/IES Addendum db to ANSI/ASHRAE/IES Standard 90.1-2022, Energy Standard for Sites and Buildings Except Low-Rise Residential Buildings (addenda to ANSI/ASHRAE/IES Standard 90.1-2022) Final Action Date: 11/3/2025 | Addenda

ANSI/ASHRAE/IES Addendum dh to ANSI/ASHRAE/IES Standard 90.1-2022, Energy Standard for Sites and Buildings Except Low-Rise Residential Buildings (addenda to ANSI/ASHRAE/IES Standard 90.1-2022) Final Action Date: 11/3/2025 | Addenda

ANSI/ASHRAE/IES Addendum di to ANSI/ASHRAE/IES Standard 90.1-2022, Energy Standard for Sites and Buildings Except Low-Rise Residential Buildings (addenda to ANSI/ASHRAE/IES Standard 90.1-2022) Final Action Date: 11/3/2025 | Addenda

ANSI/ASHRAE/IES Addendum dl to ANSI/ASHRAE/IES Standard 90.1-2022, Energy Standard for Sites and Buildings Except Low-Rise Residential Buildings (addenda to ANSI/ASHRAE/IES Standard 90.1-2022) Final Action Date: 11/3/2025 | Addenda

ANSI/ASHRAE/IES Addendum dn to ANSI/ASHRAE/IES Standard 90.1-2022, Energy Standard for Sites and Buildings Except Low-Rise Residential Buildings (addenda to ANSI/ASHRAE/IES Standard 90.1-2022) Final Action Date: 11/3/2025 | Addenda

ANSI/ASHRAE/IES Addendum do to ANSI/ASHRAE/IES Standard 90.1-2022, Energy Standard for Sites and Buildings Except Low-Rise Residential Buildings (addenda to ANSI/ASHRAE/IES Standard 90.1-2022) Final Action Date: 11/3/2025 | Addenda

ANSI/ASHRAE/IES Addendum dp to ANSI/ASHRAE/IES Standard 90.1-2022, Energy Standard for Sites and Buildings Except Low-Rise Residential Buildings (addenda to ANSI/ASHRAE/IES Standard 90.1-2022) Final Action Date: 11/3/2025 | Addenda

ASTM (ASTM International)

100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 | accreditation@astm.org, www.astm.org

ANSI/ASTM E3404-2025, Guide for Forensic Examination of Fibers (new standard) Final Action Date: 11/1/2025 | *New Standard*

ASTM (ASTM International)

100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 | accreditation@astm.org, www.astm.org

ANSI/ASTM F3790-2025, Specification for Pole Vault Plant Boxes (new standard) Final Action Date: 10/21/2025 | *New Standard*

ANSI/ASTM E3189-2019 (R2025), Practice for Separation of Ignitable Liquid Residues from Fire Debris Samples by Static Headspace Concentration onto an Adsorbent Tube (reaffirmation of ANSI/ASTM E3189-2019) Final Action Date: 11/1/2025 | Reaffirmation

ANSI/ASTM E1159 (R2025), Specification for Thermocouple Materials, Platinum-Rhodium Alloys, and Platinum (reaffirmation of ANSI/ASTM E1159-2020) Final Action Date: 10/21/2025 | Reaffirmation

ANSI/ASTM F1750-2011 (R2025), Specification for Paintball Marker Threaded-Propellant Source Interface (reaffirmation of ANSI/ASTM F1750-2011 (R2020)) Final Action Date: 10/21/2025 | Reaffirmation

ANSI/ASTM F2680-2017 (R2025), Test Methods and Specifications for Bicycle Manually Operated Front Wheel Retention Systems (reaffirmation of ANSI/ASTM F2680-2017) Final Action Date: 10/21/2025 | Reaffirmation

ANSI/ASTM E2881-2025, Test Method for Extraction and Derivatization of Vegetable Oils and Fats from Fire Debris and Liquid Samples with Analysis by Gas Chromatography-Mass Spectrometry (revision of ANSI/ASTM E2881-2018) Final Action Date: 11/1/2025 | Revision

AWWA (American Water Works Association)

6666 W. Quincy Avenue, Denver, CO 80235 | mrohr@awwa.org, www.awwa.org

ANSI/AWWA C810-2025, Replacement and Flushing of Lead Service Lines (revision of ANSI/AWWA C810-2017) Final Action Date: 11/4/2025 | Revision

IAPMO (ASSE Chapter) (ASSE International Chapter of IAPMO)

18927 Hickory Creek Drive, Suite 220, Mokena, IL 60448 | standards@iapmostandards.org, www.asse-plumbing.org

ANSI/ASSE 1064-2025, Performance Requirements for Backflow Prevention Assembly Field Test Kits (revision of ANSI/ASSE 1064-2020) Final Action Date: 11/10/2025 | Revision

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | s.merten@ieee.org, www.ieee.org

ANSI/IEEE C57.12.38-2025, Draft Standard for Pad-Mounted-Type, Self-Cooled, Single-Phase Distribution Transformers 250 kVA and Smaller: High Voltage, 34 500 GrdY/19 920 V and Below; Low Voltage, 480/240 V and Below (new standard) Final Action Date: 11/7/2025 | New Standard

MSS (Manufacturers Standardization Society)

441 N. Lee Street, Alexandria, VA 22314 | standards@msshq.org, www.mss-hq.org

ANSI/MSS SP-134-2025, Valves for Cryogenic Service, including Requirements for Body/Bonnet Extensions (revision of ANSI/MSS SP-134-2012) Final Action Date: 11/10/2025 | Revision

NSF (NSF International)

789 N. Dixboro Road, Ann Arbor, MI 48105 | mmilla@nsf.org, www.nsf.org

ANSI/NSF 58-2025 (i98r1), Reverse Osmosis Drinking Water Treatment Systems (revision of ANSI/NSF 58-2024) Final Action Date: 11/5/2025 | Revision

ANSI/NSF/CAN 50-2025 (i203r1), Equipment and Chemicals for Swimming Pools, Spas, Hot Tubs, and Other Recreational Water Facilities (revision of ANSI/NSF/CAN 50-2023) Final Action Date: 10/30/2025 | Revision

TAPPI (Technical Association of the Pulp and Paper Industry)

15 Technology Parkway, Suite 115, Peachtree Corners, GA 30092 | standards@tappi.org, www.tappi.org

ANSI/TAPPI T 257 sp-2014 (R2025), Sampling and preparing wood for analysis (reaffirmation of ANSI/TAPPI T 257 sp -2014 (R2021)) Final Action Date: 11/6/2025 | Reaffirmation

ANSI/TAPPI T 258 om-2021 (R2025), Basic density and moisture content of pulpwood (reaffirmation of ANSI/TAPPI T 258 om-2021) Final Action Date: 11/6/2025 | Reaffirmation

ANSI/TAPPI T 272 sp-2021 (R2025), Forming handsheets for reflectance testing of pulp (sheet machine procedure) (reaffirmation of ANSI/TAPPI T 272 sp-2021) Final Action Date: 11/6/2025 | Reaffirmation

ANSI/TAPPI T 414 om-2021 (R2025), Internal tearing resistance of paper (Elmendorf-type method) (reaffirmation of ANSI/TAPPI T 414 om-2021) Final Action Date: 11/6/2025 | Reaffirmation

ANSI/TAPPI T 437 om-2012 (R2025), Dirt in paper and paperboard (reaffirmation of ANSI/TAPPI T 437 om-2012 (R2021)) Final Action Date: 11/6/2025 | *Reaffirmation*

ANSI/TAPPI T 454 om-2015 (R2025), Turpentine test for voids in glassine and greaseproof papers (reaffirmation of ANSI/TAPPI T 454 om-2015 (R2021)) Final Action Date: 11/6/2025 | Reaffirmation

ANSI/TAPPI T 480 om-2015 (R2025), Specular gloss of paper and paperboard at 75 degrees (reaffirmation of ANSI/TAPPI T 480 om-2015 (R2020)) Final Action Date: 11/6/2025 | Reaffirmation

ANSI/TAPPI T 512 sp-2012 (R2025), Creasing of flexible packaging material paper specimens for testing (reaffirmation of ANSI/TAPPI T 512 sp-2012 (R2021)) Final Action Date: 11/6/2025 | Reaffirmation

ANSI/TAPPI T 529 om-2014 (R2025), Surface pH measurement of paper (reaffirmation of ANSI/TAPPI T 529 om-2014 (R2021)) Final Action Date: 11/6/2025 | Reaffirmation

ANSI/TAPPI T 556 om-2021 (R2025), Bending resistance of paper and paperboard by single-point bending methods (reaffirmation of ANSI/TAPPI T 556 om-2021) Final Action Date: 11/6/2025 | Reaffirmation

ANSI/TAPPI T 560 om-2021 (R2025), CIE whiteness and tint of paper and paperboard (d/0 geometry, C/2 illuminant/observer) (reaffirmation of ANSI/TAPPI T 560 om-2021) Final Action Date: 11/6/2025 | Reaffirmation

ANSI/TAPPI T 562 om-2021 (R2025), CIE whiteness and tint of paper and paperboard (45/0 geometry, C/2 illuminant/observer) (reaffirmation of ANSI/TAPPI T 562 om-2021) Final Action Date: 11/6/2025 | Reaffirmation

ANSI/TAPPI T 563 om-2015 (R2025), Equivalent black area (EBA) and count of visible dirt in pulp, paper and paperboard by image analysis (reaffirmation of ANSI/TAPPI T 563 om-2015 (R2021)) Final Action Date: 11/6/2025 | Reaffirmation

ANSI/TAPPI T 567 om-2020 (R2025), Determination of effective residual ink concentration (ERIC) by infrared reflectance measurement (reaffirmation of ANSI/TAPPI T 567 om-2020) Final Action Date: 11/6/2025 | Reaffirmation

ANSI/TAPPI T 657 sp-2021 (R2025), Sampling of fillers and pigments (reaffirmation of ANSI/TAPPI T 657 sp-2021) Final Action Date: 11/6/2025 | Reaffirmation

ANSI/TAPPI T 1215 sp-2021 (R2025), The determination of instrumental color differences (reaffirmation of ANSI/TAPPI T 1215 sp-2021) Final Action Date: 11/6/2025 | *Reaffirmation*

ULSE (UL Standards and Engagement)

100 Queen St. Suite 1040, Ottawa, ON Canada, ON K1P 1J9 | Felipe.Luz@ul.org, https://ulse.org/

ANSI/UL 1053-2011 (R2025), Standard for Safety for Ground-Fault Sensing and Relaying Equipment (reaffirmation of ANSI/UL 1053-2011 (R2020)) Final Action Date: 11/5/2025 | Reaffirmation

ANSI/UL 2557-2020 (R2025), Standard for Safety for Membrane Switches (reaffirmation of ANSI/UL 2557-2020) Final Action Date: 11/4/2025 | Reaffirmation

ANSI/UL 60079-30-1-2017 (R2025), Standard for Explosive Atmospheres - Part 30-1: Electrical Resistance Trace Heating - General and Testing Requirements (reaffirm a national adoption ANSI/UL 60079-30-1-2017 (R2021)) Final Action Date: 11/5/2025 | Reaffirmation

ANSI/UL 1242-2025, Standard for Safety for Electrical Intermediate Metal Conduit - Steel (revision of ANSI/UL 1242 -2022) Final Action Date: 11/3/2025 | Revision

ANSI/UL 1450-2025a, Standard for Motor-Operated Air Compressors, Vacuum Pumps, and Painting Equipment (revision of ANSI/UL 1450-2019 (R2021)) Final Action Date: 11/6/2025 | *Revision*

ANSI/UL 1821-2025, Standard for Thermoplastic Sprinkler Pipe and Fittings for Fire Protection Service (revision of ANSI/UL 1821-2019) Final Action Date: 11/10/2025 | Revision

ANSI/UL 2416-2025, Standard for Safety for Audio/Video, Information and Communication Technology Equipment Cabinet, Enclosure and Rack Systems (revision of ANSI/UL 2416-2020) Final Action Date: 11/7/2025 | Revision

Call for Members (ANS Consensus Bodies)

Directly and materially interested parties who wish to participate as a member of an ANS consensus body for the standards listed are requested to contact the sponsoring developer directly in a timely manner.

ANSI Accredited Standards Developer

INCITS Executive Board – ANSI Accredited SDO and US TAG to ISO/IEC JTC 1, Information Technology

The InterNational Committee for Information Technology Standards (INCITS), an ANSI accredited SDO, is the forum of choice for information technology developers, producers and users for the creation and maintenance of formal de jure IT standards. INCITS' mission is to promote the effective use of Information and Communication Technology through standardization in a way that balances the interests of all stakeholders and increases the global competitiveness of the member organizations.

The INCITS Executive Board serves as the consensus body with oversight of its 40+ Technical Committees. Additionally, the INCITS Executive Board has the international leadership role as the US Technical Advisory Group (TAG) to ISO/IEC JTC 1, Information Technology.

Membership in the INCITS Executive Board is open to all directly and materially interested parties in accordance with INCITS membership rules. To find out more about participating on the INCITS Executive Board, contact Jennifer Garner at jgarner@itic.org or visit http://www.incits.org/participation/membership-info for more information. Membership in all interest categories is always welcome; however, the INCITS Executive Board seeks to broaden its membership base in the following underrepresented categories:

- · Producer-Software
- · Producer-Hardware
- Distributor
- Service Provider
- Users
- Consultants
- Government
- SDO and Consortia Groups
- · Academia
- General Interest

ANSI Accredited Standards Developer

SCTE (Society of Cable Telecommunications Engineers)

SCTE, an ANSI-accredited SDO, is the primary organization for the creation and maintenance of standards for the cable telecommunications industry. SCTE's standards mission is to develop standards that meet the needs of cable system operators, content providers, network and customer premises equipment manufacturers, and all others who have an interest in the industry through a fair, balanced and transparent process.

SCTE is currently seeking to broaden the membership base of its ANS consensus bodies and is interested in new members in all membership categories to participate in new work in fiber-optic networks, advanced advertising, 3D television, and other important topics. Of particular interest is membership from the content (program and advertising) provider and user communities.

Membership in the SCTE Standards Program is open to all directly and materially affected parties as defined in SCTE's membership rules and operating procedures.

More information is available at www.scte.org or by e-mail from standards@scte.org.

ANSI Accredited Standards Developer

NWRA (ASC Z245) - National Waste & Recycling AssociationEquipment Technology & Operations for Wastes & Recyclable Materials

NWRA is actively seeking participation in the following standards development work and in all interest categories, which includes:

ANS Z245 Equipment Technology and Operations for Wastes and Recyclable Materials, The approved scope of the ANS Z245 Committee's standards activities encompasses requirements for the design, manufacture, installation, modification, servicing, maintenance and use of equipment and systems used to collect, contain, transport, store, process, recycle, treat and dispose of solid wastes and recyclable materials. It also includes the operations of facilities and activities in which these equipment and technologies are incorporated: Interest Category: manufacturer, user, general interest, distributor or dealer, and regulatory agency. To apply or obtain additional information please contact Kirk Sander at ksander@wasterecycling.org. For more information, see https://wasterecycling.org/ans-z245-standards/

AGMA (American Gear Manufacturers Association)

1001 N. Fairfax Street, Suite 500, Alexandria, VA 22314 | olson@motionpower.org , www.agma.org

BSR/AGMA ISO 10828, Worm gears - Worm profiles and gear mesh geometry (identical national adoption of ISO 10828:2024)

ARESCA (American Renewable Energy Standards and Certification Association)

256 Farrell Farm Road, Norwich, VT 05055 | secretary@aresca.us, www.aresca.us

BSR/ARESCA 61400-24-202x, Wind energy generation systems - Part 24: Lightning protection (identical national adoption of IEC 61400-24;202x)

ARESCA (American Renewable Energy Standards and Certification Association)

256 Farrell Farm Road, Norwich, VT 05055 | secretary@aresca.us, www.aresca.us

BSR/ARESCA 61400-4-1-202x, Wind energy generation systems - Part 4-1: Reliability assessment of drivetrain components in wind turbines (identical national adoption of IEC 61400-4-1;202x)

ARESCA (American Renewable Energy Standards and Certification Association)

256 Farrell Farm Road, Norwich, VT 05055 | secretary@aresca.us, www.aresca.us

BSR/ARESCA 61400-25-2-202x, Wind energy generation systems - Part 25-2: Communications for monitoring and control of wind power plants - Information models (identical national adoption of IEC 61400-25-2;202x)

ARESCA (American Renewable Energy Standards and Certification Association)

256 Farrell Farm Road, Norwich, VT 05055 | secretary@aresca.us, www.aresca.us

BSR/ARESCA 61400-27-3-202x, Wind energy generation systems - Part 27-3: Structure and validation procedure of frequency domain models for harmonic propagation studies (identical national adoption of IEC 61400-27-3;202x)

ARESCA (American Renewable Energy Standards and Certification Association)

256 Farrell Farm Road, Norwich, VT 05055 | secretary@aresca.us, www.aresca.us

BSR/ARESCA 61400-27-4-202x, Wind energy generation systems - Part 27-4: Structure and validation procedure of Electromagnetic Transients (EMT) models (identical national adoption of IEC 61400-27-4;202x)

ARESCA (American Renewable Energy Standards and Certification Association)

256 Farrell Farm Road, Norwich, VT 05055 | secretary@aresca.us, www.aresca.us

BSR/ARESCA 61400-28-2-202x, Wind energy generation systems - Part 28-2: Decommissioning and preparation for recycling (identical national adoption of IEC 61400-28-2;202x)

ARESCA (American Renewable Energy Standards and Certification Association)

256 Farrell Farm Road, Norwich, VT 05055 | secretary@aresca.us, www.aresca.us

BSR/ARESCA 61400-50-5-202x, Wind energy generation systems - Part 50-5: Use of scanning doppler lidars for wind measurements (identical national adoption of IEC 61400-50-5;202x)

ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.)

180 Technology Parkway, Peachtree Corners, GA 30092 | tmlisle@ashrae.org, www.ashrae.org

BSR/ASHRAE Standard 236P-202x, Method of Test for Control Programming Conformance with HVAC Sequences of Operation (new standard)

BHMA (Builders Hardware Manufacturers Association)

529 14th Street NW, Suite 1280, Washington, DC 20045 | agambrall@kellencompany.com, www.buildershardware.com BSR/BHMA A156.2-202x, Standard for Bored and Preassembled Locks and Latches (revision of ANSI/BHMA A156.2-2022)

BHMA (Builders Hardware Manufacturers Association)

529 14th Street NW, Suite 1280, Washington, DC 20045 | agambrall@kellencompany.com, www.buildershardware.com BSR/BHMA A156.12-202x, Standard for Interconnected Locks (revision of ANSI/BHMA A156.12-2022)

BHMA (Builders Hardware Manufacturers Association)

529 14th Street NW, Suite 1280, Washington, DC 20045 | agambrall@kellencompany.com, www.buildershardware.com BSR/BHMA A156.13-202x, Standard for Mortise Locks and Latches (revision of ANSI/BHMA A156.13-2022)

BHMA (Builders Hardware Manufacturers Association)

529 14th Street NW, Suite 1280, Washington, DC 20045 | agambrall@kellencompany.com, www.buildershardware.com BSR/BHMA A156.15-202x, Standard for Release Devices - Closer Holder, Electromagnetic and Electromechanical (revision of ANSI/BHMA A156.15-2021)

BHMA (Builders Hardware Manufacturers Association)

529 14th Street NW, Suite 1280, Washington, DC 20045 | agambrall@kellencompany.com, www.buildershardware.com BSR/BHMA A156.23-202x, Standard for Electromagnetic Locks (revision of ANSI/BHMA A156.23-2021)

BHMA (Builders Hardware Manufacturers Association)

529 14th Street NW, Suite 1280, Washington, DC 20045 | agambrall@kellencompany.com, www.buildershardware.com BSR/BHMA A156.25-202x, Standard for Electrified Locking Devices (revision of ANSI/BHMA A156.25-2023)

BIFMA (Business and Institutional Furniture Manufacturers Association)

678 Front Avenue NW, Suite 150, Grand Rapids, MI 49504-5368 | aserge@bifma.org, www.bifma.org BSR/BIFMA X5.5-202x, Desk and Table Products (revision of ANSI/BIFMA X5.5-2021)

BIFMA (Business and Institutional Furniture Manufacturers Association)

678 Front Avenue NW, Suite 150, Grand Rapids, MI 49504-5368 | aserge@bifma.org, www.bifma.org

BSR/BIFMA X6.5-202x, Home Office and Occasional-Use Desk, Table and Storage Products (revision of ANSI/BIFMA X6.5-2022)

ESTA (Entertainment Services and Technology Association)

271 Cadman Plaza, P.O. Box 23200, Brooklyn, NY 11202-3200 | standards@esta.org, www.esta.org

BSR/ES1.4-202x, Event Safety - Event Fire Safety Requirements (revision of ANSI ES1.4-2021)

Interest Categories: The Event Safety Working Group seeks voting members in the following interest categories: Equipment Providers; Event Workers; Insurance Companies; Performing Artists. Interested parties please send inquiries to standards@esta.org

ESTA (Entertainment Services and Technology Association)

271 Cadman Plaza, P.O. Box 23200, Brooklyn, NY 11202-3200 | standards@esta.org, www.esta.org

BSR/ES1.7-202x, Event Safety - Weather Preparedness (revision of ANSI ES1.7-2021)

Interest Categories: The Event Safety Working Group seeks voting members in the following interest categories: Equipment Providers; Event Workers; Insurance Companies; Performing Artists. Interested parties please send inquiries to standards@esta.org

ESTA (Entertainment Services and Technology Association)

271 Cadman Plaza, P.O. Box 23200, Brooklyn, NY 11202-3200 | standards@esta.org, www.esta.org

BSR/ES1.9-202x, Event Safety - Crowd Management (revision of ANSI ES1.9-2020)

Interest Categories: The Event Safety Working Group seeks new voting participants in the following interest categories: Equipment providers; Event workers; Insurance companies; and Performing artists.

ESTA (Entertainment Services and Technology Association)

271 Cadman Plaza, P.O. Box 23200, Brooklyn, NY 11202-3200 | standards@esta.org, www.esta.org

BSR/E1.27-2-202x, Entertainment Technology - Recommended Practice for Permanently Installed Control Cables for Use with ANSI E1.11 (DMX512-A) and USITT DMX512/1990 Products (revision of ANSI E1.27-2-2009 (R2019)) Interest Categories: The Control Protocols Working Group seeks new voting participants in the following interest categories: Custom market producer; Designer; Dealer or rental company; General interest; and User. Interested parties please send inquiries to standards@esta.org

ESTA (Entertainment Services and Technology Association)

271 Cadman Plaza, P.O. Box 23200, Brooklyn, NY 11202-3200 | standards@esta.org, www.esta.org

BSR/E1.37-7-202x, Additional Message Sets for E1.20 (RDM) Gateway and Splitter Configuration (revision of ANSi E1.37-7-2019)

Interest Categories: The Control Protocols Working Group seeks new voting participants in the following interest categories: Custom market producer; Designer; Dealer or rental company; General interest; and User. Interested parties please send inquiries to standards@esta.org

ESTA (Entertainment Services and Technology Association)

271 Cadman Plaza, P.O. Box 23200, Brooklyn, NY 11202-3200 | standards@esta.org, www.esta.org

BSR/E1.37-8-202x, Entertainment Technology - IPv4 and IPv6 Network Configuration Messages for E1.20 RDM (new standard)

Interest Categories: The Control Protocols Working Group seeks new voting participants in the following interest categories: Custom market producer; Designer; Dealer or rental company; General interest; and User. Interested parties please send inquiries to standards@esta.org

NSF (NSF International)

789 N. Dixboro Road, Ann Arbor, MI 48105 | mmilla@nsf.org, www.nsf.org

BSR/NSF 53-202x (i164r2), Drinking Water Treatment Units - Health Effects (revision of ANSI/NSF 53-2024)

NSF (NSF International)

789 N. Dixboro Road, Ann Arbor, MI 48105 | mmilla@nsf.org, www.nsf.org

BSR/NSF 58-202x (i112r2), Reverse Osmosis Drinking Water Treatment Systems (revision of ANSI/NSF 58-2024)

PHTA (Pool and Hot Tub Alliance)

1650 King Street, Suite 602, Alexandria, VA 22314 | bpavlik@phta.org, www.PHTA.org

BSR/PHTA/ICC-7-202x, Standard for Suction Entrapment Avoidance in Swimming Pools, Wading Pools, Spas, Hot Tubs and Catch Basins (revision of ANSI/PHTA/ICC-7-2020)

ULSE (UL Standards and Engagement)

100 Queen Street, Suite 1040, Ottawa, ON K1P 1J9 Canada | hilal.elmisilmani@ul.org, https://ulse.org/

BSR/UL 1309A-202x, Standard for Safety for Cable for Use in Mobile Installations (new standard) Interest Categories: Authorities Having Jurisdiction, Commercial/Industrial Users, Consumer, General Interest, Government, Supply Chain, and Testing and Standards Organization.

ULSE (UL Standards and Engagement)

12 Laboratory Drive, Research Triangle Park, NC 27709-3995 | Doreen.Stocker@ul.org, https://ulse.org/

BSR/UL 62841-4-1-202x, Standard for Safety for Electric Motor-Operated Hand-Held Tools, Transportable Tools and Lawn and Garden Machinery - Safety - Part 4-1: Particular Requirements for Chain Saws (national adoption of IEC 62841-4-1:2017/AMD1:2024 with modifications and revision of ANSI/UL 62841-4-1-2021)

ULSE (UL Standards and Engagement)

12 Laboratory Drive, Research Triangle Park, NC 27709-3995 | Doreen.Stocker@ul.org, https://ulse.org/

BSR/UL 62841-3-14-202x, Standard for Safety for Electric Motor-Operated Hand-Held Tools, Transportable Tools and Lawn and Garden Machinery - Safety - Part 3-14: Particular Requirements for Transportable Drain Cleaners (identical national adoption of IEC 62841-3-14REV1AMD 1 and revision of ANSI/UL 62841-3-14-2019 (R2023))

American National Standards (ANS) Process

Please visit ANSI's website (www.ansi.org) for resources that will help you to understand, administer and participate in the American National Standards (ANS) process. Documents posted at these links are updated periodically as new documents and guidance are developed, whenever ANS-related procedures are revised, and routinely with respect to lists of proposed and approved ANS. The main ANS-related linkis www.ansi.org/asd and here are some direct links as well as highlights of information that is available:

Where to find Procedures, Guidance, Interpretations and More...

Please visit ANSI's website (www.ansi.org)

• ANSI Essential Requirements: Due process requirements for American National Standards (always current edition):

www.ansi.org/essentialrequirements

• ANSI Standards Action (weekly public review announcements of proposed ANS and standards developer accreditation applications, listing of recently approved ANS, and proposed revisions to ANS-related procedures):

www.ansi.org/standardsaction

Accreditation information – for potential developers of American National Standards (ANS):

www.ansi.org/sdoaccreditation

• ANS Procedures, ExSC Interpretations and Guidance (including a slide deck on how to participate in the ANS process and the BSR-9 form):

www.ansi.org/asd

Lists of ANSI-Accredited Standards Developers (ASDs), Proposed ANS and Approved ANS:

www.ansi.org/asd

• American National Standards Key Steps:

www.ansi.org/anskeysteps

• American National Standards Value:

www.ansi.org/ansvalue

• ANS Web Forms for ANSI-Accredited Standards Developers:

https://www.ansi.org/portal/psawebforms/

• Information about standards Incorporated by Reference (IBR):

https://ibr.ansi.org/

• ANSI - Education and Training:

www.standardslearn.org

American National Standards Under Continuous Maintenance

The ANSI Essential Requirements: Due Process Requirements for American National Standards provides two options for the maintenance of American National Standards (ANS): periodic maintenance (see clause 4.7.1) and continuous maintenance (see clause 4.7.2). Continuous maintenance is defined as follows:

The standard shall be maintained by an accredited standards developer. A documented program for periodic publication of revisions shall be established by the standards developer. Processing of these revisions shall be in accordance with these procedures. The published standard shall include a clear statement of the intent to consider requests for change and information on the submittal of such requests. Procedures shall be established for timely, documented consensus action on each request for change and no portion of the standard shall be excluded from the revision process. In the event that no revisions are issued for a period of four years, action to reaffirm or withdraw the standard shall be taken in accordance with the procedures contained in the ANSI Essential Requirements. The Executive Standards Council (ExSC) has determined that for standards maintained under the Continuous Maintenance option, separate PINS announcements are not required. The following ANSI Accredited Standards Developers have formally registered standards under the Continuous Maintenance option.

AAMI (Association for the Advancement of Medical Instrumentation)

AARST (American Association of Radon Scientists and Technologists)

AGA (American Gas Association)

AGSC (Auto Glass Safety Council)

ASC X9 (Accredited Standards Committee X9, Incorporated)

ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.)

ASME (American Society of Mechanical Engineers)

ASTM (ASTM International)

GBI (Green Building Initiative)

HL7 (Health Level Seven)

Home Innovation (Home Innovation Research Labs)

IES (Illuminating Engineering Society)

ITI (InterNational Committee for Information Technology Standards)

MHI (Material Handling Industry)

NBBPVI (National Board of Boiler and Pressure Vessel Inspectors)

NCPDP (National Council for Prescription Drug Programs)

NEMA (National Electrical Manufacturers Association)

NFRC (National Fenestration Rating Council)

NISO (National Information Standards Organization)

NSF (NSF International)

PHTA (Pool and Hot Tub Alliance)

RESNET (Residential Energy Services Network, Inc.)

SAE (SAE International)

TCNA (Tile Council of North America)

TIA (Telecommunications Industry Association)

TMA (The Monitoring Association)

ULSE (UL Standards & Engagement)

To obtain additional information with regard to these standards, including contact information at the ANSI Accredited Standards Developer, please visit ANSI Online at www.ansi.org/asd, select "American National Standards Maintained Under Continuous Maintenance." Questions? psa@ansi.org.

ANSI-Accredited Standards Developers (ASD) Contacts

The addresses listed in this section are to be used in conjunction with standards listed in PINS, Call for Comment, Call for Members and Final Actions. This section is a list of developers who have submitted standards for this issue of *Standards Action* – it is not intended to be a list of all ANSI-Accredited Standards Developers. Please send all address corrections to the PSA Department at psa@ansi.org.

AAFS

American Academy of Forensic Sciences 410 North 21st Street Colorado Springs, CO 80904 www.aafs.org

Teresa Ambrosius tambrosius@aafs.org

AAMI

Association for the Advancement of Medical Instrumentation 901 N. Glebe Road, Suite 300 Arlington, VA 22203 www.aami.org

Thomas Kim tkim@aami.org

AGMA

American Gear Manufacturers Association 1001 N. Fairfax Street, Suite 500 Alexandria, VA 22314 www.agma.org

Phillip Olson olson@motionpower.org

AIA

Aerospace Industries Association 1000 Wilson Boulevard, Suite 1700 Arlington, VA 22209 www.aia-aerospace.org

Christopher Carnahan chris.carnahan@aia-aerospace.org

API

American Petroleum Institute 200 Massachusetts Ave, NW, Suite 11103 Washington, DC, DC 20001

Nicholas Montebello montebellon@api.org

ARESCA

www.api.org

American Renewable Energy Standards and Certification Association 256 Farrell Farm Road Norwich, VT 05055 www.aresca.us

George Kelly secretary@aresca.us

ASABE

American Society of Agricultural and Biological Engineers 2950 Niles Road Saint Joseph, MI 49085 https://www.asabe.org/

Britni Wall wall@asabe.org

ASHRAE

American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. 180 Technology Parkway Peachtree Corners, GA 30092 www.ashrae.org

Carmen King cking@ashrae.org

Emily Toto etoto@ashrae.org

Kai Sosa ksosa@ashrae.org Maralyn Graham

mgraham@ashrae.org Tanisha Meyers-Lisle

tmlisle@ashrae.org

ASME

American Society of Mechanical Engineers Two Park Avenue, M/S 6-2B New York, NY 10016 www.asme.org

Terrell Henry ansibox@asme.org

ASTM

ASTM International 100 Barr Harbor Drive West Conshohocken, PA 19428 www.astm.org

Lauren Daly accreditation@astm.org

ASTM

ASTM International 100 Barr Harbor Drive, PO Box C700 West Conshohocken, PA 19428 www.astm.org

Meredith Klein accreditation@astm.org

AWWA

American Water Works Association 6666 W. Quincy Avenue Denver, CO 80235 www.awwa.org Madeline Rohr

mrohr@awwa.org

BHMA

Builders Hardware Manufacturers Association 529 14th Street NW, Suite 1280 Washington, DC 20045 www.buildershardware.com

Tony Gambrall agambrall@kellencompany.com

BICSI

Building Industry Consulting Service International 8610 Hidden River Parkway Tampa, FL 33637 www.bicsi.org

Allen Dean publications@bicsi.org

BIFMA

Business and Institutional Furniture Manufacturers Association 678 Front Avenue NW, Suite 150 Grand Rapids, MI 49504 www.bifma.org

Anthony Serge aserge@bifma.org

CSA

CSA America Standards Inc. 8501 East Pleasant Valley Road Cleveland, OH 44131 www.csagroup.org

Thuy Ton ansi.contact@csagroup.org

DirectTrustTM

DirectTrust.org, Inc. 1629 K Street NW, Suite 300 Washington, DC 20006 www.DirectTrust.org

Taylor Davis taylor.davis@directtrust.org

ESTA

Entertainment Services and Technology Association

271 Cadman Plaza, P.O. Box 23200 Brooklyn, NY 11202

www.esta.org

Richard Nix

standards@esta.org

IAPMO (ASSE Chapter)

ASSE International Chapter of IAPMO 18927 Hickory Creek Drive, Suite 220 Mokena, IL 60448 www.asse-plumbing.org

Terry Burger

standards@iapmostandards.org

IEEE

Institute of Electrical and Electronics

Engineers 445 Hoes Lane Piscataway, NJ 08854

www.ieee.org

Suzanne Merten s.merten@ieee.org

ISA (Organization)

International Society of Automation 3252 S. Miami Blvd, Suite 102 Durham, NC 27703

www.isa.org

Torry Bailey tbailey@isa.org

MSS

Manufacturers Standardization Society 441 N. Lee Street Alexandria, VA 22314 www.mss-hq.org

Stefania Adjei

standards@msshq.org

NENA

National Emergency Number Association 1700 Diagonal Road, Suite 500

Alexandria, VA 22314

www.nena.org

Nena Staff crm@nena.org

NSF

NSF International 789 N. Dixboro Road Ann Arbor, MI 48105

www.nsf.org

Jessica Evans jevans@nsf.org

Monica Milla mmilla@nsf.org

PHTA

Pool and Hot Tub Alliance 1650 King Street, Suite 602 Alexandria, VA 22314 www.PHTA.org

Blake Pavlik bpavlik@phta.org

SCTE

Society of Cable Telecommunications Engineers 140 Philips Road Exton, PA 19341

Natasha Aden naden@scte.org

www.scte.org

TAPPI

Technical Association of the Pulp and Paper Industry 15 Technology Parkway, Suite 115 Peachtree Corners, GA 30092 www.tappi.org

Sidney Onyekwere standards@tappi.org

ULSE

UL Standards & Engagement 100 Queen Street, Suite 1040

Ottawa, ON K1P 1 https://ulse.org/

Hilal Misilmani hilal.elmisilmani@ul.org

Sabrina Khrebtov sabrina.khrebtov@ul.org

ULSE

UL Standards & Engagement 12 Laboratory Drive Research Triangle Park, NC 27709 https://ulse.org/

Doreen Stocker
Doreen.Stocker@ul.org

Julio Morales

Julio.Morales@UL.org

Tony Partridge
Tony.Partridge@ul.org

Vickie Hinton

Vickie.T.Hinton@ul.org

ULSE

UL Standards & Engagement 12 Laboratory Drive Research Triangle Park, NC 27709 https://ulse.org/

Adam Payrot
Adam.Payrot@ul.org

ULSE

UL Standards & Engagement 1603 Orrington Ave Evanston, IL 60210 https://ulse.org/

Alan McGrath alan.t.mcgrath@ul.org

ULSE

UL Standards & Engagement 1603 Orrington Ave, Suite 20000 Evanston, IL 60201 https://ulse.org/

Susan Malohn

Susan.P.Malohn@ul.org

ULSE

UL Standards & Engagement 1603 Orrington Avenue, Suite 2000 Evanston, IL 60201 https://ulse.org/

Lauren Valentino lauren.valentino@ul.org

ULSE

UL Standards and Engagement 100 Queen St. Suite 1040 Ottawa, ON Canada, ON K1P 1 https://ulse.org/

Felipe Luz Felipe.Luz@ul.org

ULSE

UL Standards and Engagement 100 Queen Street, Suite 1040 Ottawa, Canada, ON K1P 1 https://ulse.org/ Hannah Kirkland

Hannah.Kirkland@UL.org

ULSE

UL Standards and Engagement 12 Laboratory Dr Research Triangle, NC 27709 https://ulse.org/

Anastasia Letaw anastasia.letaw@ul.org

ISO & IEC Draft International Standards

This section lists proposed standards that the International Organization for Standardization (ISO) and the International Electrotechnical Commission (IEC) are considering for approval. The proposals have received substantial support within the technical committees or subcommittees that developed them and are now being circulated to ISO and IEC members for comment and vote. Standards Action readers interested in reviewing and commenting on these documents should order copies from ANSI.

COMMENTS

Comments regarding ISO documents should be sent to ANSI's ISO Team (isot@ansi.org); comments on ISO documents must be submitted electronically in the approved ISO template and as a Word document as other formats will not be accepted.

Those regarding IEC documents should be sent to the USNC/IEC team at ANSI's New York offices (usnc@ansi.org). The final date for offering comments is listed after each draft.

ORDERING INSTRUCTIONS

ISO and IEC Drafts can be made available by contacting ANSI's Customer Service department. Please e-mail your request for an ISO or IEC Draft to Customer Service at sales@ansi.org. When making your request, please provide the date of the Standards Action issue in which the draft document you are requesting appears.

ISO Standards

Additive manufacturing (TC 261)

ISO/ASTM DIS 52961, Additive manufacturing of polymers - Environment, health and safety - General principles for use of polymers with material extrusion - 1/25/2026, \$98.00

Aircraft and space vehicles (TC 20)

ISO/DIS 8668-2, Aircraft - Terminal junction systems - Part 2: Tests - 1/26/2026, \$58.00

Cranes (TC 96)

ISO/DIS 10245-5, Cranes - Limiting and indicating devices - Part 5: Bridge and gantry cranes - 1/25/2026, \$53.00

Cutlery and table and decorative metal hollow-ware (TC 186)

ISO/DIS 8442-1, Materials and articles in contact with foodstuffs - Cutlery and table holloware - Part 1: Requirements for cutlery for the preparation of food - 1/23/2026, \$77.00

Dimensional and Geometrical Product Specifications and Verification (TC 213)

ISO/DIS 463, Geometrical product specifications (GPS) - Dimensional measuring equipment - Design and metrological characteristics of indicators - 1/25/2026, \$67.00

Fine ceramics (TC 206)

ISO/DIS 20507, Fine ceramics (advanced ceramics, advanced technical ceramics) - Vocabulary - 1/25/2026, \$107.00

ISO/DIS 17947-1, Fine ceramics (advanced ceramics, advanced technical ceramics) - Methods for chemical analysis of silicon nitride powders - Part 1: Wet chemical methods, X-ray fluorescence (XRF) using the fused cast-bead method, carriergas hot extraction (CGHE) and combustion methods - 1/23/2026, \$93.00

Hydrogen energy technologies (TC 197)

ISO/DIS 19870-4, Hydrogen technologies - Methodology for determining the greenhouse gas emissions associated with the hydrogen supply chain - Part 4: Emissions associated with the storage and transport of hydrogen via LOHC - 1/26/2026, \$119.00

Materials, equipment and offshore structures for petroleum and natural gas industries (TC 67)

ISO/DIS 16440, Oil and gas industries including lower carbon energy - Pipeline transportation systems - Design, construction and maintenance of steel cased pipelines - 1/25/2026, \$107.00

Mechanical testing of metals (TC 164)

ISO/DIS 12106, Metallic materials - Fatigue testing - Axial-straincontrolled method - 1/24/2026, \$107.00

Paper, board and pulps (TC 6)

ISO/DIS 4046, Paper, board, pulps and related terms - Vocabulary - 1/24/2026, \$134.00

Road vehicles (TC 22)

ISO/DIS 6621-1, Internal combustion engines - Piston rings - Part 1: Vocabulary - 1/24/2026, \$107.00

ISO/DIS 11452-11, Road vehicles - Component test methods for electrical disturbances from narrowband radiated electromagnetic energy - Part 11: Reverberation chamber - 1/23/2026, \$155.00

Rubber and rubber products (TC 45)

ISO/DIS 1403, Rubber hoses, textile-reinforced, for generalpurpose water applications - Specification - 1/26/2026, \$33.00

Security (TC 292)

ISO/DIS 22316, Security and resilience - Organizational resilience - Guidelines - 1/25/2026, \$98.00

Sports and recreational equipment (TC 83)

- ISO/DIS 13993, Rental ski shop practice Sampling and inspection of complete and incomplete alpine ski-binding-boot systems in rental applications 1/29/2026, \$77.00
- ISO/DIS 20957-5, Stationary training equipment Part 5: Stationary exercise bicycles and upper body crank training equipment, additional specific safety requirements and test methods - 1/25/2026, \$77.00
- ISO/DIS 20957-10, Stationary training equipment Part 10: Exercise bicycles with a fixed wheel or without freewheel -Additional specific safety requirements and test methods -1/25/2026, \$62.00

Steel (TC 17)

ISO/DIS 14250, Steel - Metallographic characterization of duplex grain size and distributions - 1/29/2026, \$67.00

Terminology (principles and coordination) (TC 37)

ISO/DIS 17651-4, Simultaneous interpreting - Interpreters' working environment - Part 4: Requirements and recommendations for signed language interpreting - 1/25/2026, \$102.00

Textiles (TC 38)

- ISO/DIS 25242, Textiles Smart textiles systems Test method for cyclic environmental temperature change 1/26/2026, \$40.00
- ISO/DIS 25243, Textiles Smart textiles systems Test method for repeated underwater pressurization 1/25/2026, \$33.00
- ISO/DIS 25205-2, Textiles Thermal shrinkage of man-made filament yarns Part 2: Determination in dry-hot air (measurement after shrinkage) 1/22/2026, \$58.00

Tobacco and tobacco products (TC 126)

- ISO/DIS 18722-1, Tobacco heating systems Determination of aerosol collected mass and nicotine in the aerosol Part 1: Electrically heated tobacco products (eHTPs) 1/26/2026, \$53.00
- ISO/DIS 18722-2, Tobacco heating systems Determination of aerosol collected mass and nicotine in the aerosol Part 2:
 Aerosol heated tobacco products (aHTPs) 1/26/2026, \$58.00

Traditional Chinese medicine (TC 249)

ISO/DIS 22584, Traditional Chinese medicine - Angelica sinensis root - 1/22/2026, \$62.00

Transport information and control systems (TC 204)

- ISO/DIS 19484, Intelligent transport systems Highly Automated Motorway Chauffeur Systems (HMCS) 1/23/2026, \$88.00
- ISO/DIS 17573-1, Electronic fee collection System architecture for vehicle-related tolling Part 1: Reference model 1/25/2026, \$125.00

ISO/IEC JTC 1, Information Technology

- ISO/IEC 7816-4:2020/DAmd 2, Amendment 2: Identification cards Integrated circuit cards Part 4: Organization, security and commands for interchange Amendment 2: Quantum safe cryptography 1/25/2026, \$33.00
- ISO/IEC 23001-7:2023/DAmd 1, Amendment 1: Information technology MPEG systems technologies Part 7: Common encryption in ISO base media file format files Amendment 1: Support for AES-256 1/25/2026, \$33.00
- ISO/IEC 7816-15:2016/DAmd 2, Amendment 2: Identification cards Integrated circuit cards Part 15: Cryptographic information application Amendment 2: Quantum safe cryptography 1/24/2026, \$29.00
- ISO/IEC 14496-15:2024/DAmd 2, Amendment 2: Information technology Coding of audio-visual objects Part 15: Carriage of network abstraction layer (NAL) unit structured video in the ISO base media file format Amendment 2: Improvement of carriage of L-HEVC 1/23/2026, \$29.00
- ISO/IEC DIS 18013-5, Personal identification ISO-compliant driving licence Part 5: Mobile driving licence (mDL) application 1/25/2026, \$185.00
- ISO/IEC DIS 28033-3, Information security Fully homomorphic encryption Part 3: Mechanisms for arithmetic on approximate numbers 1/25/2026, \$88.00
- ISO/IEC DIS 29128-3, Information security, cybersecurity and privacy protection Verification of cryptographic protocols Part 3: Evaluation methods and activities for protocol implementation verification 1/24/2026, \$67.00

IEC Standards

Audio, video and multimedia systems and equipment (TC 100)

100/4408/DTR, IEC TR 63614-3 ED1: Multimedia systems and equipment for metaverse - Part 3: Gap analysis, 01/02/2026

Documentation and graphical symbols (TC 3)

3/1756/NP, PNW TS 3-1756 ED1: Industrial systems, installations and equipment and industrial products - Structuring principles and reference designations - Part 102: Guidelines and requirements for power transmission and distribution systems, 01/30/2026

Electrical accessories (TC 23)

- 23B/1588/CDV, IEC 60906-2/AMD1 ED3: Amendment 1 IEC system of plugs and socket-outlets for household and similar purposes Part 2: Plugs and socket-outlets 15 A 125 V a.c. and 20 A 125 V a.c., 01/30/2026
- 23H/588/FDIS, IEC 62196-3 ED3: Plugs, socket-outlets, vehicle connectors and vehicle inlets Conductive charging of electric vehicles Part 3: Dimensional compatibility requirements for DC and AC/DC pin and contact-tube vehicle couplers, 12/19/2025
- 23E/1406/CD, IEC 63464-1 ED1: Protective devices based on semiconductor technology for household and similar use Part 1: Semiconductor Residual current operated Circuit-Breakers with integral Overcurrent protection for household and similar uses (SC-RCBOs), 02/27/2026

Electrical equipment in medical practice (TC 62)

- 62B/1396/CDV, IEC 60601-2-28/AMD1 ED3: Amendment 1 Medical electrical equipment Part 2-28: Particular requirements for the basic safety and essential performance of X-ray tube assemblies for medical diagnosis, 01/30/2026
- 62D/2271/FDIS, IEC 80601-2-52 ED1: Medical electrical equipment Part 2-52: Particular requirements for the basic safety and essential performance of medical beds for adults, 12/19/2025

Electrical installations of buildings (TC 64)

- 64/2795/CD, IEC TS 61200-203 ED1: Application guides complying with IEC 60364 Uninterruptible Power Systems, 02/27/2026
- 64/2794/CD, IEC TS 61200-204 ED1: Electrical installation guide Part 204: Application guides complying with IEC 60364 Rotating generators, 02/27/2026

Environmental conditions, classification and methods of test (TC 104)

- 104/1138(F)/FDIS, IEC 60721-3-5 ED3: Classification of environmental conditions - Part 3-5: Classification of groups of environmental parameters and their severities - Ground vehicle installations, 11/28/2025
- 104/1139(F)/FDIS, IEC 60721-3-7 ED3: Classification of environmental conditions Part 3-7: Classification of groups of environmental parameters and their severities Portable and non-stationary use, 11/28/2025

Fibre optics (TC 86)

- 86B/5148/CD, IEC 61300-2-29 ED2: Fibre optic interconnecting devices and passive components Basic test and measurement procedures Part 2-29: Tests Low air pressure, 01/02/2026
- 86B/5150/CD, IEC 61753-021-07 ED1: Fibre optic interconnecting devices and passive components Performance standard Part 021-07: Hardened fibre optic connectors terminated on singlemode fibre for category A Outdoor aerial environment, 01/02/2026
- 86B/5149/CD, IEC 61753-021-08 ED1: Fibre optic interconnecting devices and passive components Performance standard Part 021-08: Hardened fibre optic connectors terminated on singlemode fibre for category G Outdoor ground environment, 01/02/2026

Flat Panel Display Devices (TC 110)

- 110/1809/CD, IEC 62341-6-4 ED2: Organic light emitting diode (OLED) displays Part 6-4: Measuring methods of transparent properties, 01/02/2026
- 110/1812/CD, IEC 62595-2-1 ED2: Display lighting unit Part 2 -1: Electro-optical measuring methods of LED backlight unit, 01/02/2026
- 110/1810/CD, IEC 62715-6-43 ED1: Flexible displays Part 6 -43: Mechanical test methods Deformation measurement of rollable display, 01/02/2026
- 110/1811/DTR, IEC TR 62629-1-3 ED1: 3D displays Part 1-3: Generic Human depth perception and determination of the position of 3D object on the non-physical screen, 12/05/2025

Industrial-process measurement and control (TC 65)

65E/1191/CDV, IEC 62337 ED3: Commissioning of electrical, instrumentation and control systems in the process industry - Specific phases and milestones, 01/30/2026

Magnetic components and ferrite materials (TC 51)

51/1583/FDIS, IEC 62358 ED3: Ferrite cores - Standard inductance factor for gapped cores and its tolerance, 12/19/2025

Nuclear instrumentation (TC 45)

45/1022/CDV, IEC 63048-1 ED1: Mobile Remotely Controlled Systems (MRCS) for nuclear and radiological applications - Particular requirements for ground surveillance, 01/02/2026

Performance of household electrical appliances (TC 59)

59L/306/NP, PNW 59L-306 ED1: Household and similar electrical appliances - Test code for the determination of airborne acoustical noise - Part 2-22: Particular requirements for electrically operated spray seats, 01/30/2026

Safety of household and similar electrical appliances (TC 61)

- 61/7499/CDV, IEC 60335-2-125 ED1: Household and similar electrical appliances Safety Part 2-125: Particular requirements for breast pumps for expressing breast milk, 01/30/2026
- 61/7500/CDV, IEC 60335-2-16/AMD1 ED6: Amendment 1 Household and similar electrical appliances Safety Part 2-16: Particular requirements for food waste disposers, 01/30/2026

Semiconductor devices (TC 47)

47/2960/CDV, IEC 63581-1 ED1: Semiconductor devices - The recognition criteria of defects in indium phosphide epitaxial wafers - Part 1: Classification of defects, 01/30/2026

Steam turbines (TC 5)

5/287/CDV, IEC 60953-1 ED2: Rules for steam turbine thermal acceptance tests - Part 1: High accuracy for large condensing steam turbines, 01/30/2026

Superconductivity (TC 90)

90/550(F)/FDIS, IEC 61788-15 ED2: Superconductivity - Part 15: Electronic characteristic measurements - Intrinsic surface impedance of superconductor films at microwave frequencies, 11/21/2025

Surface mounting technology (TC 91)

- 91/2080/CD, IEC 63609-1 ED1: Thermal design of electronics assemblies with miniaturised surface mounting devices and related measurements Part 1: Guideline for thermal design of applications where the heat dissipation path to the board is dominant, 01/02/2026
- 91/2079/CD, IEC 63609-2 ED1: Thermal design of electronics assemblies with miniaturised surface mounting devices and related measurements Part 2: Method for evaluating thermal conductivity of circuit boards with polymer composites by using finite element analysis and measurements, 01/02/2026

(TC)

- SyCAAL/411/CD, IEC 63168 ED1: Cooperative multiple systems in connected home environments AAL functional safety requirements of electronic safety-related systems, 01/30/2026
- SyCAAL/412/DTS, ISO TS 25558 ED1: Ageing societies A Guide to enhancing safety and usability for older persons in smart home environment, 01/02/2026

(TC 130)

130/46/CD, IEC 63590-1 ED1: Cold storage equipment for medical use - Part 1: Terminology, 01/02/2026

Terminology (TC 1)

1/2692/CDV, IEC 60050-880 ED1: International Electrotechnical Vocabulary (IEV) - Part 880: Electrical equipment, electrical systems and software used in healthcare, 01/02/2026

Wind turbine generator systems (TC 88)

88/1131(F)/FDIS, IEC 61400-40 ED1: Wind energry generation systems - Part 40: Electromagnetic Compatibility (EMC) - Requirements and test methods, 11/28/2025

ISO/IEC JTC 1, Information Technology

(TC)

- JTC1-SC41/556/CD, ISO/IEC TR 30189-2 ED1: Internet of Things (IoT) IoT-based management of tangible cultural heritage assets Part 2: Use cases, 01/02/2026
- JTC1-SC43/184/NP, PNW JTC1-SC43-184 ED1: Information technology Brain-computer Interfaces Multi-modal neural data format for BCI, 01/30/2026

Newly Published ISO & IEC Standards

Listed here are new and revised standards recently approved and promulgated by ISO - the International Organization for Standardization – and IEC – the International Electrotechnical Commission. Most are available at the ANSI Electronic Standards Store (ESS) at www.ansi. org. All paper copies are available from Standards resellers (http://webstore.ansi.org/faq.aspx#resellers).

ISO Standards

Additive manufacturing (TC 261)

ISO/ASTM 52940:2025, Additive manufacturing of ceramics -Feedstock materials - Characterization of ceramic slurry in vat photopolymerization, \$84.00

Agricultural food products (TC 34)

ISO 14156:2025, Milk and milk products - Extraction methods for lipids and liposoluble compounds, \$56.00

ISO 7304-1:2025, Durum wheat semolina and alimentary pasta - Estimation of cooking quality of alimentary pasta by sensory analysis - Part 1: Reference method, \$84.00

Building construction (TC 59)

ISO 13640:2025, Building and civil engineering sealants - Specifications for test substrates, \$56.00

Dentistry (TC 106)

ISO 6876:2025, Dentistry - Endodontic sealing materials, \$172.00

Fine ceramics (TC 206)

ISO 17138:2025, Fine ceramics (advanced ceramics, advanced technical ceramics) - Mechanical properties of ceramic composites at room temperature - Determination of flexural strength, \$84.00

ISO 17168-1:2025, Fine ceramics (advanced ceramics, advanced technical ceramics) - Test method for air-purification performance of semiconducting photocatalytic materials under indoor lighting environment - Part 1: Removal of nitric oxide, \$127.00

ISO 17168-2:2025, Fine ceramics (advanced ceramics, advanced technical ceramics) - Test method for air-purification performance of semiconducting photocatalytic materials under indoor lighting environment - Part 2: Removal of acetaldehyde, \$127.00

ISO 17168-3:2025, Fine ceramics (advanced ceramics, advanced technical ceramics) - Test method for air-purification performance of semiconducting photocatalytic materials under indoor lighting environment - Part 3: Removal of toluene, \$84.00

ISO 17168-4:2025, Fine ceramics (advanced ceramics, advanced technical ceramics) - Test method for air-purification performance of semiconducting photocatalytic materials under indoor lighting environment - Part 4: Removal of formaldehyde, \$84.00

ISO 17168-5:2025, Fine ceramics (advanced ceramics, advanced technical ceramics) - Test method for air-purification performance of semiconducting photocatalytic materials under indoor lighting environment - Part 5: Removal of methyl mercaptan, \$84.00

Horology (TC 114)

ISO 16359:2025, Horology - Harmonized practices to demonstrate chemical regulatory compliance of wrist-watches, \$84.00

Mechanical testing of metals (TC 164)

ISO 14577-6:2025, Metallic materials - Instrumented indentation test for hardness and materials parameters - Part 6: Instrumented indentation test at elevated temperature, \$172.00

Metallic and other inorganic coatings (TC 107)

ISO 12994:2025, Electrodeposited nickel plus chromium coatings for automobile plastic parts - Specification and test requirements, \$84.00

Other

ISO 5403-1:2025, Leather - Determination of water resistance of flexible leather - Part 1: Repeated linear compression (penetrometer), \$84.00

Petroleum products and lubricants (TC 28)

ISO 11982:2025, Refrigerated hydrocarbon and non-petroleum based liquefied gaseous fuels - Liquefied Natural Gas (LNG) as marine fuel - Measurement on board LNG bunkering ship, \$230.00

Plastics (TC 61)

ISO 15270-5:2025, Plastics - Guidelines for the recovery and recycling of plastics waste - Part 5: Organic/biological recycling, \$127.00

Plastics pipes, fittings and valves for the transport of fluids (TC 138)

ISO 13956:2025, Plastics pipes and fittings - Decohesion test of polyethylene (PE) saddle fusion joints - Evaluation of ductility of fusion joint interface by tear test, \$84.00

Pulleys and belts (including veebelts) (TC 41)

- ISO 21180:2025, Light conveyor belts Determination of the maximum tensile strength, \$56.00
- ISO 21181:2025, Light conveyor belts Determination of the relaxed elastic modulus, \$84.00
- ISO 21182:2025, Light conveyor belts Determination of the coefficient of friction, \$84.00

Security (TC 292)

ISO 22300:2025, Security and resilience - Vocabulary, \$127.00

Ships and marine technology (TC 8)

ISO 18131:2025, Ships and marine technology - Publishsubscribe architecture on ship-shore data communication -General requirements, \$287.00

Surface chemical analysis (TC 201)

ISO 16666:2025, Surface chemical analysis - Total reflection Xray fluorescence - Principles and general requirements, \$172.00

Terminology (principles and coordination) (TC 37)

ISO 24611-1:2025, Language resource management Morphosyntactic annotation framework (MAF) - Part 1: Core
model, \$201.00

Textiles (TC 38)

ISO 20932-3:2018/Amd 1:2025, - Amendment 1: Textiles - Determination of the elasticity of fabrics - Part 3: Narrow fabrics - Amendment 1, \$23.00

Transfusion, infusion and injection equipment for medical use (TC 76)

ISO 11040-3:2025, Prefilled syringes - Part 3: Seals for dental local anaesthetic cartridges, \$84.00

Welding and allied processes (TC 44)

ISO 15614-9:2025, Specification and qualification of welding procedures for metallic materials - Welding procedure test - Part 9: Underwater hyperbaric wet welding, \$230.00

ISO Technical Specifications

Indirect, temperature-controlled refrigerated delivery services – land transport of parcels with intermediate transfer (TC 315)

ISO/TS 31514:2025, Requirements and recommendations for food traceability in cold chain logistics, \$84.00

Transport information and control systems (TC 204)

ISO/TS 22726-1:2025, Intelligent transport systems - Dynamic data and map database specification for connected and automated driving system applications - Part 1: Architecture and logical data model for harmonization of static map data, \$287.00

ISO/IEC JTC 1, Information Technology

- ISO/IEC 17839-1:2025, Information technology Biometric system-on-card Part 1: Core requirements, \$84.00
- ISO/IEC 23090-14:2025, Information technology Coded representation of immersive media Part 14: Scene description, \$287.00
- ISO/IEC 23090-33:2025, Information technology Coded representation of immersive media Part 33: Conformance and reference software for haptics coding, \$230.00
- ISO/IEC 23090-34:2025, Information technology Coded representation of immersive media Part 34: Immersive audio reference software, \$56.00

IEC Standards

Cables, wires, waveguides, r.f. connectors, and accessories for communication and signalling (TC 46)

- IEC 60966-2-8 Ed. 2.0 b:2025, Radio frequency and coaxial cable assemblies Part 2-8: Detail specification for cable assemblies for radio and TV receivers Frequency range up to 3 000 MHz, screening class A++, IEC 61169-47 connectors, \$52.00
- IEC 60966-2-8 Ed. 2.0 en:2025, Radio frequency and coaxial cable assemblies Part 2-8: Detail specification for cable assemblies for radio and TV receivers Frequency range up to 3 000 MHz, screening class A++, IEC 61169-47 connectors, \$52.00
- IEC 61169-74 Ed. 1.0 b:2025, Radio-frequency connectors Part 74: Sectional specification for HN series RF coaxial connectors with screw coupling Characteristic impedance 50 Ω , \$200.00
- IEC 61169-74 Ed. 1.0 en:2025, Radio-frequency connectors Part 74: Sectional specification for HN series RF coaxial connectors with screw coupling Characteristic impedance 50 Ω , \$200.00

- IEC 62153-4-7 Amd.1 Ed. 3.0 en:2025, Amendment 1 Metallic cables and other passive components test methods Part 4-7: Electromagnetic compatibility (EMC) -Test method for measuring of transfer impedance Z_T and screening attenuation a_S or coupling attenuation a_C of connectors and assemblies Triaxial tube in tube method, \$103.00
- IEC 62153-4-7 Amd.1 Ed. 3.0 b:2025, Amendment 1 Metallic cables and other passive components test methods Part 4-7: Electromagnetic compatibility (EMC) -Test method for measuring of transfer impedance Z_T and screening attenuation a_S or coupling attenuation a_C of connectors and assemblies Triaxial tube in tube method, \$103.00
- IEC 62153-4-7 Ed. 3.1 en:2025, Metallic cables and other passive components test methods Part 4-7: Electromagnetic compatibility (EMC) -Test method for measuring of transfer impedance Z_T and screening attenuation a_C of connectors and assemblies Triaxial tube in tube method, \$889.00
- IEC 61196-1-114 Ed. 2.0 en:2025, Coaxial communication cables
 Part 1-114: Electrical test methods Test for inductance,
 \$103.00
- S+ IEC 60966-2-8 Ed. 2.0 en:2025 (Redline version), Radio frequency and coaxial cable assemblies Part 2-8: Detail specification for cable assemblies for radio and TV receivers Frequency range up to 3 000 MHz, screening class A++, IEC 61169-47 connectors, \$88.00
- S+ IEC 61196-1-114 Ed. 2.0 en:2025 (Redline version), Coaxial communication cables Part 1-114: Electrical test methods Test for inductance, \$175.00

Electric traction equipment (TC 9)

- IEC 62427 Ed. 2.0 b:2024, Railway applications Compatibility between rolling stock and train detection systems, \$361.00
- IEC 63438 Ed. 1.0 b:2024, Railway applications Fixed installations - Protection principles for AC and DC electric traction power supply systems, \$361.00
- IEC 63453 Ed. 1.0 b:2025, Railway applications Current collection systems Validation of simulation of the dynamic interaction between pantograph and overhead contact line, \$470.00

Safety of hand-held motor-operated electric tools (TC 116)

IEC 62841-3-1 Amd.2 Ed. 1.0 en:2025, Amendment 2 - Electric motor-operated hand-held tools, transportable tools and lawn and garden machinery - Safety - Part 3-1: Particular requirements for transportable table saws, \$13.00

- IEC 62841-3-1 Amd.2 Ed. 1.0 b:2025, Amendment 2 Electric motor-operated hand-held tools, transportable tools and lawn and garden machinery Safety Part 3-1: Particular requirements for transportable table saws, \$13.00
- IEC 62841-3-1 Ed. 1.2 en:2025, Electric motor-operated handheld tools, transportable tools and lawn and garden machinery -Safety - Part 3-1: Particular requirements for transportable table saws, \$1236.00
- IEC 62841-2-18 Ed. 1.0 b Cor.1:2025, Corrigendum 1 Electric motor-operated hand-held tools, transportable tools and lawn and garden machinery Safety Part 2-18: Particular requirements for hand-held strapping tools, \$0.00

IEC Technical Reports

Flat Panel Display Devices (TC 110)

IEC/TR 62715-6-41 Ed. 1.0 en:2025, Flexible displays - Part 6-41: Mechanical test methods - General introduction for rollable displays, \$52.00

Power system control and associated communications (TC 57)

IEC/TR 62746-2 Ed. 2.0 en:2025, Systems interface between customer energy management system and the power management system - Part 2: Use cases, \$580.00

IEC Technical Specifications

(TC 127)

IEC/TS 63346-2-3 Ed. 1.0 en:2025, Low-voltage auxiliary power systems - Part 2-3: Design criteria - Low-voltage AC auxiliary power systems for substations, \$322.00

International Organization for Standardization (ISO)

ISO Proposal for a New Field of ISO Technical Activity

Children's rights management

Comment Due Date: December 10, 2025

IST, the ISO member body for Iceland, has submitted to ISO a proposal for a new field of ISO technical activity on Children's rights management, with the following scope statement:

Standardization in the field of children's rights, to support the implementation of protection rights, provision rights, and participation rights.

Note 1: this TC works to support existing international frameworks, in particular the UN Convention on the Rights of the Child.

Note 2: Where appropriate, this TC will work in cooperation with existing ISO committees on subjects that may support children's rights.

Anyone wishing to review the proposal can request a copy by contacting ANSI's ISO Team (<u>isot@ansi.org</u>), with a submission of comments to Sara Desautels (<u>sdesautels@ansi.org</u>) by close of business on December 10, 2025.

Registration of Organization Names in the United States

The Procedures for Registration of Organization Names in the United States of America (document ISSB 989) require that alphanumeric organization names be subject to a 90-day Public Review period prior to registration. For further information, please contact the Registration Coordinator at (212) 642-4975.

When organization names are submitted to ANSI for registration, they will be listed here alphanumerically. Alphanumeric names appearing for the first time are printed in bold type. Names with confidential contact information, as requested by the organization, list only public review dates.

Public Review

NOTE: Challenged alphanumeric names are underlined. The Procedures for Registration provide for a challenge process, which follows in brief. For complete details, see Section 6.4 of the Procedures.

A challenge is initiated when a letter from an interested entity is received by the Registration Coordinator. The letter shall identify the alphanumeric organization name being challenged and state the rationale supporting the challenge. A challenge fee shall accompany the letter. After receipt of the challenge, the alphanumeric organization name shall be marked as challenged in the Public Review list. The Registration Coordinator shall take no further action to register the challenged name until the challenge is resolved among the disputing parties.

Proposed Foreign Government Regulations

Call for Comment

U.S. manufacturers, exporters, trade associations, U.S domiciled standards development organizations and conformity assessment bodies, consumers, or U.S. government agencies may be interested in proposed foreign technical regulations notified by Member countries of the World Trade Organization (WTO). In accordance with the WTO Agreement on Technical Barriers to Trade (TBT Agreement), Members are required to notify to the WTO Secretariat in Geneva, Switzerland proposed technical regulations that may significantly affect trade. In turn, the Secretariat circulates the notifications along with the full texts. The purpose of the notification requirement is to provide global trading partners with an opportunity to review and comment on the regulations before they become final. The USA Enquiry Point for the WTO TBT Agreement is located at the National Institute of Standards and Technology (NIST) in the Standards Coordination Office (SCO). The Enquiry Point relies on the WTO's ePing SPS&TBT platform to distribute the notified proposed foreign technical regulations (notifications) and their full texts available to U.S. stakeholders. Interested U.S. parties can register with ePing to receive e-mail alerts when notifications are added from countries and industry sectors of interest to them. The USA WTO TBT Enquiry Point is the official channel for distributing U.S. comments to the network of WTO TBT Enquiry Points around the world. U.S. business contacts interested in commenting on the notifications are asked to review the comment guidance prior to submitting comments. For nonnotified foreign technical barriers to trade for non-agricultural products, stakeholders are encouraged to reach out as early as possible to the Office of Trade Agreements Negotiations and Compliance (TANC) in the International Trade Administration (ITA) at the Department of Commerce (DOC), which specializes in working with U.S. stakeholders to remove unfair foreign government-imposed trade barriers. The U.S. Department of Agriculture's Foreign Agricultural Service actively represents the interests of U.S. agriculture in the WTO committees on Agriculture, Sanitary and Phytosanitary (SPS) measures and Technical Barriers to Trade (TBT). FAS alerts exporters to expected changes in foreign regulations concerning food and beverage and nutrition labeling requirements, food packaging requirements, and various other agriculture and food related trade matters. Working with other Federal agencies and the private sector, FAS coordinates the development and finalization of comments on measures proposed by foreign governments to influence their development and minimize the impact on U.S. agriculture exports. FAS also contributes to the negotiation and enforcement of free trade agreements and provides information about tracking regulatory changes by WTO Members. The Office of the United States Trade Representative (USTR) WTO & Multilateral Affairs (WAMA) office has responsibility for trade discussions and negotiations, as well as policy coordination, on issues related technical barriers to trade and standards-related activities.

Online Resources:

WTO's ePing SPS&TBT platform: https://epingalert.org/

Register for ePing: https://epingalert.org/en/Account/Registration

WTO committee on Agriculture, Sanitary and Phytosanitary (SPS) measures:

https://www.wto.org/english/tratop_e/sps_e/sps_e.htm

WTO Committee on Technical Barriers to Trade (TBT): https://www.wto.org/english/tratop_e/tbt_e/tbt_e.htm

USA TBT Enquiry Point: https://www.nist.gov/standardsgov/usa-wto-tbt-enquiry-point

Comment guidance:

 $\underline{https://www.nist.gov/standardsgov/guidance-us-stakeholders-commenting-notifications-made-wto-members-tbt-committee}$

NIST: https://www.nist.gov/

TANC: https://www.trade.gov/office-trade-agreements-negotiation-and-compliance-tanc
Examples of TBTs: https://tcc.export.gov/report a barrier/trade barrier examples/index.asp.

Report Trade Barriers: https://tcc.export.gov/Report a Barrier/index.asp.

USDA FAS: https://www.fas.usda.gov/about-fas

FAS contribution to free trade agreements: https://www.fas.usda.gov/topics/trade-policy/trade-agreements

Tracking regulatory changes: https://www.fas.usda.gov/tracking-regulatory-changes-wto-members

USTR WAMA: https://ustr.gov/trade-agreements/wto-multilateral-affairs/wto-issues/technical-barriers-trade

Contact the USA TBT Enquiry Point at (301) 975-2918; E usatbtep@nist.gov or notifyus@nist.gov.

BSR/ASHRAE Addendum c to ANSI/ASHRAE Standard 209-2024

First Public Review Draft

Proposed Addendum c to Standard 209-2024, Energy Simulation Aided Design for Buildings except Low-Rise Residential Buildings

First Public Review Draft (November 2025) (Draft shows Proposed Changes to Current Standard)

This draft has been recommended for public review by the responsible project committee. To submit a comment on this proposed standard, go to the ASHRAE website at www.ashrae.org/standards-research--technology/public-review-drafts and access the online comment database. The draft is subject to modification until it is approved for publication by the Board of Directors and ANSI. Until this time, the current edition of the standard (as modified by any published addenda on the ASHRAE website) remains in effect. The current edition of any standard may be purchased from the ASHRAE Online Store at www.ashrae.org/bookstore or by calling 404-636-8400 or 1-800-727-4723 (for orders in the U.S. or Canada).

This standard is under continuous maintenance. To propose a change to the current standard, use the change submittal form available on the ASHRAE website, www.ashrae.org.

The appearance of any technical data or editorial material in this public review document does not constitute endorsement, warranty, or guaranty by ASHARE of any product, service, process, procedure, or design, and ASHRAE expressly disclaims such.

© 2025 ASHRAE. This draft is covered under ASHRAE copyright. Permission to reproduce or redistribute all or any part of this document must be obtained from the ASHRAE Manager of Standards, 180 Technology Parkway NW, Peachtree Corners, GA 30092. Phone: 404-636-8400, Ext. 1125. Fax: 404-321-5478. E-mail: standards.section@ashrae.org.

ASHRAE, 180 Technology Parkway, Peachtree Corners, GA 30092

BSR/ASHRAE Addendum c to ANSI/ASHRAE Standard 209-2024, Energy Simulation Aided Design for Buildings except Low-Rise Residential Buildings

First Public Review Draft

[Note to Reviewers: This addendum makes proposed changes to the current standard. These changes are indicated in the text by <u>underlining</u> (for additions) and <u>strikethrough</u> (for deletions) except where the reviewer instructions specifically describe some other means of showing the changes. Only these changes to the current standard are open for review and comment at this time. Additional material is provided for context only and is not open for comment except as it relates to the proposed changes.]

Addendum c to Standard 209-2024 – Proposed changes

6.6 Modeling Cycle #6—Design Integration and Optimization

6.6.1 Purpose. Integrate building systems through an *optimization* process to assist in meeting one or more of the project performance goals by exploring the complex interactions of multiple variables. Apply building performance simulation to explore the impact of complex interactions between design variables on at least one performance objective. Evaluate the trade-offs and synergies between design alternatives and their effect on building performance. Identify the design alternative or set of alternatives that optimally achieve the identified performance objective or objectives.

Informative Note: When this cycle is used to demonstrate compliance with the standard, the minimum compliance requirements can be met by performing multi-variant single-objective optimization analysis. In this case, at least one fundamental performance optimization objective is identified and analyzed; for example, minimize energy use or minimize carbon emissions. However, the size, complexity, or stringent performance targets for some projects could warrant a more complex analysis. For example, multi-objective optimization can be used to help balance potentially conflicting objectives, such as balancing low energy consumption with high occupant comfort and cost-effectiveness.

6.6.2 Applicability. When this *modeling cycle* is used to show compliance with the standard, it shall be completed before the end of the *construction document phase*.

Informative Note: It is advisable to initiate the process early in the design when many parameters are not fixed, there are higher degrees of freedom, and the opportunity for impact is greatest. The process can continue into later design stages where the input to the model can be updated based on the prevailing state of the design.

6.6.3 Analysis

- **6.6.3.1** The *energy modeler* shall Identify one or more *optimization objective* for the analysis that relates to the performance goals as identified in Section 5.6.
- **6.6.3.2** The *energy modeler* shall Identify at least two *design variables* of interest for a multivariate *optimization* process.
- **6.6.3.3** The *energy modeler* shall Identify the *design constraints* or test range for each analyzed *design variable*.
- **6.6.3.4** Conduct an optimization analysis using the defined optimization objective or optimization objectives, design variable or design variables, and design constraints.

Informative Note: An *optimization* analysis does not guarantee that the global minimum or maximum of the *optimization objective* will be found, only a local minimum or maximum given the *design variables*, *design constraints*, initializing values, and *optimization* method.

- **6.6.4 Reporting.** In addition to the general reporting requirements in Section 5.7.3, for each design *optimization* measure, report the following:
- a. Optimization objective or optimization objectives
- b. Design variable or design variables analyzed
- c. Design constraints or test range for each design variable
- d. Description of the optimization method

ASME Y14.41-202X

(Revision of ASME Y14.41-2019)

DRAFT

Digital Product Definition Data Practices

Engineering Product Definition Data and Related Documentation Practices

TENTATIVE
SUBJECT TO REVISION OR WITHDRAWAL
Specific Authorization Required for Reproduction or Quotation
ASME Standards Certification

THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS
Two Park Avenue
New York, New York 10016-5990

Y14.41 DRAFT

3.10 DATA

data: information represented in a formal manner suitable for communication, interpretation, or processing by human beings_or computers <u>or both</u>.

3.47.6 DAI

DAI stands for Design Activity Identification.

3.47.14 PLM

PLM stands for Product Lifecycle Management

4.1 GENERAL

The current revision of the data and the computer application(s) and version(s) used to develop the data set dataset shall be specified with other management data. See para. 5.3. The requirements for dataset identification and ownership are equivalent to the requirements for drawing identification and ownership defined in ASME Y14.100.

4.1.1 Data Set Identifier

NOTE: In cases where a single data file contains multiple models, each model shall have a distinct dataset identifier that, in association with the original DAI, uniquely identifies each model.

5.3.2 Management Data in an Annotated Model

Management data in an annotated model shall be included as annotation, attributes, or both. The management data shall not rotate when presented as annotation. Annotated models shall display management data clearly visible when the annotated model is opened or be provided in a location or manner which is clearly identifiable to the user. The following requirements apply to Management Data in an annotated model:

- a) Management data in an annotated model shall be included as annotation, attributes, or both.
- b) Annotated models shall display management data when the annotated model is opened or, for CAD/PLM systems that do not support this functionality, alternative methods may be used such as a Site Map and a Management Data presentation states per Y14.47, or via query and display of model attributes or properties.

5.4.1 Location of Security Marking in Annotated Models

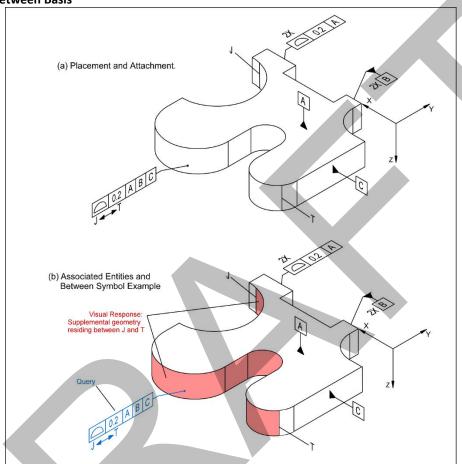
The following requirements apply to Security Marking in Annotated Models:

- (a) Security marking in an annotated model shall be included as annotation, attributes, or both.
- (b) Annotated models shall display security data when the annotated model is opened or, for CAD/PLM systems that do not support this functionality, alternative methods may be used such as Site Map and Default Notices presentation states per Y14.47, or via query and display of model attributes or properties.

Security marking in an annotated model shall be included as annotation, attributes, or both. <u>Annotated models shall display</u> security marking clearly visible when the annotated model is opened or be provided in a location or manner which is clearly identifiable to the user. The security marking shall not rotate when presented as annotation. Reproductions and derivatives of technical data, or any portions thereof, subject to asserted restrictions, shall also reproduce the asserted restrictions.

7.2.1 Associativity

- (1) Geometric tolerance boundaries may be communicated with associated entities.
- (2) In addition to the pattern forming methods listed in y14.5-2018, when applicable, associated entities may be used to group two or more digital elements to which a position or profile tolerance is applied.
- (3) When using additional pattern syntax notation (i.e. between symbol, nX, nSURFACES) with associated entities, the associated entities and pattern syntax shall agree with each other. See section 7.2.1(c)
- **9.2.2 Basic Dimensions**(*a*) *Basic Dimensions*. Querying of the model for the profile, location, and orientation of a feature shall occur within the appropriate coordinate system or considered with respect to the appropriate datums per Y14.5. See subsection 9.1 and para. 11.2.1(a).


12.2.3 Profile Tolerances

- (c) Between Basis. When using associated entities to define the application boundary, INDICATED may be used to signify that a query of the associated entities is necessary for presentation of the applicable boundary. This method may be used in place of the between symbol to further clarify the application. See Figure 12-16.
 - (1) When INDICATED is used, a single leader line directed within the indicated geometry or group of geometric elements is required, additional leader lines are not required.

12.2.5 Runout Tolerances

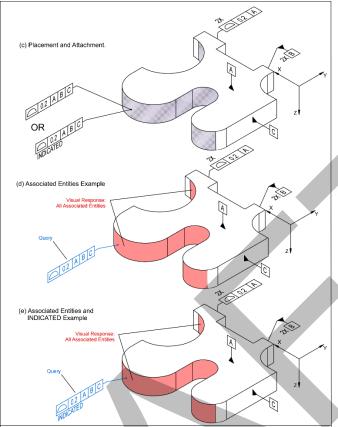
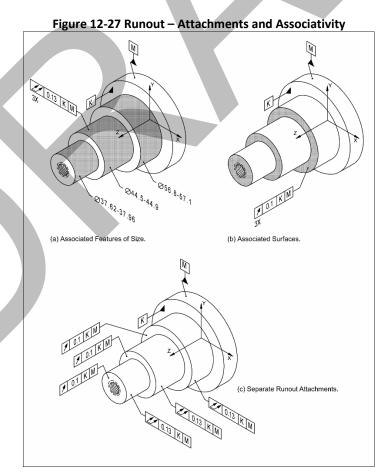
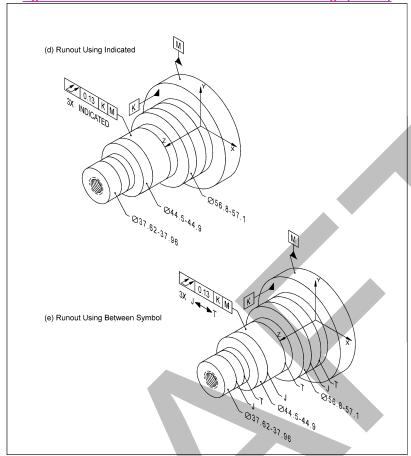

- (c) Between Basis. When using associated entities to define the application boundary, INDICATED may be used to signify that a query of the associated entities is necessary for presentation of the applicable boundary. This method may be used in place of the between symbol to further clarify the application. See Figure 12-27, illustration (d) and (e).
 - (1) When INDICATED is used, a single leader line directed within the indicated geometry or group of geometric elements is required, additional leader lines are not required.

Figure 12-16 Profile - Between Basis



NOTE: Reference paragraphs 7.2.5, 12.2.3(c) and table 12-3 for additional information

Figure 12-16 Profile – Between Basis (Cont'd)



NOTE: Reference paragraphs 7.2.5, 12.2.3(c), 12.2.5(c) and table 12-3 for additional information

NOTE: Reference paragraphs 12.2.5(a)(1), 12.2.5(a)(3) and table 12-5 for additional information

Figure 12-27 Runout – Between Basis and Indicated Usage (Cont'd)

NOTE: Reference paragraphs 12.2.5(c) and table 12-5 for additional information

Public Review 2

NENA Standards for 9-1-1 Professional Education, NENA-STA-011.2-202Y

For Public Review 2, only the underlined and strikethrough revisions stated below are available for public comment. Items <u>underlined</u> are new or revised text while strikethrough indicates a removal of text. Content without an underline or strikethrough is included for context only.

Comments can be submitted to NENA at https://dev.nena.org/higherlogic/ws/public/document?document_id=38329&wg_id=7f25e42e-de2f-4b22-a2a1-08407fb96049.

Please send any questions to Sandy Dyre, NENA Committee Resource Management, at CRM@nena.org.

3.9.1 Artificial Intelligence (AI)

This standard anticipates the evolving role of technology, such as the use of Artificial Intelligence (AI), in supporting and enhancing 9-1-1 professional education, operations, and decision-making.

4 Agency-Specific Programs

There is an aspect of the 9-1-1 professional education path that is specific to the agency, their solutions, and related policies, procedures, and governance. Agency-specific programs will differ with some utilizing traditional training mechanisms while others incorporate more technology in their training programs. This standard anticipates the evolving role of technology, such as the use of Artificial Intelligence (AI), in supporting and enhancing 9-1-1 professional education, operations, and decision-making.

6 Abbreviations, Terms, and Definitions

AI (Artificial	The use of computer systems to perform tasks that		
<u>Intelligence</u>)	typically require human intelligence, such as learning,		
	reasoning, or decision-making. In the 9-1-1 context,		
	this may include quality assurance automation,		
	predictive analytics, speech-to-text transcription, and		
	intelligent call triage.		

7 References

[5] National Emergency Number Association. *NENA Standard for 9-1-1/988 Interactions*. NENA-STA-045.1-202<u>5</u>. Alexandria, VA: NENA, <u>approved January 27, 2025</u> (forthcoming).

Not for publication. This document is part of the NSF International standard development process. This draft text is for circulation for review and/or approval by an NSF Standards Committee and has not been published or otherwise officially adopted. All rights reserved. This document may be reproduced for informational purposes only.

[Note – The recommended changes to the standard which include the current text of the relevant section(s) indicate deletions by use of strikeout and additions by gray highlighting. R2 changes are in yellow. Rationale statements are in *italics* and only used to add clarity; these statements will NOT be in the finished publication.]

NSF/ANSI 53:

Drinking Water Treatment Units — Health Effects

7 Elective performance claims – Test methods

7.2 Chemical reduction claims

7.2.2 Inorganic reduction testing

7.2.2.1 Inorganic reduction claims

Claims for chemical reduction may be made for the group of inorganic chemicals shown in Table $\frac{7.2}{}$ when tested in accordance with Section 7.2.

Table 7.2
Chemical reduction requirements

Substance	Individual influent sample point limits a (mg/L)	Average influent challenge (mg/L)	Maximum effluent concentration (mg/L)	US EPA Method(s)
fluoride	8.0 ± 25%	8.0 ± 10% ^b	1.0	340.2
nitrate plus nitrite (as N)	30 ± 20% OR 70 ± 10% OR 110 ± 10%	30 ± 10% added as 27 mg/L NO ₃ (as N) and 3.0 mg/L NO ₂ (as N) b OR 70 ± 10% added as 67 65 mg/L NO ₃ (as N) and 3.0 5 mg/L NO ₂ (as N) b OR 110 ± 10% added as 107 $\frac{110}{110}$ mg/L NO ₃ (as N) and 3.0 mg/L NO ₂ (as N)b	10°	300

^a Equals average influent challenge concentration variability plus one of the following, in order of availability:

:

Acceptable continuing calibration verification (CCV) limits stated in the appropriate US EPA Method.

^{2.} Acceptable spike recoveries as stated in the appropriate US EPA Method.

^{3.} Opinion of laboratory professionals - no guidance available in US EPA Method.

^b Reason for influent challenge levels: challenge concentrations should be selected to simulate what a system will be challenged with in the field and/or to provide an accurate and reproducible indicator of performance. The following sequence of criteria is used to select challenge concentrations:

a) The upper percentile concentration of available occurrence data (the concentration for which there is high probability (P < 0.05) that 95% of the population will be exposed to waters of lower concentration). Occurrence data shall come from national monitoring programs administered by the US EPA or the USGS. Other occurrence data shall be accepted by the Joint Committee on Drinking Water Treatment Units.

b) The concentration obtained by multiplying the US EPAs published MCL by three. This concentration will not be adequate when US EPA MCL is very low.

^c Of the 10 mg/L nitrate as N, not greater than 1 mg/L shall be NO₂ as N.

Not for publication. This document is part of the NSF International standard development process. This draft text is for circulation for review and/or approval by an NSF Standards Committee and has not been published or otherwise officially adopted. All rights reserved. This document may be reproduced for informational purposes only.

8 Instruction and information

8.4 Performance data sheet

Table 8.1
Performance data sheet reduction claims

Substance	Influent challenge concentration (mg/L)	Maximum permissible product water concentration (mg/L)
•		
nitrate plus nitrite (both as N) ^a	30 ± 10%	10
Nitrate (as N)	27 ± 10%	10
Nitrite (as N)	3.0 ± 10%	1
nitrate plus nitrite (both as N) a	70 ± 10%	10
Nitrate (as N)	67 65 ± 10%	10
Nitrite (as N)	3.0 5 ± 10%	1
nitrate plus nitrite (both as N) a	110 ± 10%	10
Nitrate (as N)	107 110 ± 10%	10
Nitrite (as N)	3.0 ± 10%	1
:		

^a Only one influent challenge concentration for a contaminant shall be listed on the performance data sheet.

Rationale:

These updates:

- Add two optional nitrate plus nitrite influent levels (70 ± 10% mg/L and 110 ± 10 mg/L) to NSF/ANSI 53 as a way to meet California MCLs
- Adds speciation of nitrate/nitrite composition to include nitrite concentration at the highest influent challenge. The nitrite influent challenge is set to 3 times the MCL (3 mg/L) at all three influent challenge levels as done when insufficient occurrence data is available to assess the 95th percentile. This is supported by USGS publications that found higher nitrate levels occur in shallower toxic wells which contain lower nitrite levels.
- Change "will not be" to "is not" in footnote b, bullet b as a style convention to reserve future tense only for future occurrences
- Add language in parentheses to Table 8.1, "Substance" column for consistency with NSF/ANSI
- Add footnote to Table 8.1 as there are now multiple options

Not for publication. This document is part of the NSF International standard development process. This draft text is for circulation for review and/or approval by an NSF Standards Committee and has not been published or otherwise officially adopted. All rights reserved. This document may be reproduced for informational purposes only.

NSF/ANSI 58:

Reverse Osmosis Drinking Water Treatment Systems

7 Elective performance claims – Test methods

7.1.4 Nitrate/nitrite reduction claims

Claims for nitrate/nitrite reduction shall be tested at a system pressure applicable to the intended end use in accordance with Section 7.1.4. To qualify for a nitrate/nitrite reduction claim, the system shall reduce the level of the contaminant from the influent challenge level so that all product water sample results are less than or equal to the maximum allowable product water concentration in Table 7.3.

Table 7.3Contaminant reduction requirements

Contaminant	Individual influent ^a sample point limits (mg/L)	Average influent challenge level (mg/L)	Maximum allowable product water level (mg/L)	US EPA Method(s)	Compounds
nitrate plus nitrite (as N) ⁺	30 .0 ± 20%	30.0 ± 10% (added as 27 mg/L NO ₃ (as N) as N of nitrate and 3.0 mg/L NO ₂ (as N) as N of nitrite) b OR 70 ± 10% (added as 67 65 mg/L NO ₃ (as N) as N of nitrate and 3.0 5 mg/L NO ₂ (as N) as N of nitrite) b OR 110 ± 10% added as 107 110 mg/L NO ₃ (as N) and 3.0 mg/L NO ₃ (as N) and 3.0 mg/L NO ₃ (as N) b	10.0°	300	NaNO₃ NaNO₂

^a Equals average influent challenge concentration variability plus one of the following, in order of availability:

- 1. Acceptable continuing calibration verification (CCV) limits stated in the appropriate US EPA Method.
- 2. Acceptable spike recoveries as stated in the appropriate US EPA Method.
- 3. Opinion of laboratory professionals no guidance available in US EPA Method.

^b Some public and private water supplies may can exceed indicated influent nitrate (NO₃) and nitrite (NO₂) levels. Additional treatment or individual design, or both, shall be applied to ensure that the product water level consistently meets the MCLs for such water supplies.

^c Of the 10 mg/L maximum product water level, no greater than 1.0 mg/L shall be in the form of NO₂ as N.

Not for publication. This document is part of the NSF International standard development process. This draft text is for circulation for review and/or approval by an NSF Standards Committee and has not been published or otherwise officially adopted. All rights reserved. This document may be reproduced for informational purposes only.

8 Instruction and information8.5 Performance data sheet

Table 8.1
Performance data sheet requirements

Substance	Influent challenge concentration (mg/L)	Maximum permissible product water concentration (mg/L)	
nitrate plus nitrite (both as N) ^a	30.0 ± 10%	10.0	
nitrate (as N)	27.0 ± 10%	10.0	
nitrite (as N)	3.0 ± 10%	1.0	
nitrate plus nitrite (both as N) a	70 ± 10%	10.0	
nitrate (as N)	67 65 ± 10%	10.0	
nitrite (as N)	3.0 5 ± 10%	1.0	
nitrate plus nitrite (both as N) a	110 ± 10%	10.0	
nitrate (as N)	107 110 ± 10%	10.0	
nitrite (as N)	3.0 ± 10%	<mark>1.0</mark>	
:			

^a Only one influent challenge concentration for a contaminant shall be listed on the performance data sheet.

Rationale:

These updates:

- Add an optional nitrate influent level of 110 ± 10 mg/L to NSF/ANSI 58 as a way to meet California MCLs
- Add nitrite to the highest influent challenge level and nitrite values for all three influent
 challenges have been set to 3 times the MCL (3 mg/L), based on insufficient occurrence data for
 nitrite concentrations in groundwater. This is supported by USGS publications that found higher
 nitrate levels occur in shallower toxic wells which contain lower nitrite levels. This is the same
 approach as taken for NSF 53.
- Change 30.0 to 30 in Table 7.3 for consistency with NSF/ANSI 53 and with other values in the table
- Make editorial changes to Table 7.3, "Average influent challenge level (mg/L)" column for consistency with NSF/ANSI 53
- Change "may" to "can" in footnote b for Table 7.3 as a style convention as "may" indicates a permission and "can" indicates a possibility

BSR/UL 60079-25, Standard for Safety for Explosive Atmospheres – Part 25: Intrinsically Safe Electrical Systems

1. Revisions to the proposal document dated July 25, 2025, per responses to comments received.

PROPOSAL

1DV.4 DR Replacement of NOTE 2 with the following:

NOTE 2 Group I installation requirements are presently not provided in IEC 60079-14. Installation requirements for Group I are being considered. In the US, the authority having jurisdiction for underground mines is the Mine Safety and Health Administration (MSHA) of the federal government. There are additional regulations beyond the requirements detailed here that will also apply.

8.1DV DR Addition of the following NOTES:

NOTE 1: The requirements for intrinsically safe wiring are contained within the National Electrical Code® (NEC) 504.20.

NOTE 2: The requirements for separation of intrinsically safe conductors are contained within the National Electrical Code® (NEC) 504.30.

8.3DV.1 DR Modification of Clause 8.3, first paragraph to replace with the following:

The descriptive system document shall specify the permissible types of multi-circuit cables according to Clause 9, if used for particular circuits. In the particular case where faults between separate circuits have not been taken into account, a note shall be included on the block diagram of the descriptive system document stating following: "Where the interconnecting cable utilizes part of a multi-circuit cable containing other intrinsically safe circuits, the multi-circuit cable shall be in accordance with the requirements of a multi-circuit cable Type A or Type B as specified in IEC 60079-14 the construction requirements for the multi-circuit cable.

9.1DV.1 D2 Modification of Clause 9.1, first paragraph, 2nd hyphen item with the following:

If the cable is specified as part of the system, then:

- individual conductors or strands of multi-stranded conductors within the hazardous area shall have a diameter of at least 0.1 mm; and
- the radial thickness of the insulation of each core conductor of multi circuit cable shall be appropriate to the conductor diameter and the nature of the insulation with a minimum of 0.2 0.25 mm.

BSR/UL 62841-3-14 Standard for Safety for Safety for Electric Motor-Operated Hand-Held Tools, Transportable Tools And Lawn And Garden Machinery - Safety - Part 3-14: Particular Requirements for Transportable Drain Cleaners

1. Proposed adoption of Amendment 1:2024-10 of the First Edition of IEC 62841-3-14:2017, Electric motor-operated hand-held tools, transportable tools and lawn and garden machinery - Safety -Jon Hom Ulsking. Part 3-14: Particular requirements for transportable drain cleaners, as a revision of the First Edition of UL 62841-3-14.

PROPOSAL

FOREWORD

102DV DE Modification: Add the following to the IEC Foreword:

For this Standard, all references to "Part 1" and "IEC 62841-1:2014" refer to CSA-C22.2 No. 62841-1 and UL 62841-1.

62841-1 and UL 62841-1.

2 Normative references

This clause of Part 1 is applicable.
This clause of IEC 62841-1:2014 is applicable, except as follows:

Addition:

IEC 62841-1:2014, Electric motor-operated hand-held tools, transportable tools and lawn and garden machinery — Safety — Part 1: General requirements machinery - Safety - Part 1: General requirements

17 Endurance

This clause of Part 1 is applicable

17,101 The device for se 1 shall have sufficient endurance for safe operation.

Compliance is checked by the following test.

The sectional machine is fitted with the longest drain cleaner cable section of the largest diameter permitted in accordance with 8.14.2 a) 101). The tool is switched on.

For the endurance test, the device is actuated with the minimum required force to rotate the drain cleaner cable section and then released until the drain cleaner cable section rotation has completely stopped. This actuation and release is repeated for 10 000 cycles or until the device fails to rotate the drain cleaner cable section, whichever occurs first. During the test, any user maintenance to ensure the correct operation of the device is allowed.

During the test, the drain cleaner cable section shall always stop rotating when the device is released.

IEC 62841-1:2014, Clause 17 is applicable.

19.102.3 The device for sectional machines as required in 21.18.2.1 shall have sufficient endurance for safe operation.

Compliance is checked by the following test.

The **sectional machine** is fitted with the longest **drain cleaner cable** section of the largest diameter permitted in accordance with 8.14.2 a) 101). The tool is switched on.

For the endurance test, the device is actuated with the minimum required force to rotate the drain cleaner cable section and then released until the drain cleaner cable section rotation has completely stopped. This actuation and release is repeated for 10 000 cycles or until the device fails to rotate the drain cleaner cable section, whichever occurs first. During the test, any user maintenance to ensure the correct operation of the device is allowed.

During the test, the **drain cleaner cable** section shall always stop rotating when the device is released.

21.18.2.1 Replacement:

In addition to the **power switch** required in 21.17, **drum machines** shall be fitted with a foot switch which is a **momentary power switch** without a lock-on device. It shall be necessary that both the **power switch** and the foot switch are in the "on" position in order to operate the machine

In addition to the power switch required in 21.17, sectional machines shall be provided with a device that

The microphone shall be located at a reference point that is 1 m from the point and the direction where the drain cleaner cable exits the tool. The microphone shall be located directly above the reference point JISE Inc. copylighted material Not al at a height in the range of (0.8 ± 0.075) m.

BSR/UL1309A, Standard for Safety for Cable for Use in Mobile Installations.

1. Proposed First Edition of the Standard for Cable for Use in Mobile Installations

PROPOSAL

1.1 This standard covers Type P cables up through 2000 volts which may be used in accordance with Article 337 of the National Electrical Code (NEC), ANSI/NFPA 70. Cables complying with this Standard are eligible to be marked with the designation "Type P". Cable marked Type P is a cross-linked polyolefin insulated, single or multi conductor cable, with an equipment grounding conductor only applicable to multiconductor cables, overall nonmetallic jacket and may be armored and sheathed or unarmored. Type P cables are designed for use in offshore and marine environments and are constructed to provide resistance to oil, moisture, chemicals, sunlight, mechanical damage, and flame propagation.

Rated voltage	Conductor size		Insulation thickness mi	oetini.	
J			Insulation designation P		
Phase-to- phase (V)	(mm²) (AWG or kcmil)		(mm)	(in)	
0-300	0.69 –1.31	18 – 16	0.76	0.030	
301 0-1000	0.69 -1.50	18 – 15	0.76	0.030	
	1.51 – 4.00	14 – 11	0.76	0.030	
	4.01 –7.00	10 – 9	0.76	0.030	
	7.01 – 17.0	8 – 5	1.14	0.045	
	17.1 – 34.0	4 - 2	1.14	0.045	
	34.1 – 109	1 – 4/0	1.40	0.055	
	110 – 254	213 – 500	1.65	0.065	
	255 – 400	501 – 777	2.03	0.080	
	401–508	778 – 1000	2.03	0.080	
	509-563	1001 - 1111	2.41	0.095	
		1400			
1001-2000	0.96 - 7.00	18 – 9	1.14	0.045	
	7.01 – 34.0	8-2	1.40	0.055	
	34.1 – 85.0	1 – 3/0	1.65	0.065	
	85.1 – 109	4/0	1.65	0.065	
	05.1 – 109	4/0	2.67 (HD)	0.105 (HD)	
	110 – 254	213 – 500	1.90	0.075	
	110-234	213 – 300	2.67 (HD)	0.105 (HD)	
	255 – 400		2.29	0.090	
			3.05 (HD)	0.120 (HD)	
	404 500	770 1000	2.29	0.090	
wighte	401 – 508	778 - 1000	3.05 (HD)	0.120 (HD)	
	F00 F00	63 1001 – 1111	2.79	0.110	
ALL S	509 – 563		3.05 (HD)	0.120 (HD)	

NOTE 1 – Minimum point is 90% of minimum required average.

NOTE 2- (HD) denotes Heavy-Duty insulation thickness.

Electrical and Physical Requirements of Designation P Material

Insulation material	Cross-linked polyolefin
Insulation designation	Р
Voltage rating	0-2000 V
Electrical requirements	
Insulation resistance constant (K) at 15.6°C (60°F), per Section 29	
MΩ-km, min	3050
(MΩ-1000 ft), min	(10000)
Capacitance and relative permittivity @ 75°C (167°F) water	Ho
temperature, per Section 30	dissionfie
Electrical method:	
Dielectric Constant, max	6.0
Increase in capacitance, max, 1 to 14 days	3.0
7 to 14 days	1.5
Stability factor after 14 days, max	0.5
Long term insulation resistance in water, per Section 31 @ 75°C as	
per UL 44, using 14 AWG (2.08 mm ²), 30 mil insulation, 600 V	UL 44, Pass
Physical requirements	
Heat deformation 1 h, per Section 32	
Test temperature °C (°F)	150 ±1 (302 ±2)
% of unaged value, 4/0 AWG (107.2 mm²) and smaller	20
% of unaged value, Larger than 4/0 (107.2 mm²)	10
Unaged, per Section 33	
Tensile strength, min, MPa	12.5
(psi)	(1800)
Elongation at rupture, min, %	250
illi	
Aging requirements - 110°C Rated: per Section 33	
After air oven at °C (°F)	158 ±1 (316 ±2)
Hours	168
Tensile strength, % retention of unaged, min	90
Elongation at rupture, retention of unaged, min	50
2.11112	T 5
Cold bend, per Section 17	Pass
Conductor corrosion, per Section 26	Pass
Conductor corrosion, per Section 20	F d55
Ozone resistance, per Section 36	
collination per essential	
after 24 h exposure in concentration of 0.03% by volume at 90 ± 1°C (194 ± 2°F)	No cracks
VW-1 flame test, per Section 35	Dana
Compliance, shall be determined by testing a 14 AWG (2.08 mm²) or smaller insulated conductor	Pass
Hot creep test, per Section 34 with the following temperature*	
	l

Temperature of air oven at °C (°F)*	
Hot creep elongation, max	175 ± 1°C (347 ± 2°F)
Hot creep set, max	25%
	2%
Sunlight resistance, per Section 27	Pass
	m
Hot oil resistance, per Section 28	Pass (170)
Set, per NEMA WC 57 Set Test,	Three Specimens shall be tested, they shall not exceed
Gauge marks used for this test shall be 4 inches (101.6 mm)	30% of the original gauge length

9.1 The shielding shall consist of either a polyester/aluminum or polyester/copper tape applied helically, aluminum metallic side inward or a tinned copper braid. Where a tape shield is used, a tinned copper, stranded drain wire shall be applied under the shield and shall be in contact with the aluminum side. The size of the drain wire shall be no smaller than two gauge sizes less than the signal circuit conductor size. Where a braided copper shield is used, it shall be constructed in accordance with Section 14. The wires in the braid shall be a minimum of 38 AWG (0.0080 mm²) copper.

12.2 The jacket shall be sunlight resistant in accordance with Sunlight Resistance, Section 27, and shall meet the physical properties requirements as applicable of Table 12.26.3 or 6.312.2.

Table 12.2

Jacket Properties Designations CP, N, CPE and XP

Jacket material	Thermosetting chlor-sulfonated polyethylene	Thermo- setting neoprene	Thermosetting chlorinated polyethylene	Thermo- setting crosslinked polyolefin
Jacket-Designation	СР	N	CPE	XP
Physical requirements unaged:				
Tensile strength, min, MPa (psi)	12.5 (1800)	12.5 (1800)	12.5 (1800)	10.3 (1500)
Elongation at rupture, min, percent	300	300	300	150
Tension set, max, percent	30	20	30	-
Aging requirements - 90°C(194°F) rated jacket:				
After air oven at °C (°F)	121 ±1 (250 ±1.8)	121 ±1 (250 ±1.8)	121 ±1 (250 ±1.8)	121 ±1 (250 ±1.8)

Hours	168	240	168	168
Tensile strength, % retention of unaged, min	85	-	85	70
Elongation at rupture, % retention of unaged, min	65	-	55 <u>60</u>	70
Tensile strength, min, MPa (psi)	-	6.2 (900)	-	- (1)
Elongation at rupture, min, %	-	50	-	-Hou
Oil exposure resistance				issic
After oil immersion at °C (°F)	121 ±1 (250 ±1.8)	121 ±1 (250 ±1.8)	121 ±1 (250 ±1.8)	100 ±2 (212 ±3.6)
Hours	18	18	18.110	96
Tensile strength, % retention of unaged, min	60	80	60	50
Elongation at rupture, % retention of unaged, min	60	60	60	50
Heat deformation, at 121 ±1°C (249°±2°F)		ther ten		
max, percent of unaged value	-	of for-	15	15
Hot creep elongation	- 160	-	-	100
Sunlight resistance	Pass	Pass	Pass	Pass
Tear resistance, Tested to NEMA WC53 N/mm	6.1 (35)			
(lbf/in), min	6.1 (35)	6.1 (35)	6.1 (35)	6.1 (35)
Mechanical water absorption				
mg/cm² (mg/in²), max	15.5 (100)	20.2 (130)	20.2 (130)	-

^{19.2} These cable constructions shall be subjected to, Method 2, FT4/<u>IEEE 1202</u>, Vertical-Tray flame test in accordance with UL 2556. The cable shall be considered to comply if the damage to the cable does not exceed 1.5 m (4 ft, 11 in) above the point of flame impingement on the cable sample.

^{41.1} Each reel of finished cable shall be tested and shall successfully withstand without breakdown for a period of 5 minutes the high voltage ac test potential given in Table 41.1. The ac potential shall be applied between the conductor (or conductors) and the metallic sheath, metallic shield, metallic armor, or water as applicable. Each reel of a single conductor nonshielded or unarmored cable should be immersed in water for at least 6 h prior to the application of the ac potential. For single conductor cables without a shield or armor, the spark test may be used in lieu of the Dielectric withstand test.

BSR/UL 30, Standard for Safety for Metallic and Nonmetallic Safety Cans for Flammable and **Combustible Liquids**

TOPIC 1: Type 1 Safety Can PROPOSAL

6 General Requirements for Metallic and Non-Metallic Safety Cans

6.12 The bottom edge of a metal safety can having a nominal capacity of 3 US gal (11.4 L) or more shall be reinforced or shall be provided with incorporate a metal support ring except when additional reinforced provides additional reinforced. additional reinforcement.

Exception: A safety can constructed with a bottom thickness of not less than 0.0270 inches (0.7 mm) and provided with formed ribs shall be considered to have equivalent structural strength and stability and therefore shall not require additional reinforcement or a metal support ring.

...that supposed in the state of the state o

BSR/UL 244B, Standard for Field Installed and/or Field Connected Appliance Controls

1. Withdrawal and replacement of ANSI/ISA MC96.1, Temperature-Measurement Thermocouples.

PROPOSAL

24.3.3 If thermocouples are used to measure temperatures, the thermocouples are to consist of wires not larger than 24 AWG (0.21 mm²) and not smaller than 30 AWG (0.05 mm²). The thermocouples and related instruments are to be accurate and calibrated in accordance with good laboratory practice. The thermocouple wire is to comply with the requirements specified in the Tolerances on Initial Values of EMF versus Temperature tables in the Standard Specification and Temperature-Electromotive Force (emf) Tables for Standardized Thermocouples, ANSI/ASTM E230/E230M Initial Calibration Tolerances for Thermocouples table in Temperature Measurement Thermocouples, ANSI/ISA MC96.1.

230/E2. AD A STATE OF THE PROPORTION WITHOUT A STATE OF THE PROPORTION OF THE PROPOR

BSR/UL 810A, Standard for Electrochemical Capacitors

1. Proposed Second Edition and Adoption of UL 810A in Canada

PROPOSAL

- 4.1 A component of a product covered by this Standard shall:
 - a) Comply with the requirements for that component standard as required for use in the US and Canada as applicable;
 - b) Be used in accordance with its rating(s) established for the intended conditions of use; and
 - c) Be used within its established use limitations or conditions of acceptability.
- 4B.2 The following publications are referenced in this Standard:

ASTM E230/E230M, Standard Specification and Temperature-Electromotive Force (emf) Tables for Standardized Thermocouples

ASTM D471, Standard Test Method for Rubber Property – Effect of Liquids

ASTM D543, Standard Practices for Evaluating the Resistance of Plastics to Chemical Reagents

CSA C22.1, Canadian Electrical Code (CEC), Part 1

CSA C22.2 No. 0.17, Evaluation of properties of polymeric materials

NFPA 70®, National Electrical Code® (NEC®)

UL 94, Tests for Flammability of Plastic Materials for Parts in Devices and Appliances

UL 157, Gaskets and Seals

UL 746C, Polymeric Materials - Use in Electrical Equipment Evaluations

- 6.3.1 A polymeric material used as part or all of an enclosure of a capacitor module shall comply with the applicable requirements in UL 746C or CSA C22.2 No. 0.17 in Canada.
- 6.3.2 A polymeric material used as a capacitor casing shall:
 - a) Be classed V-2 minimum in accordance with UL 94, or CSA C22.2 No. 0.17 in Canada; or
 - b) Comply with the 20 mm (3/4-inch) flame flammability test specified in UL 746C or CSA C22.2 No. 0.17 in Canada.
- 7.1 A material used for mounting of uninsulated capacitor terminals whose deterioration could lead to a risk of fire or electric shock condition shall comply with the requirements specified in the material property considerations table of UL 746C or CSA C22.2 No. 0.17 in Canada.

Exception: A polymeric material provided as insulation shall:

- a) Be classed V-2 minimum in accordance with UL 94, or CSA C22.2 No. 0.17 in Canada; or
- b) Comply with the 20 mm (3/4-inch) flame flammability test specified in UL 746C or CSA C22.2 No. 0.17 in Canada.