PUBLISHED WEEKLY BY THE AMERICAN NATIONAL STANDARDS INSTITUTE 25 W43RD STREET NY, NY 10036

VOL. 56, NO. 41

OCTOBER 10, 2025

CONTENTS

America	an National Standards	
	Project Initiation Notification System (PINS)	2
	Call for Comment on Standards Proposals	. 27
	Final Actions - (Approved ANS)	.74
	Call for Members (ANS Consensus Bodies)	. 78
	American National Standards (ANS) Process	.85
	Accreditation Announcements (Standards Developers)	. 86
	Meeting Notices (Standards Developers)	. 87
	Information Concerning	.88
	ANS Under Continuous Maintenance	. 89
	ANSI-Accredited Standards Developer Contacts	90
Internat	tional Standards	
	ISO and IEC Draft Standards	. 93
	ISO and IEC Newly Published Standards	. 96
	International Organization for Standardization (ISO)	.98
Informa	tion Concerning	
	Registration of Organization Names in the United States	100
	Proposed Foreign Government Regulations	101

Project Initiation Notification System (PINS)

Section 2.5.1 of the ANSI Essential Requirements (www.ansi.org/essentialrequirements) describes the Project Initiation Notification System (PINS) and includes requirements associated with a PINS Deliberation. Following is a list of PINS notices submitted for publication in this issue of ANSI Standards Action by ANSI-Accredited Standards Developers (ASDs). Please also review the section in Standards Action entitled "American National Standards Maintained Under Continuous Maintenance" for information about American National Standards (ANS) maintained under the continuous maintenance option, as a PINS to initiate a revision of such standards is not required. Use the following Public Document Library url to access PDF & EXCEL reports of approved & proposed ANS: List of Approved and Proposed ANS. Directly and materially interested parties wishing to receive more information or to submit comments are to contact the sponsoring ANSI-Accredited Standards Developer directly within 30 calendar days of the publication of this PINS announcement.

AAFS (American Academy of Forensic Sciences)

Teresa Ambrosius <a href="mailto:tambrosius@aafs.org | 410 North 21st Street | Colorado Springs, CO 80904 www.aafs.org

New Standard

BSR/ASB Std 237-202x, Standard for the Expression of Opinions in Forensic Document Examination (new standard) Stakeholders: Forensic Document Examiners, Civil and Criminal Litigators and Litigants, Judiciary.

Project Need: Forensic document examiners (FDEs) may be asked to give opinions on the source of an item(s), such as whether a disputed handwriting sample was written by a particular person or whether an impression was made by a specific device. To promote consistency within and across jurisdictions, this standard provides requirements to be used by FDEs in expressing opinions relating to source determination.

Interest Categories: Academics and Researchers, General Interest, Jurisprudence and Criminal Justice, Producer, User - Government, User - Non-Government

This standard provides requirements for the expression of opinions by forensic document examiners when performing comparisons relating to source determination. This establishes requirements for the use of statements of relative support based on the evidence. This document does not regularize inferences exclusively based on automated systems, or statistical models.

AAFS (American Academy of Forensic Sciences)

Teresa Ambrosius <ambrosius@aafs.org> | 410 North 21st Street | Colorado Springs, CO 80904 www.aafs.org

New Standard

BSR/ASB Std 238-202x, Standard for the Examination of Signatures (new standard)

Stakeholders: Forensic Document and Handwriting Examiners, legal community, academics

Project Need: Signatures should be treated differently from handwriting. While there is a standard for the examination of handwritten items (ANSI/ASB 070), there has never been a standard for the examination of signatures. The procedures and limitations described in this standard will be useful in setting a logical examination procedure for Forensic Document and Handwriting Examiners. It will also be of interest to the legal community.

Interest Categories: Academics and Researchers, General Interest, Jurisprudence and Criminal Justice, Producer, User - Government, User - Non-Government

This standard provides the required procedures and limitations for the examination of handwritten "wet ink" signatures, or copies of these signatures. This standard does not include procedures for the examination of Digitally Captured Signatures or electronic signatures.

ABYC (American Boat and Yacht Council)

Emily Parks <eparks@abycinc.org> | 613 Third Street, Suite 10 | Annapolis, MD 21403 www.abycinc.org

Revision

BSR/ABYC A-27-202x, Alternating Current (AC) Generator Sets (revision of ANSI/ABYC A-27-2021)

Stakeholders: Surveyors, consumers, insurance personnel, boat manufacturers, engine manufacturers, accessory manufacturers, government, service specialists, and trade associations.

Project Need: This standard applies to the design, construction, and installation of alternating current (AC) generator sets intended for permanent installation and operation on boats.

Interest Categories: Manufacturer - Boats, Manufacturer - Engines, Trade Associations, Specialist Service, Specialist Misc., Government

This standard applies to the design, construction, and installation of alternating current (AC) generator sets intended for permanent installation and operation on boats.

ABYC (American Boat and Yacht Council)

Emily Parks <eparks@abycinc.org> | 613 Third Street, Suite 10 | Annapolis, MD 21403 www.abycinc.org

Revision

BSR/ABYC H-26-202x, Powering of Boats (revision of ANSI/ABYC H-26-2021)

Stakeholders: Surveyors, consumers, insurance personnel, boat manufacturers, engine manufacturers, accessory manufacturers, government, service specialists, and trade associations.

Project Need: This standard applies to boats propelled by machinery, including catamarans, and addresses the maximum power for propulsion of outboard boats; the suitability of power installed in inboard boats; and maneuvering speed.

Interest Categories: Manufacturer - Boats, Manufacturer - Engines, Manufacturer - Accessory, Trade Associations, Specialist Misc., Government, General Interest

This standard applies to boats propelled by machinery, including catamarans, and addresses the maximum power for propulsion of outboard boats; the suitability of power installed in inboard boats; and maneuvering speed.

ABYC (American Boat and Yacht Council)

Emily Parks <eparks@abycinc.org> | 613 Third Street, Suite 10 | Annapolis, MD 21403 www.abycinc.org

Revision

BSR/ABYC S-8-202x, Boat Measurement and Weight (revision of ANSI/ABYC S-8-2021)

Stakeholders: Surveyors, consumers, insurance personnel, boat manufacturers, engine manufacturers, accessory manufacturers, government, service specialists, and trade associations.

Project Need: This industry conformity standard applies to all boats and establishes uniformity in describing boat dimensions and weight specifications.

Interest Categories: Manufacturer - Boats, Manufacturer - Engines, Manufacturer - Accessory, Trade Associations, Specialist Misc., Government, General Interest

This industry conformity standard applies to all boats and establishes uniformity in describing boat dimensions and weight specifications.

ASA (ASC S3) (Acoustical Society of America)

Raegan Ripley <standards@acousticalsociety.org> | 1305 Walt Whitman Road, Suite 300 | Melville, NY 11747 www. acousticalsociety.org

Revision

BSR S3.39-202x, Specifications for Instruments to Measure Aural Acoustic Impedance, Admittance, and Absorbance (Aural Acoustic Immittance) (revision of ANSI/ASA S3.39-1987 (R2025))

Stakeholders: Instrument manufacturers, audiologists, otolaryngologists and other physicians, individuals with ear disease.

Project Need: The standard needs to be revised to incorporate new methods for measuring aural acoustic immittance.

Interest Categories: User, Producer, General Interest, Government

This standard provides specifications for instruments designed to measure acoustic impedance, acoustic admittance & acoustic absorbance within the human external ear canal. Terms that apply to these instruments related measurements are defined. Four types of instruments are classified. Characteristics, specifications, recommended calibration procedures then are provided. Material within this standard is intended for users & for manufacturers of instruments that measure aural acoustic immittance.

ASME (American Society of Mechanical Engineers)

Terrell Henry <ansibox@asme.org> | Two Park Avenue, M/S 6-2B | New York, NY 10016-5990 www.asme.org

New Standard

BSR/ASME IAM-2-202x, Industrial Investment Classification System (new standard)

Stakeholders: Manufacturers, Consultants, Technology Integrators

Project Need: Manufacturing industry stakeholders need a uniform classification system to classify areas of investment completely and systematically within their processes and facilities. A set of defined classifications will aid stakeholders in systematically collecting data and analyzing investments, especially for those firms or staff that do not have direct access to investment analysis professionals.

Interest Categories: AB - Designer; AF - General Interest; AI - Laboratory/Testing; AK - Manufacturer

This guide provides a classification of investments for advancing manufacturing efficiency and productivity. It facilitates data collection and analysis of investments in order to further understand the types of investments that have the highest returns and where there might be opportunities for investments.

BICSI (Building Industry Consulting Service International)

Allen Dean <publications@bicsi.org> | 8610 Hidden River Parkway | Tampa, FL 33637 www.bicsi.org

Revision

BSR/BICSI N2-202x, Practices for the Installation of Telecommunications and ICT Cabling Intended to Support Remote Power Applications (revision of ANSI/BICSI N2-2017)

Stakeholders: Telecom, ICT, and intelligent building system infrastructure designers and installers; manufacturers of remote power systems products and requisite infrastructure; professionals and inspectors related to the installation and inspection of remote power systems.

Project Need: As more systems utilize ICT cabling to supply both power and data connectivity, and as the power supplied across these cables increases, additional requirements and guidance beyond the minimum specifications within electrical and safety codes must be established to increase performance, maintain flexibility in deployments, and mitigate foreseeable future issues.

Interest Categories: Producer, End User, Designer, Installer

This standard specifies best practices for installation of ICT cabling intended to support remote power. These installation practices facilitate compliance with applicable codes (e.g., National Electrical Code, Canadian Electrical Codes).

BICSI (Building Industry Consulting Service International)

Allen Dean <publications@bicsi.org> | 8610 Hidden River Parkway | Tampa, FL 33637 www.bicsi.org

Revision

BSR/BICSI N3-202x, Planning and Installation Methods for the Bonding and Grounding of Telecommunication and ICT Systems and Infrastructure (revision of ANSI/BICSI N3-2019)

Stakeholders: Telecom/ICT and converged system infrastructure designers and installers; manufacturers of building and communication systems products and requisite infrastructure utilizing network communications; system integrators; professionals and inspectors for building systems that utilize network connectivity.

Project Need: As ICT systems become more prevalent through the global adoption of IoT, smart buildings, and other network-enabled systems, effective bonding and grounding methods mitigate additional risk of harm to people, property, or systems by induced, stray, or accidental currents. Many codes and standards address the design of these systems, but proper installation guidance is often left to manufacturer's instructions.

Interest Categories: Producer, End User, Designer, Installer

This standard specifies aspects of planning and installation of bonding and grounding systems for telecommunications and ICT systems and infrastructure within a customer premises. Proper planning and installation provides for effective and optimal system performance of the bonding and grounding system, allowing the system to meet its objective in preventing damage to people or assets.

FM (FM Approvals)

Josephine Mahnken <josephine.mahnken@fmapprovals.com> | One Technology Way | Norwood, MA 02062 www.fmapprovals.com

Revision

BSR/FM 4411-202x, Cavity Wall Systems (revision of ANSI/FM 4411-2020)

Stakeholders: Building Code officials, manufacturers, architects, loss prevention consultants

Project Need: This revision outlines allowable substitutions/alternates for cladding, weather resistive barriers, and insulation; adds terminology related to the substitution/alternates, and provides clarity on existing terminology; and expands the scope to include cavities greater than 4 in. (102 mm).

Interest Categories: General Interest, Producers, Users

This standard reflect tests and practices used to examine characteristics of cavity wall systems that contain an air gap and other components that are used to minimize heat loss in colder climates and solar gain in warmer climates. The tests measure vertical flame spread in the cavity and on the exterior surface, wind pressure ratings, corrosion resistance and hail resistance.

HL7 (Health Level Seven)

Lynn Laakso <lynn@hl7.org> | 455 E. Eisenhower Parkway, Suite 300 #025 | Ann Arbor, MI 48108 www.hl7.org

Revision

BSR/HL7 EHRSFM R2 USEGUIDE E2-202x, HL7 EHRS-FM Release 2.0.1: Usability Functional Profile, Edition 2 (revision and redesignation of ANSI/HL7 EHRSFM R2 USEGUIDE E1-2025)

Stakeholders: Healthcare IT Vendors, Healthcare Provider/user, Patients, Providers, Healthcare Institutions, EHR and PHR vendors

Project Need: ISO TC215 WG1 has expressed interest in adopting the Usability Functional Profile (UPF) - which will require HL7 to first re-ballot the UFP as a Normative standard (from its current status as an Informative standard).

Interest Categories: Government/University, Vendor, Consultant, Provider, General Interest, Affiliate, Pharmaceutical, Payor

Enables Health Information System designers to design systems that account for and accommodate human factors. Supports purchasing decisions by clinicians and other users of systems that meet traditional human-computer interface requirements.

IAPMO (ASSE Chapter) (ASSE International Chapter of IAPMO)

Terry Burger <standards@iapmostandards.org> | 18927 Hickory Creek Drive, Suite 220 | Mokena, IL 60448 www.asse-plumbing.org

Revision

ANSI/ASSE 1023-202x, Performance Requirements for Electrically Heated or Cooled Water Dispensers (revision of ANSI/ASSE 1023-2020)

Stakeholders: Manufacturer, Plumbing Engineer, Construction, Regulatory Authority

Project Need: Update standard to include provisions for water bottle dispensers

Interest Categories: Manufacturer, User, Installer/Maintainer, Research/Standards/Testing Laboratory, Enforcing Authority, Consumer, General Interest

Water dispensers covered by this standard include an integral electrically powered heater or cooler. Device shall consist of an accumulator vented to atmosphere when a heater is included, a thermal element or cooler, connection to an electrical outlet, and a dispensing fitting.

Teresa Belmont <t.belmont@ieee.org> | 445 Hoes Lane, 3rd Floor | Piscataway, NJ 08854 www.ieee.org

New Standard

BSR/IEEE 45.5-202x, Recommended Practice for Electrical Installations on Shipboard — Safety Considerations (new standard)

Stakeholders: Shipyards, marine machinery and power conversion manufacturers, ship design agents, port authorities, shipping companies, off-shore exploration and production facilities, passenger ship owners, and navies.

Project Need: IEEE Std 45.5-2014 was approved on 21 August 2014. This project will review the recommended practices and implement changes to reflect new technologies and processes, reflect lessons learned, remove material adequately covered in other 45.X standards, and update references.

Interest Categories: A subset of the interest categories on this list is expected to comprise the consensus body: https://ieee.app.box.com/v/Interest-Categories

This document establishes recommended practices for incorporating electrical safety into the design, work practices, and installed systems of shipboard electrical installations. These recommendations reflect the technologies, engineering methods, and engineering practices in effect when this document is issued. This document is to be used in conjunction with the IEEE 45 series of standards.

IEEE (Institute of Electrical and Electronics Engineers)

Teresa Belmont <t.belmont@ieee.org> | 445 Hoes Lane, 3rd Floor | Piscataway, NJ 08854 www.ieee.org

New Standard

BSR/IEEE 80-202x, Guide for Safety in AC Substation Grounding (new standard)

Stakeholders: The stakeholders are the substation and power plant design engineers responsible for grounding system designs.

Project Need: The guide is the main source for grounding information throughout the world. It provides both general information and specific design information that can be used by the utility industry. Additional information will be provided for renewable power facilities, impact of substation grounding outside of the facility and impact of outside facility on the substation facility. More specific information will be added to explain the various parameters to consider in a design.

Interest Categories: A subset of the interest categories on this list is expected to comprise the consensus body: https://ieee.app.box.com/v/Interest-Categories

This guide is primarily concerned with safe grounding practices for outdoor ac substations, either air-insulated or gas-insulated, at power frequencies in the range of 50 Hz or 60 Hz. With proper caution, the methods described herein are applicable to indoor portions of such substations, or to substations that are wholly indoors. No attempt is made to cover the grounding practices and methods peculiar to dc substations. A quantitative analysis of the effects of lightning surges is also beyond the scope of this guide.

Teresa Belmont <t.belmont@ieee.org> | 445 Hoes Lane, 3rd Floor | Piscataway, NJ 08854 www.ieee.org

New Standard

BSR/IEEE 450-202x, Recommended Practice for Maintenance, Testing, Analysis, and Replacement of Vented Lead-Acid Batteries for Stationary Applications (new standard)

Stakeholders: The stakeholders for the project are users in telecom, data center, electric power, renewable energy, industrial, and battery service industries.

Project Need: Incorporate revisions to existing information based on operating experience and changes in technology as well as additional information to better support document users including: information on specific gravity readings and pilot cell selection, addition of Photovoltaic (PV) applications, data monitoring clarification, updated personnel safety information, and risk-based maintenance assessment.

Interest Categories: A subset of the interest categories on this list is expected to comprise the consensus body: https://ieee.app.box.com/v/Interest-Categories

This document provides recommended maintenance, test schedules, testing procedures, and analysis that can be used to optimize the life and performance of permanently installed, vented lead-acid batteries in stationary applications. It also provides guidance to determine when batteries should be replaced. The maintenance, testing, analysis, and reporting programs described in this recommended practice represent an optimal maintenance program. These recommendations are provided without consideration of economics, availability of testing equipment and personnel, or relative importance of the application. The user are required to evaluate these practices against their operating experience, operating conditions, manufacturer's recommendations, resources, and needs in developing a maintenance program for a given application.

Teresa Belmont <t.belmont@ieee.org> | 445 Hoes Lane, 3rd Floor | Piscataway, NJ 08854 www.ieee.org

New Standard

BSR/IEEE 666-202x, Guide for Electric Power Service Systems for Generating Stations (new standard)
Stakeholders: Design and construction (EPC or AE) firms, generating station owners and operators, related equipment manufacturers.

Project Need: (1) Review the impact of the latest revisions of other standards on this document. (2) General review for updating related to technology advancements in the areas of protection relays, relay communications, variable frequency drives, control and communications, and battery technologies; industry practices with respect to NFPA 70E (Arc Flash considerations); and influences due to new grid codes and regulations. The intent is not to repeat or recreate detailed guidance found in existing standards, but rather to guide the reader as to how such other standards may be needed within the context of generating station design. (3) The guide currently emphasizes systems for coalbased generation plants, and may benefit from some additional material for gas-fired or combined-cycle plants which are prevalent in the current market. (4) Any errors found in the existing content will be corrected. (5) Obsolete or irrelevant material will be removed. (6) Clarifications will be made to any sections as deemed necessary.

Interest Categories: A subset of the interest categories on this list is expected to comprise the consensus body: https://ieee.app.box.com/v/Interest-Categories

This document provides guidelines for electric power service systems for generating stations, including all onsite electric devices powered by the electric power service system including but not limited to electric motors, resistance heaters, and rectifiers. The guide applies to all types of power generating stations but is particularly applicable to stations in which the onsite electric power service system is required to perform continuously. The guide can be applied when electric power for auxiliary loads is supplied from the power grid or when electric power to auxiliary loads is provided by independent onsite generators or electric storage batteries. This guide contains a listing of typical power plant auxiliary loads and criteria for their power service and examples of single-line diagrams for a typical plant. It also includes tables of typical power service parameters to illustrate the range of typical values for each parameter, and it identifies the approximate effect of the minimum and maximum value of each parameter on the load. Each clause, as appropriate, has a bibliography of U.S. industry codes and standards and other reference documents that provide detailed guidance in the design and specification of station service system components.

Teresa Belmont <t.belmont@ieee.org> | 445 Hoes Lane, 3rd Floor | Piscataway, NJ 08854 www.ieee.org

New Standard

BSR/IEEE 859-202x, Standard Terms for Reporting and Analyzing Outage Occurrences and Outage States of Electrical Transmission Facilities (new standard)

Stakeholders: The key stakeholders are utilities and regulatory bodies (particularly NERC and the Transmission Availability Data System) with direct interests in power network reliability. Additional stakeholders include all engineers with interests in power system reliability, whether in industry, research or other sectors, who benefit from standard terms in data recording.

Project Need: This standard expires in 2028 and a new edition is required by the industry. The standard was last updated in 2018, and is in active use by the North American Electricity Reliability Corporation (NERC) as the basis for the Transmission Availability Data System, along with use worldwide as a set of agreed terms for network reliability modelling. This project will first identify whether stakeholders believe additions or amendments to the present text are needed; if no then a new edition will be proposed with the present text, and if yes then a new edition will be proposed incorporating such changes as the Working Group deems appropriate. Preliminary outreach has not revealed proposals for major changes. Nevertheless, the PAR is being submitted at this stage, as if a consensus emerges around a need for substantial revisions then a Project would require considerable calendar time.

Interest Categories: A subset of the interest categories on this list is expected to comprise the consensus body: https://ieee.app.box.com/v/Interest-Categories

This standard defines terminology and indices for reporting and analyzing outage occurrences of transmission facilities. Outage definitions and indices are given for two general types of facilities: units and components. Units are functional facilities that transfer power between designated points, while components are specific pieces of equipment. Outage definitions are given both for describing the outage history of a particular facility and for describing groups of individual outage occurrences that are related in some way.

IEEE (Institute of Electrical and Electronics Engineers)

Teresa Belmont <t.belmont@ieee.org> | 445 Hoes Lane, 3rd Floor | Piscataway, NJ 08854 www.ieee.org

Revision

BSR/IEEE 1290-202x, Guide for Motor-Operated Valve (MOV) Motor Application, Protection, Control, and Testing in Nuclear Facilities (revision of ANSI/IEEE 1290-2015)

Stakeholders: Nuclear industry (utilities; Architect/Engineering design firms; manufacturers; regulators and consultants)

Project Need: The need for the project is to provide the current state of the technology, consider current industry operating experience and update references.

Interest Categories: A subset of the interest categories on this list is expected to comprise the consensus body: https://ieee.app.box.com/v/Interest-Categories

This guide applies to motors used to drive valve operators in nuclear facilities. The document presents guidelines to evaluate the adequacy of motors used to drive valve operators; to provide recommendations for motor application; and to provide methods for protection, control, and testing of motors used for valve operation.

Teresa Belmont <t.belmont@ieee.org> | 445 Hoes Lane, 3rd Floor | Piscataway, NJ 08854 www.ieee.org

New Standard

BSR/IEEE 1858-202x, Standard for Camera Perceptual Image Quality (CPIQ) (new standard)
Stakeholders: Manufacturers of camera-equipped devices, application developers, telecom service providers, OS vendors, test labs and test software and equipment vendors, sensor, lens, and ISP manufacturers.

Project Need: Cameras currently on the market with identical image (megapixel) resolution capabilities produce vastly different quality images. Due to sensor and lens size limitations, increasing the number of megapixels in a camera may not necessarily improve image quality. Camera vendors do not have sufficient standardized metrics to compare one product to the next. At the same time, they know that image quality is important to consumers as an aspect of product quality, and important to motivate them to print or share those images and videos.

Interest Categories: A subset of the interest categories on this list is expected to comprise the consensus body: https://ieee.app.box.com/v/Interest-Categories

This standard addresses the fundamental attributes that contribute to video and still image quality for human observers. The standard defines a suite of objective and subjective test methods for measuring perceptual image quality attributes, and it specifies tools and test methods to facilitate standards-based communication and comparison among imaging industry companies regarding camera image quality.

IEEE (Institute of Electrical and Electronics Engineers)

Teresa Belmont <t.belmont@ieee.org> | 445 Hoes Lane, 3rd Floor | Piscataway, NJ 08854 www.ieee.org

New Standard

BSR/IEEE 1936.21-202x, Standard for Unmanned Aerial Vehicle (UAV) Inspection System of Indoor Power Grid Equipment — Part 1: General Requirements (new standard)

Stakeholders: Power grid enterprises, UAV manufacturers, UAV inspection technology service providers, research institutes and universities, etc.

Project Need: In recent years, indoor power grid equipment has developed rapidly worldwide, mainly in the form of indoor/underground substations, and power transmission tunnels. Currently, visible light and infrared inspections for indoor power grid equipment primarily rely on manual inspections or unmanned methods such as cameras and mobile robots. However, these approaches have several limitations: (1) Limitations of manual inspection: Manual inspections suffer from low efficiency, dependence on operators' experience, high risks of missing detections & misjudgments, and operators' safety issues. (2) Enclosed operational environments; Certain special indoor power equipment, such as converter valve halls, require enclosed environments during operation, making manual inspections impossible. Hence, unmanned inspection becomes indispensable. (3) Limitations of unmanned inspection methods: Due to the compact layout and complex structure of indoor power grid equipment, cameras and mobile robots often suffer from inspection blind spots. (4) Limitations of deploying cameras: Due to the location and space constraints of deployment, reducing blind spots by simply increasing the number of cameras is infeasible. The indoor UAV inspection systems have been successfully applied in practical engineering cases. Compared with outdoor UAV inspection system, indoor UAV inspection systems have significant differences in various aspects, including UAV itself, dock, positioning technology, etc. However, up to ...

Interest Categories: A subset of the interest categories on this list is expected to comprise the consensus body: https://ieee.app.box.com/v/Interest-Categories

This standard specifies general requirements for Unmanned Aerial Vehicle (UAV) that are used to inspect indoor power grid equipment. The standard applies to the design, deployment, and maintenance of these UAV inspection systems. The standard addresses composition, system function, safety protection, installation, commissioning, acceptance, maintenance, and testing of UAV systems.

Teresa Belmont <t.belmont@ieee.org> | 445 Hoes Lane, 3rd Floor | Piscataway, NJ 08854 www.ieee.org

New Standard

BSR/IEEE 3001.5-202x, Recommended Practice for the Application of Power Distribution Apparatus in Industrial and Commercial Power Systems (new standard)

Stakeholders: Those responsible for the Application of Power Distribution Apparatus in Industrial and Commercial Power Systems.

Project Need: This standard must be revised or reaffirmed to return to active status.

Interest Categories: A subset of the interest categories on this list is expected to comprise the consensus body: https://ieee.app.box.com/v/Interest-Categories

This recommended practice covers the selection and application of power distribution apparatus used in industrial and commercial power systems.

IEEE (Institute of Electrical and Electronics Engineers)

Teresa Belmont <t.belmont@ieee.org> | 445 Hoes Lane, 3rd Floor | Piscataway, NJ 08854 www.ieee.org

New Standard

BSR/IEEE 3003.2-202x, Recommended Practice for Equipment Grounding and Bonding in Industrial and Commercial Power Systems (new standard)

Stakeholders: Users, installers, and manufacturers responsible for design and installation of the grounding and bonding of equipment in industrial and commercial power systems.

Project Need: Revision to the existing inactive version published in 2004 is required to update information and practices to reflect current technology and practices.

Interest Categories: A subset of the interest categories on this list is expected to comprise the consensus body: https://ieee.app.box.com/v/Interest-Categories

This recommended practice covers the grounding and bonding of equipment in industrial and commercial power systems facilities.

Teresa Belmont <t.belmont@ieee.org> | 445 Hoes Lane, 3rd Floor | Piscataway, NJ 08854 www.ieee.org

New Standard

BSR/IEEE 3587-202x, Standard for Wear-Resistant Fittings of Overhead Lines—Part 1: Definition and General Requirements (new standard)

Stakeholders: They are technical service companies, manufacturers, utilities, energy service companies, and other interested entities.

Project Need: At present, the following five major methods have been widely used to improve the wear-resistance performance of fittings: increasing the size of fittings to improve overall safety margin; high strength wear-resistant materials are used to improve the overall safety margin; inlaying a wear-resistant shell to improve partial wear-resistance performance; coating wear-resistant electrochemical plating to improve overall surface wear-resistance performance; laser surface strengthening to enhance the wear-resistance performance of critical areas. However, there are no international standards of technical requirements for wear-resistant fittings. It is difficult to standardize the wear-resistance performance of fittings manufactured by the above methods. Therefore, it is urgent to develop such a standard, clarify the technical requirements and process specifications, and become an important evaluation criterion for selecting and evaluating the wear-resistance performance of electric power fittings. It will provide important support for regulating the market of wear-resistant fittings and promoting technological progress in the traditional power fittings industry, and have positive significance for improving the safe and stable operation of overhead lines in windy areas around the world.

Interest Categories: A subset of the interest categories on this list is expected to comprise the consensus body: https://ieee.app.box.com/v/Interest-Categories

This standard specifies the classification, manufacturing process, and technical requirements of wear-resistant fittings for overhead lines. This standard applies to link fittings and suspension clamps.

IEEE (Institute of Electrical and Electronics Engineers)

Teresa Belmont <t.belmont@ieee.org> | 445 Hoes Lane, 3rd Floor | Piscataway, NJ 08854 www.ieee.org

New Standard

BSR/IEEE 3588-202x, Standard for Wear-Resistant Fittings of Overhead Lines—Part 2: Test Methods (new standard) Stakeholders: The stakeholders are technical service companies, manufacturers, utilities, energy service companies, and other interested entities.

Project Need: Currently, the lack of a unified standard may lead to inaccurate assessment of the wear-resistance performance of these fittings, which in turn can cause premature failure of overhead line fittings, increasing maintenance costs and the risk of power outages. By establishing standardized test methods, this standard enables that the wear-resistance performance of overhead line fittings can be accurately and uniformly evaluated. This standardization will benefit manufacturers by providing clear guidelines for product development and quality control, and benefit power grid operators by improving the long-term reliability and safety of overhead lines, ultimately reducing maintenance and replacement costs and improving power supply stability.

Interest Categories: A subset of the interest categories on this list is expected to comprise the consensus body: https://ieee.app.box.com/v/Interest-Categories

This standard specifies the test methods for verifying the wear-resistance performance of link fittings and suspension clamps for overhead lines.

Teresa Belmont <t.belmont@ieee.org> | 445 Hoes Lane, 3rd Floor | Piscataway, NJ 08854 www.ieee.org

New Standard

BSR/IEEE 3590-202x, Guide for Technical Parameters and Acceptance Methods of Double Rocker Jibs Gin Poles on Ground for Transmission Tower Erection (new standard)

Stakeholders: Transmission tower construction teams, jib pole manufacturers, research institutes, and third-party testing organizations.

Project Need: Double rocker jibs gin poles on ground have been widely used for transmission towers erection with a height of 60 meters and above in various terrain conditions (such as flat, hilly, mountainous, etc.). In order to improve safety and reliability of the installed double rocker jibs gin poles on ground in the process of tower erection, it is necessary to carry out on-site acceptance and commissioning before its commissioning. Internationally, there is a lack of unified standards for technical requirements and acceptance methods of double rocker jibs gin poles on ground. The formulation of this guide aims to fill this gap, enhances the safety and stability of double rocker jibs gin poles on ground operation, reduces the risk of accidents, and improves construction efficiency and quality.

Interest Categories: A subset of the interest categories on this list is expected to comprise the consensus body: https://ieee.app.box.com/v/Interest-Categories

This guide provides technical requirements, on-site acceptance methods, commissioning, and acceptance record form for double rocker jibs gin poles on ground for transmission tower erection. This type of gin pole is suitable for transmission towers with a height of 60 meters and above.

IEEE (Institute of Electrical and Electronics Engineers)

Teresa Belmont <t.belmont@ieee.org> | 445 Hoes Lane, 3rd Floor | Piscataway, NJ 08854 www.ieee.org

New Standard

BSR/IEEE 3726-202x, Guide for Selecting and Applying Joints for Shielded Power Cables Rated 2.5 kV to 46 kV (new standard)

Stakeholders: Power distribution engineers in utilities, power generation, and industrial plants.

Project Need: This is an educational guide that will provide information for young engineers or field installers so they can understand how joints work and choose the correct one for their application.

Interest Categories: A subset of the interest categories on this list is expected to comprise the consensus body: https://ieee.app.box.com/v/Interest-Categories

The guide discusses why joints are necessary on shield power cables and includes a tutorial on joint theory and includes information for selecting and applying joints.

Teresa Belmont <t.belmont@ieee.org> | 445 Hoes Lane, 3rd Floor | Piscataway, NJ 08854 www.ieee.org

New Standard

BSR/IEEE 3727-202x, Guide for Probabilistic Forecasting of Renewable Energy Generation in Power Systems (new standard)

Stakeholders: Manufacturers, institutes, universities, and test bodies.

Project Need: As the global energy transition advances, the share of renewable sources like wind and solar has grown rapidly. However, the inherent variability and intermittency of these sources introduce significant uncertainty into power systems with high renewable penetration. Traditional deterministic methods for prediction, analysis, and decision-making are no longer sufficient to help ensure the secure and cost-effective operation of such systems. Probabilistic forecasting has emerged as a valuable tool for quantifying the uncertainty in renewable energy generation, offering rich and reliable probabilistic insights to support downstream analysis and decision-making. Despite considerable progress in this field, the lack of standardized approaches—particularly in data preparation, spatial and temporal resolution, and evaluation metrics—poses a major challenge. This inconsistency hampers the fair comparison of forecasting techniques, slows research progress, and limits practical application.

Interest Categories: A subset of the interest categories on this list is expected to comprise the consensus body: https://ieee.app.box.com/v/Interest-Categories

This guide defines the technical specifications and requirements for probabilistic forecasting of renewable energy generation in data preparation, classification, and evaluation criteria. It applies to the probabilistic forecasting of renewable energy sources such as wind and photovoltaic (solar) power, and provides guidelines for performance assessment.

IEEE (Institute of Electrical and Electronics Engineers)

Teresa Belmont <t.belmont@ieee.org> | 445 Hoes Lane, 3rd Floor | Piscataway, NJ 08854 www.ieee.org

New Standard

BSR/IEEE 3743-202x, Recommended Practice for Electromagnetic Transient Model Interoperability for Electric Power Transmission Systems (new standard)

Stakeholders: Electric utilities, electric generation owners, power system operators, power system consultants, power system simulation software developers, and power system regulatory authorities.

Project Need: In two recent white papers, North American grid regulatory authorities have identified EMT studies as essential to maintain grid reliability while accommodating the rapid increase of inverter-based resources (e.g., wind, solar, storage). Model-building for EMT is a time-consuming and error-prone part of the study. Users will be able to combine data from different sources, while reducing the time and cost of completing accurate EMT studies.

Interest Categories: A subset of the interest categories on this list is expected to comprise the consensus body: https://ieee.app.box.com/v/Interest-Categories

This recommended practice defines a method of building and maintaining electromagnetic transient (EMT) models of electric power transmission systems. The EMT models require input from different existing sources of data for power flow, short circuit and positive sequence dynamics, supplemented with new data source definitions. This recommended practice applies to offline and real-time EMT simulation tools. It does not apply to EMT models of electric power distribution systems, nor to positive sequence dynamic models of either transmission or distribution systems.

Teresa Belmont <t.belmont@ieee.org> | 445 Hoes Lane, 3rd Floor | Piscataway, NJ 08854 www.ieee.org

New Standard

BSR/IEEE 3754-202x, Recommended Practice for Technical Specifications and Testing Methods for Prefabricated Transformer Zone Modules (0.4 kV to 22 kV) in Industrial and Commercial Power System Facilities (new standard) Stakeholders: The relevant parties of this standard include electric power energy enterprises, manufacturers, industrial and commercial users.

Project Need: Prefabricated modules can address issues such as long construction cycles, inconsistent quality, and high costs associated with traditional power distribution systems in industrial and commercial settings. By standardizing the technical specifications and testing methods for prefabricated modules in these power distribution areas, product quality can be improved, promoting standardized module production, thereby shortening construction timelines and reducing installation costs. Additionally, unified technical specifications enhance system compatibility and scalability, facilitating maintenance and upgrades.

Interest Categories: A subset of the interest categories on this list is expected to comprise the consensus body: https://ieee.app.box.com/v/Interest-Categories

The recommended practice provides technical specifications and testing methods for prefabricated transformer zone modules ranging from 0.4 kV to 22 kV that are used in industrial and commercial power system facilities and include transformer frameworks, branch circuits, and fittings.

IEEE (Institute of Electrical and Electronics Engineers)

Teresa Belmont <t.belmont@ieee.org> | 445 Hoes Lane, 3rd Floor | Piscataway, NJ 08854 www.ieee.org

New Standard

BSR/IEEE 3756-202x, Recommended Practice for Typical Configuration and Energy Optimization of Photovoltaic-Energy Storage-Charging Systems in Commercial Power System Facilities (new standard) Stakeholders: The relevant parties of this standard include electric power energy enterprises, users and owners of commercial buildings.

Project Need: PV-energy storage-charging systems currently face multiple challenges, including insufficient standardized coordination, low energy efficiency, grid interaction issues, and safety and reliability concerns. This recommended practice helps the intelligent and green development of PV-energy storage-charging systems in commercial buildings. It helps users optimize energy dispatch, increase renewable energy utilization, reduce emissions, and enhance regional energy resilience, delivering significant technical, economic, and social benefits.

Interest Categories: A subset of the interest categories on this list is expected to comprise the consensus body: https://ieee.app.box.com/v/Interest-Categories

The recommended practice covers the typical configuration, energy optimization strategies, and evaluation for energy systems composed of photovoltaic (PV), energy storage, and charging piles (voltage level is no more than 480 V ac or no more than 1500 V dc, and the rated power consumption capacity is no more than 3 MW). This document applies to PV energy storage charging systems interconnected with distribution grids in commercial facilities, supporting both off-grid and grid-connected operation modes.

Teresa Belmont <t.belmont@ieee.org> | 445 Hoes Lane, 3rd Floor | Piscataway, NJ 08854 www.ieee.org

New Standard

BSR/IEEE 3778-202x, Guide for Digital Modeling Based on Light Detection and Ranging (LiDAR) Data for Overhead Transmission Lines (new standard)

Stakeholders: The stakeholders for the document consist of technical service companies, manufacturers, utilities, power energy consultants and other interested entities.

Project Need: Overhead transmission line data modeling is crucial for building an intelligent power grid, as it supports three-dimensional display and lifecycle management of power equipment. Compared with other modeling methods, point cloud data modeling based on LiDAR has the advantages of strong visualization, high veracity of data and high modeling efficiency. Currently it lacks relevant standards that focus on overhead transmission line based on point cloud modeling technology. Therefore, it is necessary to normalize the modeling process, improve the modeling quality and use efficiency, improve the accuracy of digital modeling of overhead transmission lines and promote it for engineering construction.

Interest Categories: A subset of the interest categories on this list is expected to comprise the consensus body: https://ieee.app.box.com/v/Interest-Categories

This guide describes the technical aspects of digital modeling of overhead transmission lines based on Light Detection and Ranging (LiDAR) data, including modeling requirements, modeling contents, data acquisition and processing, and quality management.

IEEE (Institute of Electrical and Electronics Engineers)

Teresa Belmont <t.belmont@ieee.org> | 445 Hoes Lane, 3rd Floor | Piscataway, NJ 08854 www.ieee.org

New Standard

BSR/IEEE 3780-202x, Guide for the Application of Backup Safety Clamps on Overhead Transmission Lines (new standard)

Stakeholders: Researcher, designer, and operation & maintenance staff with general interest in backup safety clamps of overhead transmission lines.

Project Need: The drop of the breaking conductors from the tower is a serious threat to the public safety, especially for the important transmission lines crossing over the river, railway and high way. The application of backup safety clamps is an efficient way to prevent this incident. The backup safety clamps can be utilized for both conductors and ground wires and they can be classified into pre-twisted backup safety clamps and wedge-shaped backup safety clamps based on the structure, which have been widely used on overhead transmission lines in the world. It can protect transmission lines in both mechanical and electrical performance, helping keep the transmission lines in operation even when the conductor is broken. At present, the existing standards and specifications are usually focused on tension clamps, mid-span tension joint, spacer and vibration dampers, but they are not fit for the backup safety clamps. Relevant IEEE documents published have not been looked up on this subject. There is a lack of specialized standards for requirements of the backup safety clamps, such as technical requirements, test items and test methods, which makes it difficult to evaluate the performance of backup safety clamps effectively, reducing the reliability of product quality and increasing the difficulty on the application.

Interest Categories: A subset of the interest categories on this list is expected to comprise the consensus body: https://ieee.app.box.com/v/Interest-Categories

This document describes technical requirements, tests, inspection procedures, marking, and packaging of backup safety clamps used in overhead transmission lines of nominal voltage above 45 kV.

Teresa Belmont <t.belmont@ieee.org> | 445 Hoes Lane, 3rd Floor | Piscataway, NJ 08854 www.ieee.org

Revision

BSR/IEEE C37.66-202x, Standard Requirements for Capacitor Switches for AC Systems Above 1000 V (revision of ANSI/IEEE C37.66-2022)

Stakeholders: Electric Utility Industry

Project Need: This revision will provide clarification and additional information associated with required ratings and design testing. Also, this revision will include additional information and requirements for synchronized and controlled switching.

Interest Categories: A subset of the interest categories on this list is expected to comprise the consensus body: https://ieee.app.box.com/v/Interest-Categories

This standard applies to single- or multi-pole ac switches for rated voltage above 1000 V for use in switching shunt capacitor banks. This standard covers the application of capacitive load switching wherein the capacitive loads are separated by sufficient inductance to limit the transient peak inrush current to the peak values shown in Table 2 and Table 3. Switches designed and built in accordance with this standard are rated for routine switching of capacitive load currents only. This standard intends to be a comprehensive standard for all "specific duty" applications of switches in the area of switching shunt capacitor banks.

IEEE (Institute of Electrical and Electronics Engineers)

Teresa Belmont <t.belmont@ieee.org> | 445 Hoes Lane, 3rd Floor | Piscataway, NJ 08854 www.ieee.org

New Standard

BSR/IEEE C62.40-202x, Standard for Test Methods for Hybrid Series Combination of Gas Discharge Tube and Metal Oxide Varistor Components (new standard)

Stakeholders: Telecom, Medical, Automotive, Power System Organizations

Project Need: Hybrid components are available in the market, but there is a lack of standardized procedures for testing or measurement. As a result, some laboratories have declined to perform testing due to the absence of established protocols.

Interest Categories: A subset of the interest categories on this list is expected to comprise the consensus body: https://ieee.app.box.com/v/Interest-Categories

This standard sets terms, test methods, test circuits, measurement procedures, and preferred performance values for two-terminal hybrid surge protective components (SPCs) containing gas discharge tube and metal oxide varistor technologies connected in series. These SPCs are used in the construction of surge protective devices (SPDs) and equipment up to Alternating Current (AC) 1000 V and Direct Current (DC) 1500 V, to mitigate overvoltage surges. Series connected gas discharge tube and metal oxide varistor configurations are applicable for AC mains surge protection.

Dawn Michele Bellis dbellis@nfpa.org | One Batterymarch Park | Quincy, MA 02169 www.nfpa.org

Revision

BSR/NFPA 52-202x, Vehicular Natural Gas Fuel Systems Code (revision of ANSI/NFPA 52-2026)

Stakeholders: Manufacturers, users, installers/maintainers, labor, enforcing authorities, insurance, consumers, special experts, and research and testing.

Project Need: Public interest and need

Interest Categories: Manufacturer (M), User (U, Installer/Maintainer (I/M), Labor (L), Applied Research/Testing Laboratory (R/T), Enforcing Authority (E), Insurance (I), Consumer (C), and Special Expert (SE) Please refer to the following link https://www.nfpa.org/tcclass for more information about NFPA's classifications

This code shall apply to the design, installation, operation, and maintenance of compressed natural gas (CNG) and liquefied natural gas (LNG) engine fuel systems on vehicles of all types and for fueling vehicle (dispensing) systems and facilities, and associated storage, including the following: (1) Original equipment manufacturers (OEMs); (2) Final-stage vehicle integrator/manufacturer (FSVIM); (3) Vehicle fueling (dispensing) systems. This code shall apply to the design, installation, operation, and maintenance of LNG engine fuel systems on vehicles of all types, to their associated fueling (dispensing) facilities, and to LNG-to-CNG facilities with LNG storage in ASME containers of 100,000 gal (379 m3) or less. This code shall not apply to those aspects of vehicles and fuel supply containers that are covered by federal motor vehicle safety standards (FMVSSs). This code addresses marine, highway, rail, off-road, and industrial vehicles.

NFPA (National Fire Protection Association)

Dawn Michele Bellis dbellis@nfpa.org | One Batterymarch Park | Quincy, MA 02169 www.nfpa.org

Revision

BSR/NFPA 73-202x, Standard for Electrical Inspections for Existing Dwellings (revision of ANSI/NFPA 73-2026) Stakeholders: Manufacturers, users, installers/maintainers, labor, enforcing authorities, insurance, consumers, special experts, and research and testing.

Project Need: Public interest and need

Interest Categories: Manufacturer (M), User (U, Installer/Maintainer (I/M), Labor (L), Applied Research/Testing Laboratory (R/T), Enforcing Authority (E), Insurance (I), Consumer (C), and Special Expert (SE) Please refer to the following link https://www.nfpa.org/tcclass for more information about NFPA's classifications

This standard provides criteria for identification of hazardous conditions of electrical systems in existing one-family, two-family, and multifamily dwellings, including mobile homes and manufactured homes.

Dawn Michele Bellis dbellis@nfpa.org | One Batterymarch Park | Quincy, MA 02169 www.nfpa.org

Revision

BSR/NFPA 91-202x, Standard for Exhaust Systems for Air Conveying of Vapors, Gases, Mists, and Particulate Solids (revision of ANSI/NFPA 91-2026)

Stakeholders: Manufacturers, users, installers/maintainers, labor, enforcing authorities, insurance, consumers, special experts, and research and testing.

Project Need: Public interest and need

Interest Categories: Manufacturer (M), User (U, Installer/Maintainer (I/M), Labor (L), Applied Research/Testing Laboratory (R/T), Enforcing Authority (E), Insurance (I), Consumer (C), and Special Expert (SE) Please refer to the following link https://www.nfpa.org/tcclass for more information about NFPA's classifications

This standard provides minimum requirements for the design, construction, installation, operation, testing, and maintenance of exhaust systems for air conveying of vapors, gases, mists, and particulate solids as they relate to fire and/or explosion prevention, except as modified or amplified by other applicable NFPA standards. This standard does not cover exhaust systems for conveying combustible particulate solids that are covered in other NFPA standards (see A.1.1).

NFPA (National Fire Protection Association)

Dawn Michele Bellis dbellis@nfpa.org | One Batterymarch Park | Quincy, MA 02169 www.nfpa.org

Revision

BSR/NFPA 160-202x, Standard for the Use of Flame Effects Before an Audience (revision of ANSI/NFPA 160-2026) Stakeholders: Manufacturers, users, installers/maintainers, labor, enforcing authorities, insurance, consumers, special experts, and research and testing.

Project Need: Public interest and need

Interest Categories: Manufacturer (M), User (U, Installer/Maintainer (I/M), Labor (L), Applied Research/Testing Laboratory (R/T), Enforcing Authority (E), Insurance (I), Consumer (C), and Special Expert (SE) Please refer to the following link https://www.nfpa.org/tcclass for more information about NFPA's classifications

This standard shall provide requirements for the protection of the audience, support personnel, performers, the operator, assistants, and property where flame effects are used.

Dawn Michele Bellis dbellis@nfpa.org | One Batterymarch Park | Quincy, MA 02169 www.nfpa.org

Revision

BSR/NFPA 303-202x, Fire Protection Standard for Marinas and Boatyards (revision of ANSI/NFPA 303-2026) Stakeholders: Manufacturers, users, installers/maintainers, labor, enforcing authorities, insurance, consumers, special experts, and research and testing.

Project Need: Public interest and need

Interest Categories: Manufacturer (M), User (U, Installer/Maintainer (I/M), Labor (L), Applied Research/Testing Laboratory (R/T), Enforcing Authority (E), Insurance (I), Consumer (C), and Special Expert (SE) Please refer to the following link https://www.nfpa.org/tcclass for more information about NFPA's classifications

This standard applies to the construction and operation of marinas, boatyards, yacht clubs, boat condominiums, docking facilities associated with residential condominiums, multiple-docking facilities at multiple-family residences, and all associated piers, docks, and floats. This standard also applies to support facilities and structures used for construction, maintenance, repair, servicing, storage, hauling and launching, or fueling of vessels that comply with 1.1.2 if a fire on a pier would pose an immediate threat to these facilities or a fire at a referenced facility would pose an immediate threat to a docking facility. This standard applies to marinas and facilities servicing recreational and commercial boats, yachts, watercraft, and other vessels of not more than 300 gross tons (272.15 metric tons).

NFPA (National Fire Protection Association)

Dawn Michele Bellis dbellis@nfpa.org | One Batterymarch Park | Quincy, MA 02169 www.nfpa.org

Revision

BSR/NFPA 307-202x, Standard for the Construction and Fire Protection of Marine Terminals, Piers, and Wharves (revision of ANSI/NFPA 307-2026)

Stakeholders: Manufacturers, users, installers/maintainers, labor, enforcing authorities, insurance, consumers, special experts, and research and testing.

Project Need: Public interest and need

Interest Categories: Manufacturer (M), User (U, Installer/Maintainer (I/M), Labor (L), Applied Research/Testing Laboratory (R/T), Enforcing Authority (E), Insurance (I), Consumer (C), and Special Expert (SE) Please refer to the following link https://www.nfpa.org/tcclass for more information about NFPA's classifications

This standard shall provide general principles for the construction and fire protection of marine terminals, piers, and wharves. Nothing in this standard shall supersede any of the regulations of governmental or other regulatory authority. The provisions of this standard shall reflect situations and state-of-the-art techniques at the time the standard was issued.

Dawn Michele Bellis dbellis@nfpa.org | One Batterymarch Park | Quincy, MA 02169 www.nfpa.org

Revision

BSR/NFPA 312-202x, Standard for Fire Protection of Vessels During Construction, Conversion, Repair, and Lay-Up (revision of ANSI/NFPA 312-2026)

Stakeholders: Manufacturers, users, installers/maintainers, labor, enforcing authorities, insurance, consumers, special experts, and research and testing.

Project Need: Public interest and need

Interest Categories: Manufacturer (M), User (U, Installer/Maintainer (I/M), Labor (L), Applied Research/Testing Laboratory (R/T), Enforcing Authority (E), Insurance (I), Consumer (C), and Special Expert (SE) Please refer to the following link https://www.nfpa.org/tcclass for more information about NFPA's classifications

This standard shall apply to vessels during the course of construction, conversion, repairs, or while laid up. This standard shall not apply to situations where it is in conflict with or superseded by requirements of any government regulatory agency.

NFPA (National Fire Protection Association)

Dawn Michele Bellis dbellis@nfpa.org | One Batterymarch Park | Quincy, MA 02169 www.nfpa.org

Revision

BSR/NFPA 502-202x, Standard for Road Tunnels, Bridges, and Other Limited Access Highways (revision of ANSI/NFPA 502-2026)

Stakeholders: Manufacturers, users, installers/maintainers, labor, enforcing authorities, insurance, consumers, special experts, and research and testing.

Project Need: Public interest and need

Interest Categories: Manufacturer (M), User (U, Installer/Maintainer (I/M), Labor (L), Applied Research/Testing Laboratory (R/T), Enforcing Authority (E), Insurance (I), Consumer (C), and Special Expert (SE) Please refer to the following link https://www.nfpa.org/tcclass for more information about NFPA's classifications

This standard provides fire protection and fire life safety requirements for limited access highways, road tunnels, bridges, elevated highways, depressed highways, and roadways that are located beneath air-right structures. Additionally, this standard establishes minimum requirements for each of the identified facilities. This standard does not, however, apply to the following structures: (1) Parking garages; (2) Bus terminals; (3) Truck terminals; (4) Any other structure in which motor vehicles are stored, repaired, maintained, or parked. This standard shall be applicable where a structure or an element of a structure is deemed to be a facility by the authority having jurisdiction.

Dawn Michele Bellis dbellis@nfpa.org | One Batterymarch Park | Quincy, MA 02169 www.nfpa.org

Revision

BSR/NFPA 715-202x, Standard for the Installation of Fuel Gases Detection and Warning Equipment (revision of ANSI/NFPA 715-2026)

Stakeholders: Manufacturers, users, installers/maintainers, labor, enforcing authorities, insurance, consumers, special experts, and research and testing.

Project Need: Public interest and need

Interest Categories: Manufacturer (M), User (U, Installer/Maintainer (I/M), Labor (L), Applied Research/Testing Laboratory (R/T), Enforcing Authority (E), Insurance (I), Consumer (C), and Special Expert (SE) Please refer to the following link https://www.nfpa.org/tcclass for more information about NFPA';s classifications

This standard shall be concerned with life safety and protection of property by addressing the selection, design, application, installation, location, performance, inspection, testing, and maintenance of fuel gas detection and warning equipment in buildings and structures. This standard shall contain requirements for the selection, installation, operation, and maintenance of equipment that detects concentrations of fuel gases that could pose a life or property safety risk.

NFPA (National Fire Protection Association)

Dawn Michele Bellis dbellis@nfpa.org | One Batterymarch Park | Quincy, MA 02169 www.nfpa.org

Revision

BSR/NFPA 770-202x, Standard on Hybrid (Water and Inert Gas) Fire-Extinguishing Systems (revision of ANSI/NFPA 770-2026)

Stakeholders: Manufacturers, users, installers/maintainers, labor, enforcing authorities, insurance, consumers, special experts, and research and testing.

Project Need: Public interest and need

Interest Categories: Manufacturer (M), User (U, Installer/Maintainer (I/M), Labor (L), Applied Research/Testing Laboratory (R/T), Enforcing Authority (E), Insurance (I), Consumer (C), and Special Expert (SE) Please refer to the following link https://www.nfpa.org/tcclass for more information about NFPA's classifications

This standard contains the minimum requirements for the design, installation, acceptance, inspection, testing, and maintenance of hybrid fire-extinguishing systems that use a combination of atomized water and inert gas to extinguish fire. The scope of this standard does not include systems that use only inert gas to achieve extinguishment. (See NFPA 2001.) Further, the scope of this standard does not include systems that use only atomized water (water mist) to achieve extinguishment. (See NFPA 750.) And finally, the scope of this standard does not include twin fluid water mist systems that use inert gas to propel and/or atomize water mist droplets without generating a significant inert gas concentration in the protected space. (See NFPA 750.)

Dawn Michele Bellis dbellis@nfpa.org | One Batterymarch Park | Quincy, MA 02169 www.nfpa.org

Revision

BSR/NFPA 780-202x, Standard for the Installation of Lightning Protection Systems (revision of ANSI/NFPA 780-2026) Stakeholders: Manufacturers, users, installers/maintainers, labor, enforcing authorities, insurance, consumers, special experts, and research and testing.

Project Need: Public interest and need

Interest Categories: Manufacturer (M), User (U, Installer/Maintainer (I/M), Labor (L), Applied Research/Testing Laboratory (R/T), Enforcing Authority (E), Insurance (I), Consumer (C), and Special Expert (SE) Please refer to the following link https://www.nfpa.org/tcclass for more information about NFPA's classifications

This standard addresses traditional lightning protection system installation requirements for the following: (1) Ordinary structures; (2) Miscellaneous structures and special occupancies; (3) Heavy-duty stacks; (4) Structures containing flammable vapors, flammable gases, or liquids that can give off flammable vapors; (5) Structures housing explosive materials; (6) Wind turbines; (7) Watercraft; (8) Airfield lighting circuits; and (9) Solar arrays. Additionally, this standard addresses lightning protection of the structure but not the equipment or installation requirements for electric generating, transmission, and distribution systems except as given in Chapter 9 and Chapter 12. Lightning protection system installation requirements for early streamer emission systems or charge dissipation systems is not within the scope of this standard.

NFPA (National Fire Protection Association)

Dawn Michele Bellis dbellis@nfpa.org | One Batterymarch Park | Quincy, MA 02169 www.nfpa.org

Revision

BSR/NFPA 1122-202x, Code for Model Rocketry (revision of ANSI/NFPA 1122-2026)

Stakeholders: Manufacturers, users, installers/maintainers, labor, enforcing authorities, insurance, consumers, special experts, and research and testing.

Project Need: Public interest and need

Interest Categories: Manufacturer (M), User (U, Installer/Maintainer (I/M), Labor (L), Applied Research/Testing Laboratory (R/T), Enforcing Authority (E), Insurance (I), Consumer (C), and Special Expert (SE) Please refer to the following link https://www.nfpa.org/tcclass for more information about NFPA's classifications

This code addresses the design, construction, limitation of rocket propellant mass and power, and reliability of model rocket motors and model rocket motor reloading kits and their components, produced commercially for sale to or for use by the public for purposes of education, recreation, and sporting competition. Additionally, the design and construction of model rockets propelled by model rocket motors specified in 1.1.1 and the conduct of launch operations of model rockets specified in 1.1.2 are addressed. For additional details of what is not addressed by this standard, please see the full scope at www.nfpa.org/1124.

Dawn Michele Bellis dbellis@nfpa.org | One Batterymarch Park | Quincy, MA 02169 www.nfpa.org

Revision

BSR/NFPA 1123-202x, Code for Fireworks Display (revision of ANSI/NFPA 1124-2026)

Stakeholders: Manufacturers, users, installers/maintainers, labor, enforcing authorities, insurance, consumers, special experts, and research and testing.

Project Need: Public interest and need

Interest Categories: Manufacturer (M), User (U, Installer/Maintainer (I/M), Labor (L), Applied Research/Testing Laboratory (R/T), Enforcing Authority (E), Insurance (I), Consumer (C), and Special Expert (SE) Please refer to the following link https://www.nfpa.org/tcclass for more information about NFPA's classifications

1.1 Scope. 1.1.1 This code shall apply to the following: (1) construction, handling, and use of fireworks and equipment intended for outdoor fireworks display and (2) operation of the display.

NFPA (National Fire Protection Association)

Dawn Michele Bellis dbellis@nfpa.org | One Batterymarch Park | Quincy, MA 02169 www.nfpa.org

Revision

BSR/NFPA 1124-202x, Code for the Manufacture, Transportation, and Storage of Fireworks and Pyrotechnic Articles (revision of ANSI/NFPA 1124-2026)

Stakeholders: Manufacturers, users, installers/maintainers, labor, enforcing authorities, insurance, consumers, special experts, and research and testing.

Project Need: Public interest and need

Interest Categories: Manufacturer (M), User (U, Installer/Maintainer (I/M), Labor (L), Applied Research/Testing Laboratory (R/T), Enforcing Authority (E), Insurance (I), Consumer (C), and Special Expert (SE) Please refer to the following link https://www.nfpa.org/tcclass for more information about NFPA's classifications

This code shall provide regulations for the construction, use, and maintenance of buildings and facilities for the following: (1) the manufacture and storage of fireworks, novelties, and pyrotechnic articles at manufacturing facilities; (2) the storage of display fireworks, pyrotechnic articles, salute powder, pyrotechnic and explosive compositions, and Black Powder at other than display sites; (3) the storage of consumer fireworks at display fireworks storage facilities; and (4) the transportation on public highways of fireworks, pyrotechnic articles, and components thereof containing pyrotechnic or explosive materials. This code shall not apply to the retail sales and related storage of consumer fireworks at the same site.

Dawn Michele Bellis dbellis@nfpa.org | One Batterymarch Park | Quincy, MA 02169 www.nfpa.org

Revision

BSR/NFPA 1125-202x, Code for the Manufacture of Model Rocket and High-Power Rocket Motors (revision of ANSI/NFPA 1125-2026)

Stakeholders: Manufacturers, users, installers/maintainers, labor, enforcing authorities, insurance, consumers, special experts, and research and testing.

Project Need: Public interest and need

Interest Categories: Manufacturer (M), User (U, Installer/Maintainer (I/M), Labor (L), Applied Research/Testing Laboratory (R/T), Enforcing Authority (E), Insurance (I), Consumer (C), and Special Expert (SE) Please refer to the following link https://www.nfpa.org/tcclass for more information about NFPA's classifications

This code shall apply to the manufacture of model and high-power rocket motors designed, sold, and used for the purpose of propelling recoverable aero models. Further, this code shall apply to the design, construction, and reliability of model and high-power rocket motors and model rocket and high-power motor-reloading kits and their components, and to the limitation of propellant mass and power. This code shall not apply to the sale and use of the following: (1) model rocket motors (covered by NFPA 1122) and (2) high-power rocket motors (covered by NFPA 1127)

NFPA (National Fire Protection Association)

Dawn Michele Bellis dbellis@nfpa.org | One Batterymarch Park | Quincy, MA 02169 www.nfpa.org

Revision

BSR/NFPA 1126-202x, Standard for the Use of Pyrotechnics Before a Proximate Audience (revision of ANSI/NFPA 1126 -2026)

Stakeholders: Manufacturers, users, installers/maintainers, labor, enforcing authorities, insurance, consumers, special experts, and research and testing.

Project Need: Public interest and need

Interest Categories: Manufacturer (M), User (U, Installer/Maintainer (I/M), Labor (L), Applied Research/Testing Laboratory (R/T), Enforcing Authority (E), Insurance (I), Consumer (C), and Special Expert (SE) Please refer to the following link https://www.nfpa.org/tcclass for more information about NFPA's classifications

This standard shall provide requirements for the protection of property, operators, performers, support personnel, and the viewing audiences where pyrotechnic effects are used indoors or outdoors with a proximate audience.

NFPA (National Fire Protection Association)

Dawn Michele Bellis dbellis@nfpa.org | One Batterymarch Park | Quincy, MA 02169 www.nfpa.org

Revision

BSR/NFPA 1127-202x, Code for High Power Rocketry (revision of ANSI/NFPA 1127-2026)

Stakeholders: Manufacturers, users, installers/maintainers, labor, enforcing authorities, insurance, consumers, special experts, and research and testing.

Project Need: Public interest and need

Interest Categories: Manufacturer (M), User (U, Installer/Maintainer (I/M), Labor (L), Applied Research/Testing Laboratory (R/T), Enforcing Authority (E), Insurance (I), Consumer (C), and Special Expert (SE) Please refer to the following link https://www.nfpa.org/tcclass for more information about NFPA classifications

The purpose of this code shall be to establish guidelines for reasonably safe operation of high power rockets to protect the user and the public.

Call for Comment on Standards Proposals

American National Standards

This section solicits public comments on proposed draft new American National Standards, including the national adoption of ISO and IEC standards as American National Standards, and on proposals to revise, reaffirm or withdraw approval of existing American National Standards. A draft standard is listed in this section under the ANSI-accredited standards developer (ASD) that sponsors it and from whom a copy may be obtained. Comments in connection with a draft American National Standard must be submitted in writing to the ASD no later than the last day of the comment period specified herein. Such comments shall be specific to the section (s) of the standard under review and include sufficient detail so as to enable the reader to understand the commenter's position, concerns and suggested alternative language, if appropriate. Please note that the ANSI Executive Standards Council (ExSC) has determined that an ASD has the right to require that interested parties submit public review comments electronically, in accordance with the developer's procedures.

Ordering Instructions for "Call-for-Comment" Listings

- 1. Order from the organization indicated for the specific proposal.
- 2. Use the full identification in your order, including the BSR prefix; for example, Electric Fuses BSR/SAE J554.
- 3. Include remittance with all orders.
- 4. BSR proposals will not be available after the deadline of call for comment.

Comments should be addressed to the organization indicated, with a copy to the Board of Standards Review, American National Standards Institute, 25 West 43rd Street, New York, NY 10036. e-mail: psa@ansi.org

* Standard for consumer products

Comment Deadline: November 9, 2025

EOS/ESD (ESD Association, Inc.)

218 W. Court Street, Rome, NY 13440 | jricher@esda.org, https://www.esda.org

Revision

BSR/EOS ESD STM12.1-202x, ESD Association Standard Test Method for the Protection of Electrostatic Discharge Susceptible Items - Seating - Resistance Measurement (revision of ANSI/ESD STM12.1-2019) The test methods established here are designed to measure the resistance of seating. The resistances considered here are measured from various seating components to a groundable point, such as a conductive or dissipative caster or a drag chain. This document provides a method for measuring the resistance of seating with resistance less than 1.0 x 109 ohms. NOTE: Measurements may be limited in accuracy below 1.0 x 103 ohms. The lowest measurement value will be limited to the value obtained in Annex A.2. Resistivity measurements and measurements of triboelectric charging are not within the scope or purpose of this standard test method. This document does not apply to electrically initiated explosive devices, flammable liquids, or powders.

Click here to view these changes in full

Send comments (copy psa@ansi.org) to: Christina Earl <cearl@esda.org>

NSF (NSF International)

789 N. Dixboro Road, Ann Arbor, MI 48105 | mmilla@nsf.org, www.nsf.org

Revision

BSR/NSF 14-202x (i153r1), Plastics Piping System Components and Related Materials (revision of ANSI/NSF 14-2024)

The physical, performance, and health effects requirements in this standard apply to thermoplastic and thermoset plastic piping system components including, but not limited to, pipes, fittings, valves, joining materials, gaskets, and appurtenances.

Click here to view these changes in full

Send comments (copy psa@ansi.org) to: Monica Milla <mmilla@nsf.org>

NSF (NSF International)

789 N. Dixboro Road, Ann Arbor, MI 48105 | mmilla@nsf.org, www.nsf.org

Revision

BSR/NSF 14-202x (i154r1), Plastics Piping System Components and Related Materials (revision of ANSI/NSF 14-2024)

The physical, performance, and health effects requirements in this standard apply to thermoplastic and thermoset plastic piping system components including, but not limited to, pipes, fittings, valves, joining materials, gaskets, and appurtenances.

Click here to view these changes in full

Send comments (copy psa@ansi.org) to: Monica Milla <mmilla@nsf.org>

NSF (NSF International)

789 N. Dixboro Road, Ann Arbor, MI 48105-9723 | rbrooker@nsf.org, www.nsf.org

Revision

BSR/NSF 173-202x (i119r3), Dietary Supplements (revision of ANSI/NSF 173-2024a)

This standard contains requirements for dietary supplements that contain one or more of the following dietary ingredients: a vitamin, a mineral, an herb or other botanical, an amino acid, a dietary substance for use by humans to supplement the diet by increasing the total dietary intake, or a concentrate, metabolite, constituent, extract, or combinations of these ingredients.

Click here to view these changes in full

Send comments (copy psa@ansi.org) to: rbrooker@nsf.org

NSF (NSF International)

789 N. Dixboro Road, Ann Arbor, MI 48105-9723 | rbrooker@nsf.org, www.nsf.org

Revision

BSR/NSF 173-202x (i123r1), Dietary Supplements (revision of ANSI/NSF 173-2024a)

This standard contains requirements for dietary supplements that contain one or more of the following dietary ingredients: a vitamin, a mineral, an herb or other botanical, an amino acid, a dietary substance for use by humans to supplement the diet by increasing the total dietary intake, or a concentrate, metabolite, constituent, extract, or combinations of these ingredients.

Click here to view these changes in full

Send comments (copy psa@ansi.org) to: Rachel Brooker <rbrooker@nsf.org>

NSF (NSF International)

789 N. Dixboro Road, Ann Arbor, MI 48105-9723 | ajump@nsf.org, www.nsf.org

Revision

BSR/NSF/CAN 61-202x (i199r3), Drinking Water System Components - Health Effects (revision of ANSI/NSF/CAN 61-2024)

This standard is intended to cover specific materials or products that come into contact with: drinking water, drinking water treatment chemicals, or both. The focus of the standard is evaluation of contaminants or impurities imparted indirectly to drinking water.

Click here to view these changes in full

Send comments (copy psa@ansi.org) to: Amy Jump <ajump@nsf.org>

RESOLVE (Resolve, Inc.)

2445 M Street, NW, Suite 550, Washington, DC 20037 | pr3standards@resolve.ngo, www.resolve.ngo

New Standard

BSR/RESOLVE RES-001-202x, Reusable packaging system design standard - Container design and performance (new standard)

This standard specifies design requirements and recommendations for reusable packaging that is intended to be part of a returnable packaging system. The standard covers packaging design aspects, including materials, durability, labeling, digital tagging, and other aspects, that enable the packaging to be part of a system of shared return points, transport, and washing infrastructure. This standard is only applicable to primary packaging that comes into direct contact with a product and consumer. This standard is not applicable to secondary or tertiary packaging, such as e-commerce boxes or sleeves or business-to-business packaging.

Click here to view these changes in full

Send comments (copy psa@ansi.org) to: https://forms.gle/pRQVLk9Q5gR4DpKA9

ULSE (UL Standards and Engagement)

12 Laboratory Drive, Research Triangle Park, NC 27709-3995 | michael.niedermayer@ul.org, https://ulse.org/

Revision

BSR/UL 136-202x, Standard for Pressure Cookers (revision of ANSI/UL 136-2019)

1. Cover Misalignment Test

Click here to view these changes in full

Send comments (copy psa@ansi.org) to: https://csds.ul.org/ProposalAvailable

ULSE (UL Standards and Engagement)

12 Laboratory Drive, Research Triangle Park, NC 27709-3995 | johnny.hall@ul.org, https://ulse.org/

Revision

BSR/UL 142-202x, Standard for Steel Aboveground Tanks for Flammable and Combustible Liquids (revision of ANSI/UL 142-2021)

Applications exist that require tanks to operate at pressures that are more than the current 1 psi limit. Some of these applications include tanks: a. located below grade where the delivery connection is above the tank; b. that are filled from an elevated position (basement tanks); c. storing material with a high vapor pressure (e.g. acetone); and d. that, due to air permit restrictions, must restrict fugitive emissions from tank vents and the venting equipment and vapor recovery technologies used to limit emissions operate best at pressures over 1 psi. The design for such tanks would be limited cylindrical tanks operating at pressures less than 15 psi and would be considered low pressure tanks. A review of current cylindrical tank designs shows that tanks of similar thickness to current UL 142 may work if the tank uses dish ends. Vertical tank designs can also be established with either the tank secured to a surface or the tank using a dish bottom and then using a support mechanism (tank skirt, tank legs) to slightly elevate the tank above.

Click here to view these changes in full

Send comments (copy psa@ansi.org) to: Follow the instructions in the following website to enter comments into the CSDS Work Area: https://csds.ul.com/ProposalAvailable.

ULSE (UL Standards and Engagement)

12 Laboratory Drive, Research Triangle Park, NC | akhira.watson@ul.org, https://ulse.org/

Revision

BSR/UL 1699-202x, Standard for Safety for Arc-Fault Circuit-Interrupters (revision of ANSI/UL 1699-2022) A proposed revision to UL 1699, Standard for Safety for Arc-Fault Circuit-Interrupters, which includes the following: (3) Alternative indicator for the Dust Test – Talcum Powder.

Click here to view these changes in full

Send comments (copy psa@ansi.org) to: Send comments (copy psa@ansi.org) to: Follow the instructions at the following website to enter comments into the CSDS Work Area: https://csds.ul.com/ProposalAvailable

Comment Deadline: November 24, 2025

AAFS (American Academy of Forensic Sciences)

410 North 21st Street, Colorado Springs, CO 80904 | tambrosius@aafs.org, www.aafs.org

New Standard

BSR/ASB Std 076-202x, Standard for Training and Certification of Canine Detection of Human Remains: Human Remains on Land (new standard)

To state requirements for the training, certification, and documentation pertaining to canine teams trained to search for human remains on land. This document does not cover mass disaster victim location canine activities, which are covered under separate standards.

Single copy price: Free

Obtain an electronic copy from: This is a public comment period for a recirculation. Updated document, redline version, and comments can be viewed on the AAFS Standards Board website at: https://www.aafs.org/academystandards-board.

Send comments (copy psa@ansi.org) to: asb@aafs.org

AAFS (American Academy of Forensic Sciences)

410 North 21st Street, Colorado Springs, CO 80904 | tambrosius@aafs.org, www.aafs.org

New Standard

BSR/ASB Std 086-202x, Standard for Training and Certification of Canine Detection of Illicit Drugs (new standard) This Standard contains requirements for the development of training of canine handlers and canines and will also detail the canine team assessments and the basis for certification procedures including record keeping and document management. This Standard addresses the canine odor detection discipline of narcotics which entails canine teams (canine handlers and canines) trained to search for illicit drugs.

Single copy price: Free

Obtain an electronic copy from: Document and comments template can be viewed on the AAFS Standards Board website at: https://www.aafs.org/academy-standards-board

Send comments (copy psa@ansi.org) to: asb@aafs.org

AAMI (Association for the Advancement of Medical Instrumentation)

901 N. Glebe Road, Suite 300, Arlington, VA 22203 | LBulookbashi@aami.org, www.aami.org

Reaffirmation

BSR/AAMI BP22-1994 (R202x), Blood pressure transducers (reaffirmation of ANSI/AAMI BP22-1994 (R2016)) This standard provides performance and safety requirements for transducers, including cables, designed for blood pressure measurements through an indwelling catheter or direct puncture, and provides disclosure requirements to permit the user to determine the compatibility between the transducer and blood pressure monitor. This standard is a combined revision of two standards (ANSI/AAMI BP22-1986 and ANSI/AAMI BP23-1986.)

Single copy price: \$153.00

Obtain an electronic copy from: https://store.aami.org

Send comments (copy psa@ansi.org) to: lbulookbashi@aami.org

AAMI (Association for the Advancement of Medical Instrumentation)

901 N. Glebe Road, Suite 300, Arlington, VA 22203 | LBulookbashi@aami.org, www.aami.org

Reaffirmation

BSR/AAMI EC12-2000 (R202x), Disposable ECG electrodes (reaffirmation of ANSI/AAMI EC12-2000 (R2020)) This standard establishes minimum labeling, safety, and performance requirements; test methods; and terminology for disposable

electrodes used for diagnostic electrocardiography (ECG) or ECG monitoring.

Single copy price: \$153.00

Obtain an electronic copy from: https://store.aami.org

Send comments (copy psa@ansi.org) to: lbulookbashi@aami.org

AAMI (Association for the Advancement of Medical Instrumentation)

901 N. Glebe Road, Suite 300, Arlington, VA 22203 | LBulookbashi@aami.org, www.aami.org

Reaffirmation

BSR/AAMI EC53-2013 (R202x), ECG trunk cables and patient leadwires (reaffirmation of ANSI/AAMI EC53-2013 (R2020))

The objective of this standard is to allow ECG TRUNK CABLES and PATIENT LEADWIRES to be interchanged between ECG DEVICES with isolated PATIENT connections by establishing a common interface between the TRUNK CABLE and the PATIENT LEADWIRE connectors. Performance and safety criteria for TRUNK CABLES and PATIENT LEADWIRES used with isolated PATIENT connectors are also specified. This standard's original scope related to TRUNK CABLES and PATIENT LEADWIRES used with cardiac monitors. The scope was extended to include PATIENT LEADWIRES used with other ECG DEVICES including diagnostic electrocardiographs, ambulatory ECG (Holter) recorders/event recorders and ECG telemetry.

Single copy price: \$153.00

Obtain an electronic copy from: https://store.aami.org

Send comments (copy psa@ansi.org) to: lbulookbashi@aami.org

AAMI (Association for the Advancement of Medical Instrumentation)

901 N. Glebe Road, Suite 300, Arlington, VA 22203 | LBulookbashi@aami.org, www.aami.org

Reaffirmation

BSR/AAMI EC57-2012 (R202x), Testing and reporting performance results of cardiac rhythm and ST segment measurement algorithms (reaffirmation of ANSI/AAMI EC57-2012 (R2020))

This standard

establishes a method for testing and reporting the performance of algorithms used to detect cardiac rhythm disturbances, including the ST segment.

Single copy price: \$234.00

Obtain an electronic copy from: https://store.aami.org

Send comments (copy psa@ansi.org) to: lbulookbashi@aami.org

AAMI (Association for the Advancement of Medical Instrumentation)

901 N. Glebe Road, Suite 300, Arlington, VA 22203 | LBulookbashi@aami.org, www.aami.org

Reaffirmation

BSR/AAMI NS4-2013 (R202x), Transcutaneous electrical nerve stimulators (reaffirmation of ANSI/AAMI NS4-2013 (R2017))

This standard establishes labeling, safety, and performance requirements and referee tests for transcutaneous electrical stimulators (including TENS) intended for use in the treatment of pain syndrome. Also covered are labeling requirements for patient leads and electrodes.

Single copy price: \$153.00

Obtain an electronic copy from: https://store.aami.org

Send comments (copy psa@ansi.org) to: lbulookbashi@aami.org

ACCA (Air Conditioning Contractors of America)

1520 Belle View Boulevard, #5220, Alexandria, VA 22307 | david.bixby@acca.org, www.acca.org

New Standard

BSR/ACCA 5 QI-202x, HVAC Quality Installation Specification (new standard)

This standard contains minimum requirements for properly designing, installing, testing and commissioning HVAC installations for residential and light commercial applications. Developed by a broad coalition of industry stakeholders, the standard identifies consensus requirements associated with quality installations, acceptable procedures for measuring or verifying the attainment of those requirements, and acceptable forms of documentation to show compliance with the requirements.

Single copy price: Free

Obtain an electronic copy from: standards-sec@acca.org

Send comments (copy psa@ansi.org) to: Same

ADA (American Dental Association)

211 E. Chicago Avenue, Chicago, IL 60611-2678 | swickm@ada.org, www.ada.org

National Adoption

BSR/ADA Standard No. 174-202x, Dentistry - Hose Connectors for Air Driven Dental Handpieces (national adoption with modifications of ISO 9168:2009)

This document is applicable for achieving reliable interchangeability between hoses from dental units and dental handpieces.

This document specifies four types of hose connectors for use between air driven dental handpieces and the flexible hoses of the dental unit which supply the handpieces with water, air and light, and provide for exhaust.

Single copy price: \$80.00

Obtain an electronic copy from: standards@ada.org

Send comments (copy psa@ansi.org) to: Standards@ada.org

ADA (American Dental Association)

211 E. Chicago Avenue, Chicago, IL 60611-2678 | swickm@ada.org, www.ada.org

National Adoption

BSR/ADA Standard No. 47-2-202x, Dentistry - Stationary Dental Units and Dental Patient Chairs - Part 2: Air, Water, Suction and Wastewater Systems (national adoption of ISO 7494-2:2022 with modifications and revision of ANSI/ADA Standard No. 47-2-2021)

This document specifies requirements and test methods for stationary dental units concerning:

- a) the properties of stationary dental unit connections to the compressed air supply, water supply, suction supply, and wastewater drain plumbing,
- b) the materials, design, and construction of the compressed air and water system within the stationary dental unit.
- c) the quality for incoming water and air,
- d) the performance of stationary dental unit suction system, and
- e) the air, water, suction and wastewater properties of stationary dental unit connections to the interfaces to dental handpieces. This document also specifies requirements for instructions for use and technical description.

Single copy price: \$191.00

Obtain an electronic copy from: standards@ada.org

Send comments (copy psa@ansi.org) to: Standards@ada.org

ADA (American Dental Association)

211 E. Chicago Avenue, Chicago, IL 60611-2678 | swickm@ada.org, www.ada.org

New Standard

BSR/ADA Standard No. 1100-202x, Dentistry - 2D and 3D Orthodontic/ Craniofacial/Forensic Photographic Views and Viewsets (new standard)

The scope of this document is to provide: a list of possible intraoral and extraoral visible light image (photographic) views as used by orthodontic/craniofacial/forensic providers; explanations and specific attributes of each view, making use of text and line art drawings where necessary; and terminology that includes necessary terms for encoding orthodontic views and viewsets. This standard is suitable for use in assigning tags, fields, and information to visible light image (photographic) views for implementation guides and profiles.

Single copy price: \$81.00

Obtain an electronic copy from: standards@ada.org Send comments (copy psa@ansi.org) to: Same

ADA (American Dental Association)

211 E. Chicago Avenue, Chicago, IL 60611-2678 | swickm@ada.org, www.ada.org

Reaffirmation

BSR/ADA Standard No. 101.5 (R202x), Dentistry - Endodontic instruments - Part 5: Shaping and Cleaning Instruments (reaffirm a national adoption ANSI/ADA Standard No. 28-2021)

This document specifies requirements and test methods for hand-held and mechanically operated instruments used for shaping and cleaning root canals, and which are not specified in other parts of the ADA endodontic instrument standard/ISO 3630 series. This document specifies requirements for size, marking, product designation, safety considerations, labelling and packaging.

Single copy price: \$80.00

Obtain an electronic copy from: standards@ada.org

Send comments (copy psa@ansi.org) to: Standards@ada.org

AHRI (Air-Conditioning, Heating, and Refrigeration Institute)

2311 Wilson Boulevard, Suite 400, Arlington, VA 22201 | jyeh2@ahrinet.org, www.ahrinet.org

New Standard

BSR/AHRI Standard 920-202x (SI/I-P), Performance Rating of DX-Dedicated Outdoor Air System Units (new standard)

This standard establishes definitions, classifications, test requirements, rating requirements, minimum data requirements for published ratings, operating requirements, marking and nameplate data, and conformance conditions for direct expansion-dedicated outdoor air system (DX-DOAS) units. This standard applies to factory-assembled commercial or industrial DX-DOAS units as defined in Section 3. This standard only applies to electrically operated, vapor-compression refrigeration systems. DX-DOAS units are intended for ducted or non-ducted installation with field or factory supplied grilles. This standard does not apply to sensible-only 100% outdoor air units.

Single copy price: Free

Obtain an electronic copy from: https://connect.ahrinet.org/standards-public-review/stdsunderpublicreview Send comments (copy psa@ansi.org) to: AHRI_Standards@ahrinet.org

AMCA (Air Movement and Control Association)

30 West University Drive, Arlington Heights, IL 60004-1893 | jbrooks@amca.org, www.amca.org

New Standard

BSR/AMCA 280-202x, Test Methods for Wind Resistance and Impact Resistance for Fans and Ventilators (new standard)

To establish uniform methods for laboratory testing of wind resistance and missile debris impact resistance of non-embedded fans and ventilators whose failure would compromise the integrity of the building envelope. Tests conducted in accordance with this standard are intended to demonstrate the capability of a fan, powered ventilator, or unpowered ventilator mounted externally to a building to withstand wind pressure (lateral and/or uplift), missile impact(s), or both. The test methodology, pass/fail criteria, and functional criteria are defined. The wind pressure test methodology in this standard is intended to demonstrate a fan or ventilator's ability to sufficiently retain its structural integrity, functionality, and maintain integrity of the building envelope. The missile debris impact test methodology in this standard is intended to demonstrate a fan or ventilator's ability to maintain structural integrity of its housing and components attached to it.

Single copy price: \$90.00 for AMCA non-Members; free for AMCA members

Obtain an electronic copy from: jbrooks@amca.org

Send comments (copy psa@ansi.org) to: jbrooks@amca.org

ASABE (American Society of Agricultural and Biological Engineers)

2590 Niles Road, Saint Joseph, MI 49085 | stell@asabe.org, https://www.asabe.org/

Reaffirmation

BSR/ASABE S600-2011 (R202x), Manually Handled Collapsible Reusable Plastic Containers for Handling of Fruits and Vegetables (reaffirmation and redesignation of ANSI/ASABE S600-2011 (R2020))

This standard provides uniform design and performance specifications for a manually handled collapsible reusable plastic container for handling fresh horticultural produce during postharvest processing, storage and transportation.

Single copy price: Free

Obtain an electronic copy from: stell@asabe.org

Send comments (copy psa@ansi.org) to: Sadie Stell <stell@asabe.org>

ASABE (American Society of Agricultural and Biological Engineers)

2590 Niles Road, Saint Joseph, MI 49085 | stell@asabe.org, https://www.asabe.org/

Revision

BSR/ASAE S338-202x, Field Equipment for Agriculture - Safety Chain for Towed Equipment (revision and redesignation of ANSI/ASAE S338.5 MAY2006 (R2020))

The current revision only defines the towing machine attachment point of anag. tractors. This revision adds the definition of the towing machine attachment point of a special self-propelled machine (SSP). It also defines the strength requirements of the safety chain when used in an implement train.

Single copy price: Free

Obtain an electronic copy from: stell@asabe.org

Send comments (copy psa@ansi.org) to: stell@asabe.org

ASME (American Society of Mechanical Engineers)

Two Park Avenue, M/S 6-2B, New York, NY 10016-5990 | ansibox@asme.org, www.asme.org

Revision

BSR/ASME BPE-202x, Bioprocessing Equipment (revision of ANSI/ASME BPE-2024)

The ASME BPE Standard provides requirements for systems and components that are subject to cleaning and sanitization and/or sterilization including systems that are cleaned in place (CIP'd) and/or steamed in place (SIP'd) and/or other suitable processes used in the manufacturing of biopharmaceuticals. This Standard also provides requirements for single use systems and components used in the above listed systems and components. The ASME Bioprocessing Equipment Standard was developed to aid in the design and construction of new fluid processing equipment used in the manufacture of biopharmaceuticals, where a defined level of purity and bioburden control is required.

Single copy price: Free

Obtain an electronic copy from: https://cstools.asme.org/csconnect/PublicReviewPage.cfm

Send comments (copy psa@ansi.org) to: Narissara Pisanello

ASSP (ASC A10) (American Society of Safety Professionals)

520 N. Northwest Hwy., Park Ridge, IL 60068 | LBauerschmidt@assp.org, www.assp.org

Revision

BSR/ASSP A10.23-202x, Safety Requirements for the Installation of Drilled Shafts (revision of ANSI/ASSP A10.23 -2019)

This standard establishes safety requirements for the installation of drilled shafts during construction and demolition operations.

Single copy price: \$125.00

Obtain an electronic copy from: Lbauerschmidt@assp.org

Send comments (copy psa@ansi.org) to: Same

ASTM (ASTM International)

100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 | accreditation@astm.org, www.astm.org

New Standard

BSR/ASTM WK85367-202x, Practice for Identification of Compounds related to Organic Gunshot Residue (OGSR)

by Liquid Chromatography-Mass Spectrometry (LC-MS) (new standard)

https://www.astm.org/get-involved/technical-committees/ansi-review

Single copy price: Free

Obtain an electronic copy from: accreditation@astm.org

Send comments (copy psa@ansi.org) to: accreditation@astm.org

ASTM (ASTM International)

100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 | accreditation@astm.org, www.astm.org

Revision

BSR/ASTM D6792-202x, Practice for Quality Management Systems in Petroleum Products, Liquid Fuels, and Lubricants Testing Laboratories (revision of ANSI/ASTM D6792-2023C)

https://www.astm.org/get-involved/technical-committees/ansi-review

Single copy price: Free

Obtain an electronic copy from: accreditation@astm.org

Send comments (copy psa@ansi.org) to: Corice Leonard <accreditation@astm.org>

ASTM (ASTM International)

100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 | accreditation@astm.org, www.astm.org

Revision

BSR/ASTM E23-202x, Test Methods for Notched Bar Impact Testing of Metallic Materials (revision of ANSI/ASTM E23-2025)

https://www.astm.org/get-involved/technical-committees/ansi-review

Single copy price: Free

Obtain an electronic copy from: accreditation@astm.org

Send comments (copy psa@ansi.org) to: Corice Leonard <accreditation@astm.org>

ASTM (ASTM International)

100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 | accreditation@astm.org, www.astm.org

Revision

BSR/ASTM E3149-202x, Guide for Facial Image Comparison Feature List for Morphological Analysis (revision of ANSI/ASTM E3149-2018)

https://www.astm.org/get-involved/technical-committees/ansi-review

Single copy price: Free

Obtain an electronic copy from: accreditation@astm.org

Send comments (copy psa@ansi.org) to: accreditation@astm.org

ATIS (Alliance for Telecommunications Industry Solutions)

1200 G Street NW, Suite 500, Washington, DC 20005 | akarditzas@atis.org, www.atis.org

Reaffirmation

BSR ATIS 1000609-2014 (R202x), Interworking between the ISDN User-Network Interface Protocol and Signalling System Number 7 ISDN User Part (reaffirmation of ANSI ATIS 1000609-2014 (R2019))

This standard is aimed at defining the interworking relationship between the call control protocol of the ISDN User-Network Interface Protocol and the ISDN User Part of SS7. This standard defines in detail the relationship between signalling information conveyed via the User-Network Interface Protocol and similar signalling information conveyed via the ISDN User part of SS7. The above relationship is described within the context of supporting the establishment and clearing of call within an ISDN or mixed ISDN/non-ISDN environment.

Single copy price: \$330.00

Obtain an electronic copy from: akarditzas@atis.org

Send comments (copy psa@ansi.org) to: Anna Karditzas <akarditzas@atis.org>

ATIS (Alliance for Telecommunications Industry Solutions)

1200 G Street NW, Suite 500, Washington, DC 20005 | akarditzas@atis.org, www.atis.org

Reaffirmation

BSR/ATIS 1000678.v4-2020 (R202x), Lawfully Authorized Electronic Surveillance (LAES) for Voice over Internet Protocol and Rich Communications Services Messaging in Wireline and Broadband Telecommunications Networks, Version 4 (reaffirmation of ANSI/ATIS 1000678.v4-2020)

This Standard defines the interfaces between a Telecommunication Service Provider (TSP) and a Law Enforcement Agency (LEA) to assist the LEA in conducting lawfully authorized electronic surveillance for Voice over Internet Protocol (VoIP) and Rich Communications Services (RCS) Messaging in wireline and broadband telecommunications networks. This version of the standard extends the capabilities in ATIS-1000678.v3.2015 (R2020) and also provides corrections. This document provides the mechanisms to perform lawfully authorized electronic surveillance of VoIP subject to the appropriate legal and regulatory environment. It is not the intent of this document to imply or impact any pending Communications Assistance for Law Enforcement Act (CALEA) regulatory decisions related to VoIP. NOTE - Annex A, ASN.1 Definitions, of this Standard has also been formatted as a separate plain text file and electronically packaged with this standard.

Single copy price: \$400.00

Obtain an electronic copy from: akarditzas@atis.org

Send comments (copy psa@ansi.org) to: Anna Karditzas <akarditzas@atis.org>

ATIS (Alliance for Telecommunications Industry Solutions)

1200 G Street NW, Suite 500, Washington, DC 20005 | akarditzas@atis.org, www.atis.org

Stabilized Maintenance

BSR ATIS 1000109-2014 (S202x), Exchange-Interexchange Carrier Interfaces - 950+ XXXX EC-to-IC Access Signaling Protocols (stabilized maintenance of ANSI ATIS 1000109-2014 (R2019))

The purpose of this standard is to enable an exchange carrier (EC) entity and an interexchange carrier (IC), or consolidated carrier entity to provide interconnecting equipment that operates compatibly. This standard is one of a series of standards that gives individual-channel signaling protocol requirements for the interface located between a public switched EC network within an access area and an IC, INC, or consolidated carrier network.

Single copy price: \$155.00

Obtain an electronic copy from: akarditzas@atis.org

Send comments (copy psa@ansi.org) to: akarditzas@atis.org

ATIS (Alliance for Telecommunications Industry Solutions)

1200 G Street NW, Suite 500, Washington, DC 20005 | akarditzas@atis.org, www.atis.org

Stabilized Maintenance

BSR ATIS 1000603-2014 (S202x), ISDN - Minimal Set of Bearer Services for the Primary Rate Interface (stabilized maintenance of ANSI ATIS 1000603-2014 (R2019))

This standard defines the minimal set off bearer services for the ISDN primary rate interface, which conforms closely to CCITT architectural concepts and explicitly considers the service constraints in the telecommunications environment of the United States. The bearer services defined in this standard are the minimal set of bearer services that are to be supported by public networks for ISDN primary rat interfaces.

Single copy price: \$110.00

Obtain an electronic copy from: akarditzas@atis.org

Send comments (copy psa@ansi.org) to: akarditzas@atis.org

ATIS (Alliance for Telecommunications Industry Solutions)

1200 G Street NW, Suite 500, Washington, DC 20005 | akarditzas@atis.org, www.atis.org

Stabilized Maintenance

BSR ATIS 1000604-2014 (S202x), ISDN - Minimal Set of Bearer Services for the Basic Rate Interface (stabilized maintenance of ANSI ATIS 1000604-2014 (R2019))

This standard defines the minimal set of bearer services for the ISDN basic rate interface, which conforms closely to CCITT architectural concepts and explicitly considers the service constraints in the telecommunications environment of the United States.

Single copy price: \$155.00

Obtain an electronic copy from: akarditzas@atis.org

ATIS (Alliance for Telecommunications Industry Solutions)

1200 G Street NW, Suite 500, Washington, DC 20005 | akarditzas@atis.org, www.atis.org

Stabilized Maintenance

BSR ATIS 1000615-2014 (S202x), Digital Subscriber Signaling System No. 1 (DSS1) - Layer 3 Overview (stabilized maintenance of ANSI ATIS 1000615-2014 (R2019))

The Digital Subscriber Signalling System No.1 (DSS1) is a suite of protocols that provides the means for users to invoke the full range of services and capabilities available from the Integrated Services Digital Network (ISDN).

Single copy price: \$110.00

Obtain an electronic copy from: akarditzas@atis.org

Send comments (copy psa@ansi.org) to: akarditzas@atis.org

ATIS (Alliance for Telecommunications Industry Solutions)

1200 G Street NW, Suite 500, Washington, DC 20005 | akarditzas@atis.org, www.atis.org

Stabilized Maintenance

BSR ATIS 1000621-2014 (S202x), ISDN - User to User Signaling Supplementary Service (stabilized maintenance of ANSI ATIS 1000621-2014 (R2019))

This standard is one of a series which defines and describes service capabilities within the context of an Integrated Service Digital Network (ISDN). It describes a single service capability which is a telecommunication transport capability. Such capability 5 be made available on a demand or a subscription arrangement.

Single copy price: \$220.00

Obtain an electronic copy from: akarditzas@atis.org

Send comments (copy psa@ansi.org) to: akarditzas@atis.org

ATIS (Alliance for Telecommunications Industry Solutions)

1200 G Street NW, Suite 500, Washington, DC 20005 | akarditzas@atis.org, www.atis.org

Stabilized Maintenance

BSR ATIS 1000623-2014 (S202x), Digital Subscriber Signaling System No. 1 (DSS1) - Signaling Specification for the User Signaling Bearer Service (stabilized maintenance of ANSI ATIS 1000623-2014 (R2019))

This standard presents the procedures at the S or T reference point for D-channel access connection on basic rate interfaces and primary rate interfaces within the Integrated Services Digital Network (ISDN) to support ISDN user signalling bearer service.

Single copy price: \$155.00

Obtain an electronic copy from: akarditzas@atis.org

Send comments (copy psa@ansi.org) to: akarditzas@atis.org

ATIS (Alliance for Telecommunications Industry Solutions)

1200 G Street NW, Suite 500, Washington, DC 20005 | akarditzas@atis.org, www.atis.org

Stabilized Maintenance

BSR ATIS 1000627-2014 (S202x), Broadband ISDN - ATM Layer Functionality and Specification (stabilized maintenance of ANSI ATIS 1000627-2014 (R2019))

This standard is one a series of standard on Broadband Integrated Services Digital Network (B-ISDN). These standards describe the B-ISDN capabilities, architectural model, and network interfaces including protocol functionalities and specifications, and signaling characteristics. In particular, this standard describes the protocol of the ATM Layer.

Single copy price: \$265.00

Obtain an electronic copy from: akarditzas@atis.org

ATIS (Alliance for Telecommunications Industry Solutions)

1200 G Street NW, Suite 500, Washington, DC 20005 | akarditzas@atis.org, www.atis.org

Stabilized Maintenance

BSR ATIS 1000641-2014 (S202x), Calling Name Identification (stabilized maintenance of ANSI ATIS 1000641 -2014 (R2019))

This standard is one of a series which defines and describes supplementary services. These services 5 be made available for users with non-ISDN interfaces who access SS7 capable networks and also within the context of an Integrated Services Digital Network (ISDN). This standard describes Calling Name Identification Presentation which is a terminating service that provides either the name associated with the calling party number or an indication of privacy or unavailability to the called party.

Single copy price: \$220.00

Obtain an electronic copy from: akarditzas@atis.org

Send comments (copy psa@ansi.org) to: akarditzas@atis.org

ATIS (Alliance for Telecommunications Industry Solutions)

1200 G Street NW, Suite 500, Washington, DC 20005 | akarditzas@atis.org, www.atis.org

Stabilized Maintenance

BSR ATIS 1000642-2014 (S202x), ISDN - Call Deflection Supplementary Service (stabilized maintenance of ANSI ATIS 1000642-2014 (R2019))

This standard is one of a series that defines and describes supplementary services within the context of an Integrated Services Digital Network (ISDN). The interaction of this service with other ISDN services is also included. The purpose of the standard is to allow maximum compatibility among network - and user-owned telecommunication equipment in order to increase the attractiveness and usefulness of ISDN-based capabilities.

Single copy price: \$265.00

Obtain an electronic copy from: akarditzas@atis.org

Send comments (copy psa@ansi.org) to: akarditzas@atis.org

ATIS (Alliance for Telecommunications Industry Solutions)

1200 G Street NW, Suite 500, Washington, DC 20005 | akarditzas@atis.org, www.atis.org

Stabilized Maintenance

BSR/ATIS 1000060-2014 (S202x), Emergency Telecommunications Services (ETS): Long Term Evolution (LET) Access Network Security Requirement for National Security/Emergency Preparedness (NS/EP) Next Generation Network (NGN) Priority Services (stabilized maintenance of ANSI/ATIS 1000060-2014 (R2019))

The integrity, confidentiality, and availability of Emergency Telecommunication Service (ETS) in a multi-provider Next Generation Network (NGN) environment will depend on the security of each individual network involved in an end-to-end communication. To allow network-provided security of end-to-end ETS communications in a multiprovider environment, intra-network domain and inter-network domain security requirements for ETS protection are needed. This ATIS standard provides a minimum set of requirements for the security protection of NS/EP NGN-PS in LTE Access Networks.

Single copy price: \$330.00

Obtain an electronic copy from: akarditzas@atis.org

ATIS (Alliance for Telecommunications Industry Solutions)

1200 G Street NW, Suite 500, Washington, DC 20005 | akarditzas@atis.org, www.atis.org

Stabilized Maintenance

BSR/ATIS 1000616-2014 (S202x), ISDN - Call Hold Supplementary Service (stabilized maintenance of ANSI/ATIS 1000616-2014 (R2019))

This standard specifies the service capabilities of the Call Hold service within the context of an Integrated Services Digital Network (ISDN).

Single copy price: \$200.00

Obtain an electronic copy from: akarditzas@atis.org

Send comments (copy psa@ansi.org) to: akarditzas@atis.org

ATIS (Alliance for Telecommunications Industry Solutions)

1200 G Street NW, Suite 500, Washington, DC 20005 | akarditzas@atis.org, www.atis.org

Stabilized Maintenance

BSR/ATIS 1000620.a-2014 (S202x), Multi-Rate Circuit-Mode Bearer Service for ISDN - Addendum to the Circuit-Mode Bearer Service Category Description (stabilized maintenance of ANSI/ATIS 1000620.a-2014 (R2019)) This document is a supplement to ATIS-1000620 and revises the standard to add the category of multi-rate circuit-mode bearer services.

Single copy price: \$60.00

Obtain an electronic copy from: akarditzas@atis.org

Send comments (copy psa@ansi.org) to: akarditzas@atis.org

ATIS (Alliance for Telecommunications Industry Solutions)

1200 G Street NW, Suite 500, Washington, DC 20005 | akarditzas@atis.org, www.atis.org

Stabilized Maintenance

BSR/ATIS 1000632.1993 (R2019)-S202x, ISDN Supplementary Service Normal Call Transfer (stabilized maintenance of ANSI ATIS 1000632-1993 (R2019))

This standard describes the ISDN Normal Call Transfer Service in terms of service definition and protocol and procedures needed for implementation.

Single copy price: \$500.00

Obtain an electronic copy from: akarditzas@atis.org

AWS (American Welding Society)

8669 NW 36th Street, Suite 130, Miami, FL 33166-6672 | kbulger@aws.org, www.aws.org

Revision

BSR/AWS A5.29/A5.29M-202x, Specification for Low-Alloy Steel Electrodes for Flux Cored Arc Welding (revision of ANSI/AWS A5.29/A5.29M-2022)

This specification prescribes the requirements for classification of low-alloy steel electrodes for flux cored arc welding. The requirements include chemical composition and mechanical properties of the weld metal and certain usability characteristics. Optional supplemental designators are also included for improved toughness, diffusible hydrogen, and shielding gas range. Additional requirements are included for standard sizes, marking, manufacturing, and packaging. A guide is appended to the specification as a source of information concerning the classification system employed and the intended use of low-alloy steel flux cored electrodes. This specification makes use of both U.S. Customary Units and the International System of Units (SI). Since these are not equivalent, each system must be used independently of the other.

Single copy price: \$33 member / 44 non-member Obtain an electronic copy from: kbulger@aws.org

Send comments (copy psa@ansi.org) to: Kevin Bulger <kbulger@aws.org>

AWWA (American Water Works Association)

6666 W. Quincy Avenue, Denver, CO 80235 | mrohr@awwa.org, www.awwa.org

Revision

BSR/AWWA D107-202x, Composite Elevated Tanks for Water Storage (revision of ANSI/AWWA D107-2015)
This standard describes the design, construction, inspection, and testing of composite elevated tanks that utilize a welded steel tank for watertight containment and a single pedestal concrete support structure. Requirements for the steel tank, concrete support structure, foundation, and accessories are included.

Single copy price: Free

Obtain an electronic copy from: ETSsupport@awwa.org

Send comments (copy psa@ansi.org) to: AWWA, Paul J. Olson (polson@awwa.org)

ESTA (Entertainment Services and Technology Association)

271 Cadman Plaza, P.O. Box 23200, Brooklyn, NY 11202-3200 | standards@esta.org, www.esta.org

Revision

BSR/E1.66-202x, Safety Standard for Followspot Positions Erected for Short-term Use in Entertainment Venues (revision of ANSI/E1.66-2020)

This standard covers safety requirements for followspot positions in, or on, structures erected for short-term use, and positions not covered by ANSI E1.28. It is applicable to positions located indoors or outdoors. It addresses structural, electrical, and personnel safety requirements associated with non-permanent followspot positions. Single copy price: Free

Obtain an electronic copy from: https://tsp.esta.org/tsp/documents/public_review_docs.php Send comments (copy psa@ansi.org) to: Richard Nix <standards@esta.org>

IAPMO (WES) (International Association of Plumbing & Mechanical Officials)

4755 East Philadelphia Street, Ontario, CA 91761 | hugo.aguilar@iapmo.org, http://www.iapmo.org

Revision

BSR/IAPMO WESTAND 1-2027-202x, Water Efficiency and Sanitation Standard (revision of ANSI/IAPMO/WESTAND 1-2023)

The provisions of this standard shall apply to the erection, installation, alteration, repair, relocation, replacement, addition to, use, or maintenance of plumbing and mechanical systems covered by the scope of this standard. The purpose of this standard is to provide minimum requirements to optimize water use practices attributed to the built environment while maintaining protection of the public health, safety and welfare.

Single copy price: \$10.00

Obtain an electronic copy from: hugo.aguilar@iapmo.org

Send comments (copy psa@ansi.org) to: Hugo Aguilar, hugo.aguilar@iapmo.org

ICC (International Code Council)

4051 Flossmoor Road, Country Club Hills, IL 60478 | kaittaniemi@iccsafe.org, www.iccsafe.org

New Standard

BSR/ICC/THIA 1215-202x, Design, Construction, Inspection and Regulation of Small Residential Units and Tiny Houses for Permanent Occupancy (new standard)

This standard will provide minimum requirements for the design, construction, inspection, certification and regulatory compliance of small residential units (SRUs) and tiny houses used for permanent occupancy to assure public safety, sustainability and resilience. The standard will include: consensus definitions for SRUs, tiny houses and related terminology; prescriptive and performance based compliance methods for SRUs, tiny house foundations and chassis; and plan review, inspection and certification requirements for SRUs and tiny houses constructed on-site and off-site. The standard will address SRUs and tiny houses built on a foundation and those with wheels and a permanent chassis intended for permanent occupancy. The 2021 International Residential Code (including Appendix AQ), and ICC/MBI Standards 1200 and 1205 will serve as the initial base documents with references to other existing standards. The standard will be written in mandatory code-intended language to support use by manufacturers and adoption by jurisdictions globally. This standard will not address SRUs or tiny houses used for temporary or seasonal occupancy, or tiny house community development or microgrids. Single copy price: Free

Obtain an electronic copy from: https://www.iccsafe.org/committees/is-osmth/

Send comments (copy psa@ansi.org) to: https://form.jotform.com/Code_Apps/ICC-Public_Comments

NECA (National Electrical Contractors Association)

1201 Pennsylvania Avenue, Suite 1200, Washington, DC 20004 | Jeff.Noren@NECAnet.org, www.neca-neis.org

New Standard

BSR/NECA 701-202X, Standard for Energy Management, Demand Response, and Energy Solutions (new standard)

This Standard describes methods and procedures used for performing energy conservation surveys, controlling and managing energy consumption, implementing the smart grid and demand response, and developing, implementing and evaluating energy conservation measures for residential, commercial, and industrial applications. Water consumption and water conservation measures are typically incorporated into energy conservation surveys because water (and the treatment of wastewater) is considered a utility that is consumed and can be conserved. Consequently, this Standard includes a cursory discussion of domestic water, hot water, chilled water, and boiler systems as necessary aspects of energy and water conservation. This Standard does not cover equipment or system design, commissioning, or maintenance.

Single copy price: \$Members; -30, Non-Members; -60 Obtain an electronic copy from: Email neis@necanet.org

Send comments (copy psa@ansi.org) to: Email neis@necanet.org

NECA (National Electrical Contractors Association)

1201 Pennsylvania Avenue, Suite 1200, Washington, DC 20004 | Jeff.Noren@NECAnet.org, www.neca-neis.org

Revision

BSR/NECA 416-202X, Recommended Practice for Installing Energy Storage Systems (ESS) (revision of ANSI/NECA 416-2016)

This Recommended Practice describes installation practices for Energy Storage Systems (ESS) such as battery systems, flywheels, ultra-capacitors, and smart chargers used for electric vehicle (EV) vehicle-to-grid (V2G) applications. Products and applications that are covered by this Recommended Practice include: * Battery systems * Flywheels * Ultra-Capacitors * Electric vehicle (EV) smart charger vehicle-to-grid (V2G) applications While Compressed Air Energy Storage (CAES), Pumped Hydro Storage (PHS), and Thermal Energy Storage (TES) are not covered by this Recommended Practice (see Section 1.2), electrical equipment and components for use in CAES, PHS, and TES should be installed in accordance with this Recommended Practice. Products and Applications Excluded The design of mechanical systems, such as pumps, piping, tanks, and controls for flow battery systems and ventilation systems for battery systems and EVSE, and structural systems, such as foundations and seismic reinforcement, for ESS is beyond the scope of this Recommended Practice and shall be completed by qualified design professionals. The installation of mechanical systems and structural systems for ESS is beyond the scope of this Recommended Practice and shall be completed by skilled tradespersons for the installation of such systems.

Single copy price: \$Members; -30, Non-Members; -60 Obtain an electronic copy from: Email neis@necanet.org

Send comments (copy psa@ansi.org) to: Email neis@necanet.org

NFPA (National Fire Protection Association)

One Batterymarch Park, Quincy, MA 02169 | dbellis@nfpa.org, www.nfpa.org

Revision

BSR/NFPA 55-202x, Compressed Gases and Cryogenic Fluids Code (revision of ANSI/NFPA 55-2022)

This code shall provide fundamental safeguards for the installation, storage, use, and handling of compressed gases and cryogenic fluids in portable and stationary cylinders, containers, and tanks. The purpose of this code shall be to provide a reasonable degree of protection of life and property from fire through standardization of practices for the installation, storage, use, and handling of compressed gases and cryogenic fluids. This code shall apply to the installation, storage, use, and handling of compressed gases and cryogenic fluids in portable and stationary cylinders, containers, equipment, and tanks in all occupancies.

Obtain an electronic copy from: www.nfpa.org/55next

Send comments (copy psa@ansi.org) to: www.nfpa.org/55next

NFPA (National Fire Protection Association)

One Batterymarch Park, Quincy, MA 02169 | dbellis@nfpa.org, www.nfpa.org

Revision

BSR/NFPA 79-202x, Electrical Standard for Industrial Machinery (revision of ANSI/NFPA 79-2024)

The provisions of this standard shall apply to the electrical/electronic equipment, apparatus, or systems of industrial machines supplied from a nominal voltage of 1000 volts or less, and commencing at the point of connection of the supply circuit conductors to the electrical equipment of the machine. 1.1.2* This standard does not include the additional requirements for machines intended for use in hazardous (classified) locations.

Obtain an electronic copy from: www.nfpa.org/79next

Send comments (copy psa@ansi.org) to: www.nfpa.org/79next

NFPA (National Fire Protection Association)

One Batterymarch Park, Quincy, MA 02169 | dbellis@nfpa.org, www.nfpa.org

Revision

BSR/NFPA 85-202x, Boiler and Combustion Systems Hazards Code (revision of ANSI/NFPA 85-2023) This code applies to the following: (1) Single burner boilers, multiple burner boilers, stokers, and atmospheric fluidized bed boilers with a fuel input rating of 3.7 MWt (12.5 million Btu/hr) or greater; (2) Pulverized fuel systems at any heat input rate; (3) Fired or unfired steam generators used to recover heat from combustion turbines [heat recovery steam generators (HRSGs)] and other combustion turbine exhaust systems at any heat input rate. Additionally, this code covers design, installation, operation, maintenance, and training. Also addressed by this standard is strength of the structure, operation and maintenance procedures, combustion and draft control equipment, interlocks, alarms, and other related controls that are essential to safe equipment operation. This code does not cover process heaters used in chemical and petroleum manufacture in which steam generation is incidental to the operation of a processing system.

Obtain an electronic copy from: www.nfpa.org/85next

Send comments (copy psa@ansi.org) to: www.nfpa.org/85next

NFPA (National Fire Protection Association)

One Batterymarch Park, Quincy, MA 02169 | dbellis@nfpa.org, www.nfpa.org

Revision

BSR/NFPA 850-202x, Recommended Practice for Fire Protection for Electric Generating Plants and High Voltage Direct Current Converter Stations (revision of ANSI/NFPA 850-2020)

This document provides recommendations for fire prevention and fire protection for electric generating plants and high voltage direct current converter stations, except as follows: Advanced light water reactor electric generating plants are addressed in NFPA 804; nuclear power plants are addressed in NFPA 805; and fuel cells are addressed in NFPA 853. This document is prepared for the guidance of those charged with the design, construction, operation, and protection of electric generating plants and high voltage direct current converter stations that are covered by the scope of this document. Additionally, this document provides fire hazard control recommendations for the safety of construction and operating personnel, the physical integrity of plant components, and the continuity of plant operations. Specific concerns are generalized and categorized as shown in 1.2.2.1 through 1.2.2.4.

Obtain an electronic copy from: www.nfpa.org/850next Send comments (copy psa@ansi.org) to: www.nfpa.org/850next

NFPA (National Fire Protection Association)

One Batterymarch Park, Quincy, MA 02169 | dbellis@nfpa.org, www.nfpa.org

Revision

BSR/NFPA 921-202x, Guide for Fire and Explosion Investigations (revision of ANSI/NFPA 921-2024)
This document is designed to assist individuals who are charged with the responsibility of investigating and analyzing fire and explosion incidents and rendering opinions as to the origin, cause, fire spread, responsibility, or prevention of such incidents and the damage and injuries that arise from such incidents. The completion of reports for the United States National Fire Incident Reporting System (NFIRS) are outside the scope of this guide. This guide considers NFIRS reports as incident reports and not as investigation reports. The information contained in an NFIRS report should generally be considered as the preliminary report of the fire department concerning any fire or explosion incident. An NFIRS report should not be used as a fire investigation report. Obtain an electronic copy from: www.nfpa.org/921next

Send comments (copy psa@ansi.org) to: www.nfpa.org/921next

NSF (NSF International)

789 N. Dixboro Road, Ann Arbor, MI 48105-9723 | arose@nsf.org, www.nsf.org

Revision

BSR/NSF 49-202x (i207r1), Biosafety Cabinetry: Design, Construction, Performance and Field Certification (revision of ANSI/NSF 49-2024)

This standard applies to Class II (laminar flow) biosafety cabinetry designed to minimize hazards inherent in work with agents assigned to Biosafety Levels 1, 2, 3, or 4. It also defines the tests that shall be passed by such cabinetry to meet this standard.

Single copy price: Free

Obtain an electronic copy from: https://standards.nsf.org/higherlogic/ws/public/download/81084/49i207r1% 20-%20Sporulation%20-%20JC%20Memo%20and%20Ballot.pdf

Send comments (copy psa@ansi.org) to: Allan Rose <arose@nsf.org>

SAE (SAE International)

755 West Big Beaver Road, Troy, MI 48084 | mark.zar@sae.org, www.sae.org

Revision

BSR/SAE J3097/Z26.1-202x, Standard for Safety Glazing Materials for Glazing Motor Vehicles and Motor Vehicle Equipment Operating on Land Highways - Safety Standard (revision of SAE J3097 TM/ANSI Z26.1-2019)
SAE J3097 / ANSI Z26.1 includes specifications, test methods, and usage provisions for safety glazing materials used for glazing of motor vehicles and motor vehicle equipment operating on land highways. This revision includes updates to technology, editorial corrections, revised or new definitions, practical enhancements, addition, deletion, or clarification of test method details of the SAE J3097/ANSI Z26.1 May 2019 Glazing Standard. This is a comprehensive standard including glass and plastic glazing materials, with allowable installation locations, created as an optimum set of requirements reflecting the testing and performance specifications of the major international standards for safety glazing materials. This standard organizes methods and requirements according to the traditional style of an standard. This style is familiar to safety glazing manufacturers and provides ease of use with straightforward language.

Single copy price: \$75.00

Obtain an electronic copy from: https://www.sae.org/standards/j3097z26_202509-draft-standard-safety-glazing-materials-glazing-motor-vehicles-motor-vehicle-equipment-operating-land-highways-safety-standard Send comments (copy psa@ansi.org) to: publicreview@sae.org

ULSE (UL Standards and Engagement)

100 Queen St. Suite 1040, Ottawa, ON Canada, ON K1P 1J9 | Felipe.Luz@ul.org, https://ulse.org/

Reaffirmation

BSR/UL 291-2012 (R202x), Standard for Safety for Automated Teller Systems (reaffirmation of ANSI/UL 291 -2012 (R2021))

Reaffirmation and continuance of the Sixth Edition of the Standard for Safety for Automated Teller Systems, UL 291, as an standard

Single copy price: Free

Obtain an electronic copy from: https://csds.ul.org/ProposalAvailable

Send comments (copy psa@ansi.org) to: Send comments (copy psa@ansi.org) to: Follow the instructions at the following website to enter comments into the CSDS Work Area: https://csds.ul.com/ProposalAvailable

ULSE (UL Standards and Engagement)

12 Laboratory Drive, Research Triangle Park, NC 27709 | Adam.Payrot@ul.org, https://ulse.org/

Reaffirmation

BSR/UL 977-2020 (R202x), Standard for Fused Power-Circuit Devices (reaffirmation of ANSI/UL 977-2020) Reaffirmation and continuance of the 5th Edition of the Standard for Fused Power-Circuit Devices, UL 977, as an standard.

Single copy price: Free

Obtain an electronic copy from: https://csds.ul.com/ProposalAvailable

Send comments (copy psa@ansi.org) to: Send comments (copy psa@ansi.org) to: Follow the instructions at the following website to enter comments into the CSDS Work Area: https://csds.ul.com/ProposalAvailable

ULSE (UL Standards and Engagement)

100 Queen St. Suite 1040, Ottawa, ON Canada, ON K1P 1J9 | Felipe.Luz@ul.org, https://ulse.org/

Reaffirmation

BSR/UL 1598A-2020 (R202x), Standard for Safety for Supplemental Requirements for Luminaires for Installation on Marine Vessels (reaffirmation of ANSI/UL 1598A-2020)

Reaffirmation and continuance of the First Edition of the Standard for Safety for Supplemental Requirements for Luminaires for Installation on Marine Vessels, UL 1598A, as an standard

Single copy price: Free

Obtain an electronic copy from: https://csds.ul.org/ProposalAvailable

Send comments (copy psa@ansi.org) to: Send comments (copy psa@ansi.org) to: Follow the instructions at the following website to enter comments into the CSDS Work Area: https://csds.ul.com/ProposalAvailable

ULSE (UL Standards and Engagement)

12 Laboratory Dr, Research Triangle, NC 27709 | anastasia.letaw@ul.org, https://ulse.org/

Reaffirmation

BSR/UL 60079-2-2017 (R202x), Standard for Safety for Explosive Atmospheres - Part 2: Equipment Protection by Pressurized Enclosure p (reaffirm a national adoption ANSI/UL 60079-2-2017 (R2021))

This proposal for UL 60079-2 covers: the Reaffirmation and continuance of the Sixth Edition of the Standard for Safety for Explosive Atmospheres – Part 2: Equipment Protection by Pressurized Enclosure "p", UL 60079-2, as an standard.

Single copy price: Free..00

Obtain an electronic copy from: https://csds.ul.com/ProposalAvailable

Send comments (copy psa@ansi.org) to: https://csds.ul.com/ProposalAvailable

ULSE (UL Standards and Engagement)

1603 Orrington Ave, Suite 2000, Evanston, IL 60201 | Lisette.delgado@ul.org, https://ulse.org/

Revision

BSR/UL 1008-202x, Standard for Safety for Transfer Switch Equipment (revision of ANSI/UL 1008-2022)

To Revise current ANS

Single copy price: Free

Obtain an electronic copy from: https://csds.ul.com/ProposalAvailable

Send comments (copy psa@ansi.org) to: Follow the instructions in the following website to enter comments into the CSDS Work https://csds.ul.com/Home/ProposalsDefault.aspx"

ULSE (UL Standards and Engagement)

1603 Orrington Ave, Suite 2000, Evanston, IL 60201 | aaron.zheng@ul.org, https://ulse.org/

Revision

BSR/UL 2056-202x, Standard for Power Banks (revision of ANSI/UL 2056-2025)

1. Updates to the flammability requirement of internal parts. 2. Clarification of the test method in the Short-Circuit of Output Port Test. 3. Correction of the limits of cell temperatures in the Electrical Tests. 4. Clarification of the test condition and the tolerance of metal rods in the Flexing Force Test. 5. Alignment of the oven temperature tolerance in the Mold Stress Relief Test. 6. Update the structural requirement for Direct plug-in construction. 7. Clarification of the test methods in the Abnormal Charging of the Battery Test. 8. Clarification of the test method in the Temperature Test and BMS Verification.

Single copy price: Free

Obtain an electronic copy from: https://csds.ul.org/ProposalAvailable

Send comments (copy psa@ansi.org) to: Follow the instructions in the following website to enter comments into the CSDS Work "https://csds.ul.com/ProposalAvailable".

Comment Deadline: December 9, 2025

ASME (American Society of Mechanical Engineers)

Two Park Avenue, M/S 6-2B, New York, NY 10016-5990 | ansibox@asme.org, www.asme.org

Revision

BSR/ASME ANDE-1-202x, ASME Nondestructive Examination and Quality Control Control Qualification and Certification Program (revision of ANSI/ASME ANDE-1-2020)

ASME Nondestructive Examination and Quality Control Control Qualification and Certification Program

Single copy price: Free

Order from: https://cstools.asme.org/csconnect/PublicReviewPage.cfm

Send comments (copy psa@ansi.org) to: Robert Syarbaini

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | s.merten@ieee.org, www.ieee.org

New Standard

BSR/IEEE 3457-202x, Guide for Energy-Saving Lightweight Transformation and Operating Maintenance of Electric Facilities in Existing Buildings in Industrial and Commercial Installations (new standard)

Guidance on lightweight transformation of electric 1 facilities in existing buildings in industrial and commercial installations to the owners or operators of the buildings is provided in this guide.

Single copy price: \$62.00

Obtain an electronic copy from: https://store.accuristech.com/standards/ieee-p3457?

 $product_id = 2926798 \& sid = goog \& gad_source = 1 \& gclid = CjwKCAjwyo60BhBiEiwAHmVLJYrGTkHPArzgPBhd3oDtLIABA = 1000 +$

R3qyZeE5krirxYYJoH6xzshUOq7gg3hoCOVwQAvD_BwE

Order from: https://store.accuristech.com

Send comments (copy psa@ansi.org) to: s.merten@ieee.org

Comment Deadline: December 9, 2025

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | s.merten@ieee.org, www.ieee.org

New Standard

BSR/IEEE C37.04a-202x, Standard for Ratings and Requirements for AC High-Voltage Circuit Breakers with Rated Maximum Voltage Above 1000 V - Amendment 1: Changes to Construction Requirements and Clarification of Certain Related Required Capabilities (new standard)

Items discovered by users related to discrepancies with other industry standards will be addressed by this amendment: Harmonize pollution levels for normal service condition, further define requirements for capacitive switching class CO, clarify required electrical service capability, improve definition of interrupting time, implement requirements from IEEE C37.11 which are more properly in C37.04, and align material imported from NEMA SG-4 with current industry practices.

Single copy price: \$TBD

Obtain an electronic copy from: TBD

Order from: TBD

Send comments (copy psa@ansi.org) to: s.merten@ieee.org

ITI (INCITS) (InterNational Committee for Information Technology Standards)

700 K Street NW, Suite 600, Washington, DC 20001 | kquigley@itic.org, www.incits.org

Addenda

INCITS 560-2023/AM1-202x, Information Technology - Fibre Channel - Physical Interfaces - 8 Amendment 1 (FC-PI-8-AM1) (addenda to INCITS 560-2023)

Amendment 1 to INCITS 560-2023 Fibre Channel - Physical Interfaces - 8 (FC-PI-8) standard for a technical enhancement to change the signaling rate to 56.1 +/- 50ppm, and address any other potential enhancements. Document number T11-2024-00350-v000 specifies the proposed changes.

Single copy price: Free

Obtain an electronic copy from: https://standards.incits.org/higherlogic/ws/public/download/176345/eb-2025-00375-Public-review-register-INCITS-560-2023_AM1-202x-Comments-due-12-9-2025.pdf

Order from: https://standards.incits.org/higherlogic/ws/public/download/176345/eb-2025-00375-Public-review-register-INCITS-560-2023_AM1-202x-Comments-due-12-9-2025.pdf

Send comments (copy psa@ansi.org) to: comments@mail.standards.incits.org

ULSE (UL Standards and Engagement)

12 Laboratory Drive, Research Triangle Park, NC 27709-3995 | Nicolette.A.Weeks@ul.org, https://ulse.org/

Revision

BSR/UL 8-202X, Standard for Water Based Agent Fire Extinguishers (revision of ANSI/UL 8-2025)

ULSE proposes revisions to the Standard for Water Based Agent Fire Extinguishers, UL 8.

Single copy price: Free

Order from: https://csds.ul.com/ProposalAvailable

Send comments (copy psa@ansi.org) to: https://csds.ul.com/ProposalAvailable

Comment Deadline: December 9, 2025

ULSE (UL Standards and Engagement)

12 Laboratory Drive, Research Triangle Park, NC 27709-3995 | Nicolette.A.Weeks@ul.org, https://ulse.org/

Revision

BSR/UL 626-202X, Standard for Water Fire Extinguishers (revision of ANSI/UL 626-2025)

ULSE proposes revisions to the Standard for Water Fire Extinguishers, UL 626.

Single copy price: Free

Order from: https://csds.ul.com/ProposalAvailable

Send comments (copy psa@ansi.org) to: https://csds.ul.com/ProposalAvailable

Project Withdrawn

In accordance with clause 4.2.1.3.3 Discontinuance of a standards project of the ANSI Essential Requirements, an accredited standards developer may abandon the processing of a proposed new or revised American National Standard or portion thereof if it has followed its accredited procedures. The following projects have been withdrawn accordingly:

NEMA (ASC C37) (National Electrical Manufacturers Association)

1812 N. Moore Street, Rosslyn, Virginia 22209 | Connor.Grubbs@nema.org, www.nema.org

BSR/NEMA C37.58-202x, Indoor AC Medium-Voltage Switches for Use in Metal-Enclosed Switchgear - Conformance Test Procedures (revision and redesignation of ANSI C37.58-2003 (R2010))
Send comments (copy psa@ansi.org) to: Connor Grubbs < Connor.Grubbs@nema.org>

NEMA (ASC C37) (National Electrical Manufacturers Association)

1812 N. Moore Street, Rosslyn, Virginia 22209 | Connor.Grubbs@nema.org, www.nema.org

BSR/NEMA C37.85-202x, Alternating-Current High-Voltage Power Vacuum Interrupters - Safety Requirements for X-Radiation Limits (revision and redesignation of ANSI C37.85-2002 (R2010))
Send comments (copy psa@ansi.org) to: Connor Grubbs < Connor.Grubbs@nema.org>

30 Day Notice of Withdrawal: ANS 5 to 10 years past approval date

In accordance with clause 4.7.1 Periodic Maintenance of American National Standards of the ANSI Essential Requirements, the following American National Standards have not been reaffirmed or revised within the five-year period following approval as an ANS. Thus, they shall be withdrawn at the close of this 30-day public review notice in Standards Action.

AWS (American Welding Society)

8669 NW 36th Street, Suite 130, Miami, FL 33166-6672 | pportela@aws.org, www.aws.org

ANSI/AWS A5.9/A5.9M-2022 (ISO 14343-2017 MOD), Specification for Bare Stainless Steel Welding Electrodes and Rods (national adoption of ISO 14343:2017 with modifications and revision of ANSI/AWS A5.9/A5.9M:2017 (ISO 14343:2009 MOD))

Send comments (copy psa@ansi.org) to: Questions may be directed to: Peter Portela <ppportela@aws.org>

In accordance with clause 4.7.1 Periodic Maintenance of American National Standards of the ANSI Essential Requirements, the following American National Standards have not been reaffirmed or revised within the five-year period following approval as an ANS. Thus, they shall be withdrawn at the close of this 30-day public review notice in Standards Action.

AWS (American Welding Society)

8669 NW 36th Street, Suite 130, Miami, FL 33166-6672 | pportela@aws.org, www.aws.org

ANSI/AWS A5.01M/A5.01:2019 (ISO 14344:2010 MOD) (R2024), Welding and Brazing Consumables-Procurement of Filler Metals and Fluxes (reaffirm a national adoption ANSI/AWS A5.01M/A5.01:2019 (ISO 14344:2010 MOD))

Send comments (copy psa@ansi.org) to: Questions may be directed to: Peter Portela <ppportela@aws.org>

In accordance with clause 4.7.1 Periodic Maintenance of American National Standards of the ANSI Essential Requirements, the following American National Standards have not been reaffirmed or revised within the five-year period following approval as an ANS. Thus, they shall be withdrawn at the close of this 30-day public review notice in Standards Action.

AWS (American Welding Society)

8669 NW 36th Street, Suite 130, Miami, FL 33166-6672 | pportela@aws.org, www.aws.org

Notice of Withdrawal: ANS at least 10 years past approval date

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

ACCA (Air Conditioning Contractors of America)

1520 Belle View Boulevard, #5220, Alexandria, VA 22307 | david.bixby@acca.org, www.acca.org

ANSI/ACCA 5 QI-2015, HVAC Quality Installation Specifications (revision of ANSI/ACCA 5 QI-2010) Send comments (copy psa@ansi.org) to: David Bixby <david.bixby@acca.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

ADA (American Dental Association)

211 East Chicago Avenue, Chicago, IL 60611-2678 | stanfords@ada.org, www.ada.org

ANSI/ADA Standard No. 132-2015, Scanning Accuracy of Dental Chairside and Laboratory CAD/CAM Systems (new standard)

Send comments (copy psa@ansi.org) to: Sharon Stanford <stanfords@ada.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

AIAA (American Institute of Aeronautics and Astronautics)

12700 Sunrise Valley Drive, Suite 200, Reston, VA 20191-5807 | micheled@aiaa.org, www.aiaa.org

ANSI/AIAA S-102.2.4-2015, Capability-Based Product Failure Mode, Effects and Criticality Analysis (FMECA) Requirements (revision of ANSI/AIAA S-102.2.4-2008)

Send comments (copy psa@ansi.org) to: Michele Dominiak <micheled@aiaa.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

APCO (Association of Public-Safety Communications Officials-International)

351 N Williamson Blvd, Daytona Beach, FL 32114-1112 | smithr@apcointl.org, www.apcoIntl.org

ANSI/APCO 1.107.1-2015, Standard for the Establishment of a Quality Assurance and Quality Improvement Program for Public Safety Answering Points (new standard)

Send comments (copy psa@ansi.org) to: Rosi Smith <smithr@apcointl.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

APCO (Association of Public-Safety Communications Officials-International)

351 N Williamson Blvd, Daytona Beach, FL 32114-1112 | smithr@apcointl.org, www.apcoIntl.org

ANSI/APCO 1.110.1-2015, Multi-Functional Multi-Discipline Computer Aided Dispatch (CAD) Minimal Functional Requirments (new standard)

Send comments (copy psa@ansi.org) to: Rosi Smith <smithr@apcointl.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

APCO (Association of Public-Safety Communications Officials-International)

351 N Williamson Blvd, Daytona Beach, FL 32114-1112 | smithr@apcointl.org, www.apcoIntl.org

ANSI/APCO/NENA 3.105.1-2015, Minimum Training Standard for TTY/TDD Use in the Public Safety Communications Center (new standard)

Send comments (copy psa@ansi.org) to: Rosi Smith <smithr@apcointl.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

APCO (Association of Public-Safety Communications Officials-International)

351 N Williamson Blvd, Daytona Beach, FL 32114-1112 | smithr@apcointl.org, www.apcoIntl.org

ANSI/APCO 3.103.2-2015, Minimum Training Standards for Public Safety Telecommunicators (revision and redesignation of ANSI/APCO 3.103.1-2010)

Send comments (copy psa@ansi.org) to: Rosi Smith <smithr@apcointl.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

ASC X9 (Accredited Standards Committee X9, Incorporated)

275 West Street, Suite 107, Annapolis, MD 21401 | admin@x9.org, www.x9.org

ANSI X9.82-2-2015, X9.82-2 Random Number Generation - Part 2: Entrophy Sources (new standard) Send comments (copy psa@ansi.org) to: Steve Stevens <admin@x9.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

ASCE (American Society of Civil Engineers)

1801 Alexander Bell Drive, Reston, VA 20190 | tmetcalfe@asce.org, www.asce.org

ANSI/ASCE/EWRI 56-10/57-10-2014, Guidelines for the Physical Security of Water Utilities; Guidelines for the Physical Security of Wastewater/Stormwater Utilities (new standard)

Send comments (copy psa@ansi.org) to: Teresa Metcalfe <tmetcalfe@asce.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

ASME (American Society of Mechanical Engineers)

2 Park Avenue, 6th Floor, New York, NY 10016-5990 | vazquezm@asme.org, www.asme.org

ANSI/ASME PTC 12.5-2000 (R2015), Single Phase Heat Exchangers (reaffirmation of ANSI/ASME PTC 12.5-2000 (R2005))

Send comments (copy psa@ansi.org) to: Matt Vazquez <vazquezm@asme.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

ATCC (American Type Culture Collection)

217 Perry Parkway, Suite 1, Gaithersburg, MD 20877 | aday@atcc.org, www.atcc.org

ANSI/ATCC ASN-0001.1-2015, Standardization of in vitro Assays to Determine Anthrax Toxin Activities (revision and redesignation of ANSI/ATCC ASN-0001-2009)

Send comments (copy psa@ansi.org) to: Amber Day <aday@atcc.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

AVIXA (Audiovisual and Integrated Experience Association)

11242 Waples Mill Road, Suite 200, Fairfax, VA 22030 | lovercash@avixa.org, www.avixa.org

ANSI/CTA J-STD 710-2015, Audio, Video and Control Architectural Drawing Symbols Standard (new standard) Send comments (copy psa@ansi.org) to: Loanna Overcash <lovercash@avixa.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

AWS (American Welding Society)

8669 NW 36th Street, Suite 130, Miami, FL 33166-6672 | pportela@aws.org, www.aws.org

ANSI/AWS C4.6M (ISO 9013:2002)-2006 (R2012), Thermal Cutting - Classification of Thermal Cuts - Geometric Product Specification and Quality Tolerances (reaffirm a national adoption ANSI/AWS C4.6M (ISO 9013:2002) -2006)

Send comments (copy psa@ansi.org) to: Peter Portela <pportela@aws.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

AWS (American Welding Society)

8669 NW 36th Street, Suite 130, Miami, FL 33166-6672 | pportela@aws.org, www.aws.org

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

ECIA (Electronic Components Industry Association)

13873 Park Center Road, Suite 315, Herndon, VA 20171 | Idonohoe@ecianow.org, www.ecianow.org

ANSI/EIA 364-55-A-2008 (R2014), Current Cycling Test Procedure for Electrical Contacts, Connectors, and Sockets (reaffirmation of ANSI/EIA 364-55-A-2008)

Send comments (copy psa@ansi.org) to: Laura Donohoe <Idonohoe@ecianow.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

HPS (ASC N13) (Health Physics Society)

950 Herndon Parkway, Suite 450, Herndon, VA 20170 | awride-graney@burkinc.com, www.hps.org

ANSI N12.1-2015, Fissile Material Symbol (new standard)

Send comments (copy psa@ansi.org) to: Amy Wride-Graney <awride-graney@burkinc.com>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | d.ringle@ieee.org, www.ieee.org

 $ANSI/IEEE\ 14102-2010,\ Adoption\ of\ ISO/IEC\ 14102:2008\ Information\ Technology\ -\ Guideline\ for\ the\ Evaluation\ and\ Selection\ of\ CASE\ Tools\ (identical\ national\ adoption\ of\ ISO/IEC\ 14102:2008)$

Send comments (copy psa@ansi.org) to: Karen Evangelista <k.evangelista@ieee.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | d.ringle@ieee.org, www.ieee.org

ANSI/IEEE 14471-2010, Information Technology - Software Engineering - Guidelines for the Adoption of CASE Tools (identical national adoption of ISO/IEC TR14471)

Send comments (copy psa@ansi.org) to: David Ringle <d.ringle@ieee.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | d.ringle@ieee.org, www.ieee.org

ANSI/IEEE 14764-2006, Standard for Software Engineering - Software Life Cycle Processes - Maintenance (national adoption with modifications of ISO/IEC 14764:2006)

Send comments (copy psa@ansi.org) to: David Ringle <d.ringle@ieee.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | d.ringle@ieee.org, www.ieee.org

ANSI/IEEE 15026-2-2011, Systems and Software Engineering - Systems and software assurance - Part 2: Assurance case (identical national adoption of ISO/IEC 15026-2:2011)

Send comments (copy psa@ansi.org) to: David Ringle <d.ringle@ieee.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | d.ringle@ieee.org, www.ieee.org

ANSI/IEEE 15939-2008, Standard for Systems and Software Engineering - Measurement Process (national adoption with modifications of ISO/IEC 15939)

Send comments (copy psa@ansi.org) to: David Ringle <d.ringle@ieee.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | d.ringle@ieee.org, www.ieee.org

ANSI/IEEE 21451.7-2011, Information Technology - Smart Transducer Interface for Sensors and Actuators - Part 7: Transducers to Radio Frequency Identification (RFID) Systems Communication Protocols and Transducer Electronic Data Sheet Formats (identical national adoption of ISO/IEC/IEEE 21450:2010 and revision of ANSI/IEEE 1451.7-2010)

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | d.ringle@ieee.org, www.ieee.org

ANSI/IEEE 26513-2010, Systems and Software Engineering - Requirements for Testers and Reviewers of User Documentation (identical national adoption of ISO/IEC 26513:2009)

Send comments (copy psa@ansi.org) to: David Ringle <d.ringle@ieee.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | d.ringle@ieee.org, www.ieee.org

ANSI/IEEE 26514-2010, Systems and Software Engineering - Requirements for Designers (identical national adoption of ISO/IEC 26514:2008)

Send comments (copy psa@ansi.org) to: David Ringle <d.ringle@ieee.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | d.ringle@ieee.org, www.ieee.org

ANSI/IEEE 90003-2008, Software Engineering - Guidelines for the Application of ISO 9001:2000 to Computer Software (national adoption with modifications of ISO/IEC 90003:2004)

Send comments (copy psa@ansi.org) to: David Ringle <d.ringle@ieee.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | d.ringle@ieee.org, www.ieee.org

ANSI/IEEE 4-2013, Standard for High-Voltage Testing Techniques (new standard)

Send comments (copy psa@ansi.org) to: David Ringle <d.ringle@ieee.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | d.ringle@ieee.org, www.ieee.org

ANSI/IEEE 18-2012, Standard for Shunt Power Capacitors (new standard)

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | d.ringle@ieee.org, www.ieee.org

ANSI/IEEE 422-2012, Guide for the Design of Cable Raceway Systems for Electric Generating Facilities (new standard)

Send comments (copy psa@ansi.org) to: David Ringle <d.ringle@ieee.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | d.ringle@ieee.org, www.ieee.org

ANSI/IEEE 487.4-2013, Standard for the Electrical Protection of Communication Facilities Serving Electric Supply Locations Through the Use of Neutralizing Transformers (new standard)

Send comments (copy psa@ansi.org) to: David Ringle <d.ringle@ieee.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | d.ringle@ieee.org, www.ieee.org

ANSI/IEEE 487.5-2013, Standard for the Electrical Protection of Communication Facilities Serving Electric Supply Locations Through the Use of Isolation Transformers (new standard)

Send comments (copy psa@ansi.org) to: David Ringle <d.ringle@ieee.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | d.ringle@ieee.org, www.ieee.org

ANSI/IEEE 802.1AEbw-2013, Standard for Local and metropolitan area networks - Media Access Control (MAC) Security Amendment 2: Extended Packet Numbering (new standard)

Send comments (copy psa@ansi.org) to: David Ringle <d.ringle@ieee.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | d.ringle@ieee.org, www.ieee.org

ANSI/IEEE 802.15.4j-2013, Standard for Local and metropolitan area networks - Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs) - Amendment 4: Alternative Physical Layer Extension to Support Medical Body Area Network (MBAN) Services Operating in the 2360 MHz - 2400 MHz Band (new standard) Send comments (copy psa@ansi.org) to: David Ringle <d.ringle@ieee.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | d.ringle@ieee.org, www.ieee.org

ANSI/IEEE 1018-2013, Recommended Practice for Specifying Electric Submersible Pump Cable--Ethylene-Propylene Rubber Insulation (new standard)

Send comments (copy psa@ansi.org) to: David Ringle <d.ringle@ieee.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | d.ringle@ieee.org, www.ieee.org

ANSI/IEEE 1019-2013, Recommended Practice for Specifying Electric Submersible Pump Cable--Polypropylene Insulation (new standard)

Send comments (copy psa@ansi.org) to: David Ringle <d.ringle@ieee.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | d.ringle@ieee.org, www.ieee.org

ANSI/IEEE 1143-2012, Guide on Shielding Practice for Low Voltage Cables (new standard) Send comments (copy psa@ansi.org) to: David Ringle <d.ringle@ieee.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | d.ringle@ieee.org, www.ieee.org

ANSI/IEEE 1609.2-2013, Standard for Wireless Access in Vehicular Environments – Security Services for Applications and Management Messages (new standard)

Send comments (copy psa@ansi.org) to: David Ringle <d.ringle@ieee.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | d.ringle@ieee.org, www.ieee.org

ANSI/IEEE 1653.3-2012, Guide for Rail Transit Traction Power Systems Modeling (new standard) Send comments (copy psa@ansi.org) to: David Ringle <d.ringle@ieee.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | d.ringle@ieee.org, www.ieee.org

ANSI/IEEE 1671.2-2012, Standard for Automatic Test Markup Language (ATML) Instrument Description (new standard)

Send comments (copy psa@ansi.org) to: David Ringle <d.ringle@ieee.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | d.ringle@ieee.org, www.ieee.org

ANSI/IEEE 1727-2013, Guide for Working Procedures on Underground Transmission Circuits with Induced Voltage (new standard)

Send comments (copy psa@ansi.org) to: David Ringle <d.ringle@ieee.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | d.ringle@ieee.org, www.ieee.org

ANSI/IEEE 1785.1-2012, Standard for Rectangular Metallic Waveguides and Their Interfaces for Frequencies of 110 GHz and Above - Part 1: Frequency Bands and Waveguide Dimensions (new standard)

Send comments (copy psa@ansi.org) to: David Ringle <d.ringle@ieee.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | d.ringle@ieee.org, www.ieee.org

ANSI/IEEE 1793-2012, Guide for Planning and Designing Transition Facilities between Overhead and Underground Transmission Lines (new standard)

Send comments (copy psa@ansi.org) to: David Ringle <d.ringle@ieee.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | d.ringle@ieee.org, www.ieee.org

ANSI/IEEE 1816-2013, Guide for Preparation Techniques of Extruded Dielectric, Shielded Cables Rated 2.5 kV through 46 kV and the Installation of Mating Accessories (new standard)

Send comments (copy psa@ansi.org) to: David Ringle <d.ringle@ieee.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | d.ringle@ieee.org, www.ieee.org

ANSI/IEEE 1857-2013, Standard for Advanced Audio and Video Coding (new standard)

Send comments (copy psa@ansi.org) to: David Ringle <d.ringle@ieee.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | d.ringle@ieee.org, www.ieee.org

ANSI/IEEE 1905.1-2013, Standard for a Convergent Digital Home Network for Heterogeneous Technologies (new standard)

Send comments (copy psa@ansi.org) to: David Ringle <d.ringle@ieee.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | d.ringle@ieee.org, www.ieee.org

ANSI/IEEE 3001.8-2013, Recommended Practice for the Instrumentation and Metering of Industrial and Commercial Power Systems (new standard)

Send comments (copy psa@ansi.org) to: David Ringle <d.ringle@ieee.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | d.ringle@ieee.org, www.ieee.org

ANSI/IEEE 3004.1-2013, Recommended Practice for the Application of Instrument Transformers in Industrial and Commercial Power Systems (new standard)

Send comments (copy psa@ansi.org) to: David Ringle <d.ringle@ieee.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | d.ringle@ieee.org, www.ieee.org

ANSI/IEEE 3006.7-2013, Recommended Practice for Determining the Reliability of "24 x 7" Continuous Power Systems in Industrial and Commercial Facilities (new standard)

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | d.ringle@ieee.org, www.ieee.org

ANSI/IEEE 3006.9-2013, Recommended Practice for Collecting Data for Use in Reliability, Availability, and Maintainability Assessments of Industrial and Commercial Power Systems (new standard)

Send comments (copy psa@ansi.org) to: David Ringle <d.ringle@ieee.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | d.ringle@ieee.org, www.ieee.org

ANSI/IEEE 11073-10102-2012, Health informatics - Point-of-care medical device communication - Part 10102: Nomenclature - Annotated ECG (new standard)

Send comments (copy psa@ansi.org) to: David Ringle <d.ringle@ieee.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | d.ringle@ieee.org, www.ieee.org

ANSI/IEEE 62582-3-2012, Nuclear Power Plants - Instrumentation and control important to safety - Electrical equipment condition monitoring methods - Part 3: Elongation at break (new standard)

Send comments (copy psa@ansi.org) to: David Ringle <d.ringle@ieee.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | d.ringle@ieee.org, www.ieee.org

ANSI/IEEE C37.242-2013, Guide for Synchronization, Calibration, Testing, and Installation of Phasor Measurement Units (PMUs) for Power System Protection and Control (new standard)

Send comments (copy psa@ansi.org) to: David Ringle <d.ringle@ieee.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | d.ringle@ieee.org, www.ieee.org

ANSI/IEEE C37.244-2013, Guide for Phasor Data Concentrator Requirements for Power System Protection, Control, and Monitoring (new standard)

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | d.ringle@ieee.org, www.ieee.org

ANSI/IEEE C57.17-2012, Standard Requirements for Arc Furnace Transformers (new standard) Send comments (copy psa@ansi.org) to: David Ringle <d.ringle@ieee.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | d.ringle@ieee.org, www.ieee.org

ANSI/IEEE C57.143-2012, Guide for Application for Monitoring Equipment to Liquid-Immersed Transformers and Components (new standard)

Send comments (copy psa@ansi.org) to: Questions may be directed to: David Ringle <d.ringle@ieee.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | d.ringle@ieee.org, www.ieee.org

ANSI/IEEE C57.149-2012, Guide for the Application and Interpretation of Frequency Response Analysis for Oil-Immersed Transformers (new standard)

Send comments (copy psa@ansi.org) to: David Ringle <d.ringle@ieee.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | d.ringle@ieee.org, www.ieee.org

ANSI/IEEE C57.150-2012, Guide for the Transportation of Transformers and Reactors Rated 10 000 kVA or Higher (new standard)

Send comments (copy psa@ansi.org) to: David Ringle <d.ringle@ieee.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | d.ringle@ieee.org, www.ieee.org

ANSI/IEEE C62.37.1-2012, Guide for the Application of Thyristor Surge Protective Device Components (new standard)

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | d.ringle@ieee.org, www.ieee.org

ANSI/IEEE C62.39-2012, Standard for Test Methods and Preferred Values for Self-Restoring Current-Limiter Components Used in Telecommunication Surge Protection (new standard)

Send comments (copy psa@ansi.org) to: David Ringle <d.ringle@ieee.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | d.ringle@ieee.org, www.ieee.org

ANSI/IEEE C93.4-2012, Standard for Power-Line Carrier Line-Tuning Equipment (30 kHz to 500 kHz) Associated with Power Transmission Lines (new standard)

Send comments (copy psa@ansi.org) to: David Ringle <d.ringle@ieee.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | d.ringle@ieee.org, www.ieee.org

ANSI/IEEE 270-2006 (R2012), Standard Definitions for Selected Quantities, Units, and Related Terms, with Special Attention to the International System of Units (SI) (reaffirmation of ANSI/IEEE 270-2006) Send comments (copy psa@ansi.org) to: David Ringle <d.ringle@ieee.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | d.ringle@ieee.org, www.ieee.org

ANSI/IEEE 434-2006 (R2013), Guide for Functional Evaluation of Insulation Systems for AC Electric Machines Rated 2300 V and Above (reaffirmation of ANSI/IEEE 434-2006)

Send comments (copy psa@ansi.org) to: David Ringle <d.ringle@ieee.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | d.ringle@ieee.org, www.ieee.org

ANSI/IEEE 835-1994 (R2012), Standard Power Cable Ampacity Tables (reaffirmation of ANSI/IEEE 835-1994 (R2006))

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | d.ringle@ieee.org, www.ieee.org

ANSI/IEEE 1202-2006 (R2014), Standard for Flame-Propagation Testing of Wire & Cable (reaffirmation of ANSI/IEEE 1202-2006)

Send comments (copy psa@ansi.org) to: David Ringle <d.ringle@ieee.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | d.ringle@ieee.org, www.ieee.org

ANSI/IEEE 11073-30300-2004 (R2010), Standard for Health Informatics - Point-of-Care Medical Device Communication - Part 30300: Transport Profile - Infrared Wireless (reaffirmation and redesignation of ANSI/IEEE 1073.3.3-2004)

Send comments (copy psa@ansi.org) to: David Ringle <d.ringle@ieee.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | d.ringle@ieee.org, www.ieee.org

ANSI/IEEE 81-2012, Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Grounding System (revision of ANSI/IEEE 81-1983)

Send comments (copy psa@ansi.org) to: David Ringle <d.ringle@ieee.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | d.ringle@ieee.org, www.ieee.org

ANSI/IEEE 308-2012, Standard Criteria for Class 1E Power Systems for Nuclear Power Generating Stations (revision of ANSI/IEEE 308-2001 (R2007))

Send comments (copy psa@ansi.org) to: David Ringle <d.ringle@ieee.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | d.ringle@ieee.org, www.ieee.org

ANSI/IEEE 765-2012, Standard for Preferred Power Supply (PPS) for Nuclear Power Generating Stations (NPGS) (revision of ANSI/IEEE 765-2006)

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | d.ringle@ieee.org, www.ieee.org

ANSI/IEEE 1017-2013, Recommended Practice for Field Testing Electric Submersible Pump Cable (revision of ANSI/IEEE 1017-2004)

Send comments (copy psa@ansi.org) to: David Ringle <d.ringle@ieee.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | d.ringle@ieee.org, www.ieee.org

ANSI/IEEE 1067-2012, Guide for In-Service Use, Care, Maintenance, and Testing of Conductive Clothing for Use on Voltages up to 765 kV ac and ±750 kV dc (revision of ANSI/IEEE 1067-2005)

Send comments (copy psa@ansi.org) to: David Ringle <d.ringle@ieee.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | d.ringle@ieee.org, www.ieee.org

ANSI/IEEE 1149.1-2013, Standard for Test Access Port and Boundary-Scan Architecture (revision of ANSI/IEEE 1149.1-2001 (R2008))

Send comments (copy psa@ansi.org) to: David Ringle <d.ringle@ieee.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | d.ringle@ieee.org, www.ieee.org

ANSI/IEEE 1332-2012, Standard Reliability Program for the Development and Production of Electronic Products (revision of ANSI/IEEE 1332-2004)

Send comments (copy psa@ansi.org) to: David Ringle <d.ringle@ieee.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | d.ringle@ieee.org, www.ieee.org

ANSI/IEEE 1475-2012, Standard for the Functioning of Interfaces Among Propulsion, Friction Brake, and rain-Borne Master Control on Rail Rapid Transit Vehicles (revision of ANSI/IEEE 1475-1999 (R2005))
Send comments (copy psa@ansi.org) to: David Ringle <d.ringle@ieee.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | d.ringle@ieee.org, www.ieee.org

ANSI/IEEE 1641.1-2015, Guide for the Use of IEEE Std 1641, IEEE Standard for Signal and Test Definition Amendment to add Guidelines for producing reusable Test Signal Frameworks (TSFs) for use on platforms utilizing Automatic Test Markup Language (ATML) (revision of ANSI/IEEE 1641.1-2005)
Send comments (copy psa@ansi.org) to: David Ringle <d.ringle@ieee.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | d.ringle@ieee.org, www.ieee.org

ANSI/IEEE C37.20.4-2013, Standard for Indoor AC Switches (1 kV to 38 kV) for Use in Metal-Enclosed Switchgear (revision of ANSI/IEEE C37.20.4-2001 (R2006))

Send comments (copy psa@ansi.org) to: David Ringle <d.ringle@ieee.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | d.ringle@ieee.org, www.ieee.org

ANSI/IEEE C37.96-2012, Guide for AC Motor Protection (revision of ANSI/IEEE C37.96-2000 (R2006)) Send comments (copy psa@ansi.org) to: David Ringle <d.ringle@ieee.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | d.ringle@ieee.org, www.ieee.org

ANSI/IEEE C37.99-2012, Guide for the Protection of Shunt Capacitor Banks (revision of ANSI/IEEE C37.99-2000 (R2006))

Send comments (copy psa@ansi.org) to: David Ringle <d.ringle@ieee.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | d.ringle@ieee.org, www.ieee.org

ANSI/IEEE C37.111-2013, Measuring relays and protection equipment - Part 24: Common format for transient data exchange (COMTRADE) for power systems (revision of ANSI/IEEE C37.111-1999 (R2004))

Send comments (copy psa@ansi.org) to: David Ringle <d.ringle@ieee.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | d.ringle@ieee.org, www.ieee.org

ANSI/IEEE C57.19.100-2012, Guide for Application of Power Apparatus Bushings (revision of ANSI/IEEE C57.19.100-1995 (R2003))

Send comments (copy psa@ansi.org) to: David Ringle <d.ringle@ieee.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | d.ringle@ieee.org, www.ieee.org

ANSI/IEEE C57.152-2013, Guide for Diagnostic Field Testing of Fluid-Filled Power Transformers, Regulators, and Reactors

(revision and redesignation of ANSI/IEEE 62-1995 (R2005))

Send comments (copy psa@ansi.org) to: David Ringle <d.ringle@ieee.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

IEEE (Institute of Electrical and Electronics Engineers)

445 Hoes Lane, Piscataway, NJ 08854-4141 | d.ringle@ieee.org, www.ieee.org

ANSI/IEEE C62.92.3-2012, Guide for the Application of Neutral Grounding in Electrical Utility Systems, Part III - Generator Auxiliary Systems (revision of ANSI/IEEE C62.92.3-1993 (R2005))

Send comments (copy psa@ansi.org) to: David Ringle <d.ringle@ieee.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

ISA (International Society of Automation)

3252 S. Miami Blvd, Suite 102, Durham, NC 27703 | ebrazda@isa.org, www.isa.org

ANSI/ISA 95.00.06-2014, Enterprise-Control System Integration - Part 6: Messaging Service Model (new standard)

Send comments (copy psa@ansi.org) to: Eliana Brazda <ebrazda@isa.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

ISA (International Society of Automation)

3252 S. Miami Blvd, Suite 102, Durham, NC 27703 | ebrazda@isa.org, www.isa.org

ANSI/ISA 101.01-2015, Human Machine Interfaces for Process Automation Systems (new standard) Send comments (copy psa@ansi.org) to: Eliana Brazda <ebrazda@isa.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

ISA (International Society of Automation)

3252 S. Miami Blvd, Suite 102, Durham, NC 27703 | ebrazda@isa.org, www.isa.org

ANSI/ISA 77.43.01-2014, Fossil Fuel Power Plant Unit/Plant Demand Development (revision of ANSI/ISA S77.43.01-1994 (R2008))

Send comments (copy psa@ansi.org) to: Eliana Brazda <ebrazda@isa.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

ISA (International Society of Automation)

3252 S. Miami Blvd, Suite 102, Durham, NC 27703 | ebrazda@isa.org, www.isa.org

ANSI/ISA 77.70.02-2014, Fossil Fuel Power Plant Instrument Piping Installation (revision of ANSI/ISA 77.70.02 -2005 (R2010))

Send comments (copy psa@ansi.org) to: Eliana Brazda <ebrazda@isa.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

LIA (Z136 SDC) (The Laser Institute)

12001 Research Parkway, Suite 210, Orlando, FL 32828 | jmccormack@lia.org, www.laserinstitute.org

ANSI Z136.6-2015, Standard for Safe Use of Lasers Outdoors (revision of ANSI Z136.6-2005) Send comments (copy psa@ansi.org) to: John McCormack < jmccormack@lia.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

NAAMM (National Association of Architectural Metal Manufacturers)

114 Whiting Street, Norfolk, VA 23505 | jeffc@cmservices.com, www.naamm.org

ANSI/NAAMM HMMA 861-2014, Guide Specifications for Commercial Hollow Metal Doors and Frames (revision of ANSI/NAAMM HMMA 861-2006)

Send comments (copy psa@ansi.org) to: Jeff Church <jeffc@cmservices.com>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

NASPO (North American Security Products Organization)

1300 | Street, NW, Suite 400E, Washington, DC 20005 | mikeo@naspo.info, www.naspo.info

ANSI/NASPO SD 01-2014, Minimum security requirements for security documents (new standard) Send comments (copy psa@ansi.org) to: Michael O'Neil <mikeo@naspo.info>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

NECA (National Electrical Contractors Association)

1201 Pennsylvania Avenue, Suite 1200, Washington, DC 20004 | Jeff.Noren@NECAnet.org, www.neca-neis.org

ANSI/NECA 408-2015, Standard for Installing and Maintaining Busways (revision of ANSI/NECA 408-2009) Send comments (copy psa@ansi.org) to: Jeff Noren < Jeff.Noren@NECAnet.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

NECA (National Electrical Contractors Association)

1201 Pennsylvania Avenue, Suite 1200, Washington, DC 20004 | Jeff.Noren@NECAnet.org, www.neca-neis.org

ANSI/NECA 409-2015, Standard for Installing and Maintaining Dry-Type Transformers (revision of ANSI/NECA 409-2009)

Send comments (copy psa@ansi.org) to: Jeff Noren <Jeff.Noren@NECAnet.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

NECA (National Electrical Contractors Association)

1201 Pennsylvania Avenue, Suite 1200, Washington, DC 20004 | Jeff.Noren@NECAnet.org, www.neca-neis.org

ANSI/NECA 411-2014, Standard for Installing and Maintaining Uninterruptible Power Supplies (UPS) (revision of ANSI/NECA 411-2006)

Send comments (copy psa@ansi.org) to: Jeff Noren <Jeff.Noren@NECAnet.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

NENA (National Emergency Number Association)

1700 Diagonal Road Suite 500, Suite 500, Alexandria, VA 22314 | crm@nena.org, www.nena.org

ANSI/APCO/NENA 1.105.2-2015, Standard for Telecommunicator Emergency Response Taskforce (TERT) Deployment (revision and redesignation of ANSI/APCO/NENA 1.105.1-2009)
Send comments (copy psa@ansi.org) to: Rosi Smith <smithr@apcointl.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

NISO (National Information Standards Organization)

3600 Clipper Mill Road, Suite 302, Baltimore, MD 21211 | tcarpenter@niso.org, www.niso.org

ANSI/NISO Z39.14-1997 (R2015), Guidelines for Abstracts (reaffirmation of ANSI/NISO Z39.14-1997 (R2009)) Send comments (copy psa@ansi.org) to: Todd Carpenter <tcarpenter@niso.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

NISO (National Information Standards Organization)

3600 Clipper Mill Road, Suite 302, Baltimore, MD 21211 | tcarpenter@niso.org, www.niso.org

ANSI/NISO Z39.93-2014, Standardized Usage Statistics Harvesting Initiative (SUSHI) Protocol (revision of ANSI/NISO Z39.93-2013)

Send comments (copy psa@ansi.org) to: Todd Carpenter <tcarpenter@niso.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

NISO (National Information Standards Organization)

3600 Clipper Mill Road, Suite 302, Baltimore, MD 21211 | tcarpenter@niso.org, www.niso.org

ANSI/NISO Z39.50-2003 (S2014), Information Retrieval: Application Service Definition & Protocol Specification (stabilized maintenance of ANSI/NISO Z39.50-2003 (R2009))

Send comments (copy psa@ansi.org) to: Todd Carpenter <tcarpenter@niso.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

NISO (National Information Standards Organization)

3600 Clipper Mill Road, Suite 302, Baltimore, MD 21211 | tcarpenter@niso.org, www.niso.org

ANSI/NISO Z39.89-2003 (S2014), The U.S. National Z39.50 Profile for Library Applications (stabilized maintenance of ANSI/NISO Z39.89-2003 (R2009))

Send comments (copy psa@ansi.org) to: Todd Carpenter <tcarpenter@niso.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

NWRA (ASC Z245) (National Waste & Recycling Association)

1550 Crystal Drive, Suite #804, Arlington, VA 22202 | ksander@wasterecycling.org, www.wasterecycling.org

ANSI Z245.41-2015, Equipment Technology and Operations for Wastes and Recyclable Materials - Facilities for the Processing of Commingled Recyclable Materials - Safety Requirements (revision of ANSI Z245.41-2008) Send comments (copy psa@ansi.org) to: Kirk Sander ksander@wasterecycling.org

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

OEOSC (ASC OP) (Optics and Electro-Optics Standards Council)

75 Barett Drive, #1190, Webster, NY 14580 | paugino@optimaxsi.com, www.0EOSC.org

ANSI/OEOSC OP3.001-2001 (R2014), Standard For Optics and Electro-Optical Instruments - Optical Glass (reaffirmation of ANSI/OEOSC OP3.001-2001 (R2008))

Send comments (copy psa@ansi.org) to: Patrick Augino <paugino@optimaxsi.com>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

SAE (SAE International)

755 West Big Beaver Road, Suite 1600, Troy, MI 48084 | Jana.light@sae.org, www.sae.org

ANSI/SAE/ISO 9244-2010, Earth Moving Machinery - Product Safety Labels - General Principles (identical national adoption of ISO 9244 and revision of ANSI/SAE/ISO 9244-2009)

Send comments (copy psa@ansi.org) to: Jana Light < Jana.light@sae.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

SMACNA (Sheet Metal and Air-Conditioning Contractors National Association)

4201 Lafayette Center Drive, Chantilly, VA 20151-1219□ | ehoward@smacna.org, www.smacna.org

ANSI/SMACNA 022-2015, Phenolic Duct Construction Standards (new standard)

Send comments (copy psa@ansi.org) to: Eli Howard <ehoward@smacna.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

TIA (Telecommunications Industry Association)

1320 North Courthouse Road, Suite 200, Arlington, VA 22201-2598 | tjenkins@tiaonline.org, www.tiaonline.org

ANSI/TIA 1005-A-1-2015, Telecommunications Infrastructure Standard for Industrial Premises Addendum 1, M12 -8 X-coding Connector (addenda to ANSI/TIA 1005-A-2012)

Send comments (copy psa@ansi.org) to: Teesha Jenkins <tjenkins@tiaonline.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

TIA (Telecommunications Industry Association)

1320 North Courthouse Road, Suite 200, Arlington, VA 22201-2598 | tjenkins@tiaonline.org, www.tiaonline.org

ANSI/TIA 455-243-2010 (R2015), FOTP-243 Polarization-Mode Dispension Measurement for Installed Single-Mode Optical Fibers by Wavelength-Scanning OTDR and States-of-Polarization Analysis (reaffirmation of ANSI/TIA 455-243-2010)

Send comments (copy psa@ansi.org) to: Teesha Jenkins <tjenkins@tiaonline.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

TIA (Telecommunications Industry Association)

1320 North Courthouse Road, Suite 200, Arlington, VA 22201-2598 | tjenkins@tiaonline.org, www.tiaonline.org

ANSI/TIA 912-C-2015, Telecommunications - IP Telephony Equipment - Voice Gateway Transmission Requirements (revision and redesignation of ANSI/TIA 912-B-2007)
Send comments (copy psa@ansi.org) to: Teesha Jenkins <tjenkins@tiaonline.org>

Call for Comment on Standards Proposals

Notice of Withdrawal: ANS at least 10 years past approval date

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

TIA (Telecommunications Industry Association)

1320 North Courthouse Road, Suite 200, Arlington, VA 22201-2598 | tjenkins@tiaonline.org, www.tiaonline.org

ANSI/TIA 1063-A-2015, Telecommunications - User Premises Equipment - Analog Telephone Port Requirements for Packet-based User Premises Terminal Adapters (revision and redesignation of ANSI/TIA 1063-2007) Send comments (copy psa@ansi.org) to: Teesha Jenkins <tjenkins@tiaonline.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

TIA (Telecommunications Industry Association)

1320 North Courthouse Road, Suite 200, Arlington, VA 22201-2598 | tjenkins@tiaonline.org, www.tiaonline.org

ANSI/TIA 968-B-2-2015, Telecommunications - Telephone Terminal Equipment - Technical Requirements for Connection of Terminal Equipment to the Telephone Network - Addendum 2 (supplement to ANSI/TIA 968-B-1 -2012)

Send comments (copy psa@ansi.org) to: Teesha Jenkins <tjenkins@tiaonline.org>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

USEMCSC (United States EMC Standards Corp.)

32515 Nottingham Court, P.O. Box 367, Lindstrom, MN 55045 | danhoolihanemc@aol.com

ANSI C63.7-2015, Standard Guide for Construction of Test Sites for Performing Radiated Emission Measurements (revision of ANSI C63.7-2005)

Send comments (copy psa@ansi.org) to: Daniel Hoolihan <danhoolihanemc@aol.com>

The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

USEMCSC (United States EMC Standards Corp.)

32515 Nottingham Court, P.O. Box 367, Lindstrom, MN 55045 | danhoolihanemc@aol.com

ANSI C63.12-2015, Standard Recommended Practice for Electromagnetic Compatibility Limits and Test Levels (revision of ANSI C63.12-1999 (R2007))

Send comments (copy psa@ansi.org) to: Daniel Hoolihan <danhoolihanemc@aol.com>

Final Actions on American National Standards

The standards actions listed below have been approved by the ANSI Board of Standards Review (BSR) or by an ANSI-Audited Designator, as applicable.

AAFS (American Academy of Forensic Sciences)

410 North 21st Street, Colorado Springs, CO 80904 | tambrosius@aafs.org, www.aafs.org

ANSI/ASB Std 124-2025, Minimum Requirements and Recommendations for a Firearm and Toolmark Examiner Training Program (new standard) Final Action Date: 10/3/2025 | New Standard

AGA (ASC Z380) (American Gas Association)

400 North Capitol Street, NW, Suite 450, Washington, DC 20001 | lescobar@aga.org, www.aga.org

ANSI/GPTC Z380.1-2025, Guide for Transmission, Distribution and Gathering Piping Systems (revision, redesignation and consolidation of ANSI GPTC Z380.1-2022) Final Action Date: 10/3/2025 | Revision

ALI (Automotive Lift Institute)

PO Box 85, 3699 Luker Road , Cortland, NY 13045 | heather@autolift.org, www.autolift.org

ANSI/ALI ALCTV-2025, Standards for Automotive Lifts - Safety Requirements for Construction, Testing, and Validation (revision and redesignation of ANSI/ALI ALCTV-2017) Final Action Date: 10/1/2025 | Revision

ANS (American Nuclear Society)

1111 Pasquinelli Drive, Suite 350, Westmont, IL 60559 | kmurdoch@ans.org, www.ans.org

ANSI/ANS 56.8-2020 (R2025), Containment System Leakage Testing Requirements (reaffirmation of ANSI/ANS 56.8 -2020) Final Action Date: 10/6/2025 | Reaffirmation

ASABE (American Society of Agricultural and Biological Engineers)

2590 Niles Road, Saint Joseph, MI 49085 | stell@asabe.org, https://www.asabe.org/

ANSI/ASABE/ISO 5700:2025 OCT2025, Tractors for agriculture and forestry - Roll-over protective structures - Static test method and acceptance conditions (revision and redesignation of ANSI/ASABE/ISO 5700-2013 SEP2017 (R2022)) Final Action Date: 10/6/2025 | Revision

ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.)

180 Technology Parkway, Peachtree Corners, GA 30092 | mweber@ashrae.org, www.ashrae.org

ANSI/ASHRAE Addendum 62.1aa-2022, Ventilation and Acceptable Indoor Air Quality (addenda to ANSI/ASHRAE Standard 62.1-2022) Final Action Date: 9/30/2025 | *Addenda*

ANSI/ASHRAE Addendum 62.1f-2022, Ventilation and Acceptable Indoor Air Quality (addenda to ANSI/ASHRAE Standard 62.1-2022) Final Action Date: 9/30/2025 | Addenda

ANSI/ASHRAE Addendum 62.1h-2022, Ventilation and Acceptable Indoor Air Quality (addenda to ANSI/ASHRAE Standard 62.1-2022) Final Action Date: 9/30/2025 | *Addenda*

ANSI/ASHRAE Addendum 62.1v-2022, Ventilation and Acceptable Indoor Air Quality (addenda to ANSI/ASHRAE Standard 62.1-2022) Final Action Date: 9/30/2025 | *Addenda*

ANSI/ASHRAE Addendum 62.1w-2022, Ventilation and Acceptable Indoor Air Quality (addenda to ANSI/ASHRAE Standard 62.1-2022) Final Action Date: 9/30/2025 | *Addenda*

ANSI/ASHRAE Addendum 62.1y-2022, Ventilation and Acceptable Indoor Air Quality (addenda to ANSI/ASHRAE Standard 62.1-2022) Final Action Date: 9/30/2025 | *Addenda*

Final Actions on American National Standards

ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.)

180 Technology Parkway, Peachtree Corners, GA 30092 | mweber@ashrae.org, www.ashrae.org

ANSI/ASHRAE Addendum 62.1z-2022, Ventilation and Acceptable Indoor Air Quality (addenda to ANSI/ASHRAE Standard 62.1-2022) Final Action Date: 9/30/2025 | Addenda

ANSI/ASHRAE Addendum b to ANSI/ASHRAE Standard 90.4-2022, Energy Standard for Data Centers (addenda to ANSI/ASHRAE Standard 90.4-2022) Final Action Date: 9/30/2025 | Addenda

ANSI/ASHRAE Addendum f to ANSI/ASHRAE Standard 15.2-2024, Safety Standard for Refrigeration Systems in Residential Applications (addenda to ANSI/ASHRAE Standard 15.2-2022) Final Action Date: 9/30/2025 | Addenda

ANSI/ASHRAE Addendum j to ANSI/ASHRAE Standard 15-2024, Safety Standard for Refrigeration Systems (addenda to ANSI/ASHRAE Standard 15-2022) Final Action Date: 9/30/2025 | Addenda

ANSI/ASHRAE Addendum o to ANSI/ASHRAE Standard 15-2024, Safety Standard for Refrigeration Systems (addenda to ANSI/ASHRAE Standard 15-2022) Final Action Date: 9/30/2025 | Addenda

ANSI/ASHRAE Standard 110-2016 (R2025), Method of Testing Performance of Laboratory Fume Hoods (reaffirmation of ANSI/ASHRAE Standard 110-2016) Final Action Date: 9/30/2025 | Reaffirmation

ASME (American Society of Mechanical Engineers)

Two Park Avenue, M/S 6-2B, New York, NY 10016-5990 | ansibox@asme.org, www.asme.org

ANSI/ASME IAM-1-2025, Investment Analysis Guidelines for Manufacturing (new standard) Final Action Date: 9/29/2025 | New Standard

ASTM (ASTM International)

100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 | accreditation@astm.org, www.astm.org

ANSI/ASTM E18-2025, Test Methods for Rockwell Hardness of Metallic Materials (revision of ANSI/ASTM E18-2024) Final Action Date: 9/15/2025 | Revision

AWS (American Welding Society)

8669 NW 36th Street, Suite 130, Miami, FL 33166-6672 | kbulger@aws.org, www.aws.org

ANSI/AWS A5.14/A5.14M-2025, Specification for Nickel and Nickel-Alloy Bare Welding Electrodes and Rods (revision of ANSI/AWS A5.14/A5.14M-2023) Final Action Date: 9/30/2025 | Revision

ANSI/AWS A5.34/A5.34M-2025, Specification for Nickel-Alloy Flux Cored and Metal Cored Welding Electrodes (revision of ANSI/AWS A5.34/A5.34M-2020) Final Action Date: 9/30/2025 | Revision

AWWA (American Water Works Association)

6666 W. Quincy Avenue, Denver, CO 80235 | mrohr@awwa.org, www.awwa.org

ANSI/AWWA C800-2025, Underground Service Line Valves and Fittings (revision of ANSI/AWWA C800-2021) Final Action Date: 10/2/2025 | *Revision*

BHMA (Builders Hardware Manufacturers Association)

529 14th Street NW, Suite 1280, Washington, DC 20045 | agambrall@kellencompany.com, www.buildershardware.com

ANSI/BHMA A156.1-2025, Standard for Butts and Hinges (revision of ANSI/BHMA A156.1-2021) Final Action Date: 10/6/2025 | Revision

ANSI/BHMA A156.44-2025, Standard for Hardware for Architectural Glass Openings (revision of ANSI/BHMA A156.44 -2021) Final Action Date: 10/6/2025 | Revision

BOMA (Building Owners and Managers Association)

1101 15th Street, NW, Suite 800, Washington, DC 20005 | education@boma.org, www.boma.org

ANSI/BOMA Z65.5-2025, BOMA 2025 for Retail Properties Standard Method of Measurement (revision of ANSI/BOMA Z65.5-2020) Final Action Date: 10/1/2025 | Revision

ISEA (ASC Z87) (International Safety Equipment Association)

1101 Wilson Boulevard, Suite 1425, Arlington, VA 22209 | djones@safetyequipment.org, www.safetyequipment.org

ANSI ISEA Z87.1-2025, Occupational and Educational Personal Eye and Face Protection Devices (revision of ANSI ISEA Z87.1-2020) Final Action Date: 10/1/2025 | Revision

NEMA (ASC C80) (National Electrical Manufacturers Association)

1300 North 17th Street, Suite 900, Rosslyn, VA 22209 | david.richmond@nema.org, www.nema.org

ANSI C80.6-2025, Electrical Intermediate Metal Conduit (EIMC) (revision of ANSI C80.6-2018) Final Action Date: 10/1/2025 | Revision

NEMA (National Electrical Manufacturers Association)

1812 N Moore Street, Suite 2200, Arlington, VA 22209 | mike.leibowitz@nema.org, www.nema.org

ANSI/MG 10011-2025, Power Index Calculation Procedure - Standard Rating Methodology for Motors, Power Drive Systems, and Complete Drive Modules (new standard) Final Action Date: 9/30/2025 | New Standard

NFPA (National Fire Protection Association)

One Batterymarch Park, Quincy, MA 02169 | dbellis@nfpa.org, www.nfpa.org

ANSI/NFPA 10-2026, Standard on Portable Fire Extinguishers (revision of ANSI/NFPA 10-2022) Final Action Date: 9/9/2025 | *Revision*

ANSI/NFPA 25-2026, Standard for the Inspection, Testing, and Maintenance of Water-Based Fire Protection Systems (revision of ANSI/NFPA 25-2023) Final Action Date: 9/9/2025 | Revision

ANSI/NFPA 70-2026, National Electrical Code® (revision of ANSI/NFPA 70®-2023) Final Action Date: 9/9/2025 | Revision

ANSI/NFPA 130-2026, Standard for Fixed Guideway Transit and Passenger Rail Systems (revision of ANSI/NFPA 130 -2023) Final Action Date: 9/9/2025 | Revision

ANSI/NFPA 855-2026, Standard for the Installation of Stationary Energy Storage Systems (revision of ANSI/NFPA 855-2023) Final Action Date: 9/9/2025 | Revision

ANSI/NFPA 1194-2026, Standard for Recreational Vehicle Parks and Campgrounds (revision of ANSI/NFPA 1194-2021) Final Action Date: 11/5/2024 | Revision

ANSI/NFPA 1850-2026, Standard on Protective Ensembles for Structural and Proximity Firefighting and Self-Contained Breathing Apparatus (SCBA) (revision, redesignation and consolidation of ANSI/NFPA 1851-2020 and ANSI/NFPA 1852 -2019) Final Action Date: 9/9/2025 | *Revision*

NSF (NSF International)

789 N. Dixboro Road, Ann Arbor, MI 48105 | mmilla@nsf.org, www.nsf.org

ANSI/NSF 14-2025 (i152r1), Plastics Piping System Components and Related Materials (revision of ANSI/NSF 14-2024) Final Action Date: 10/1/2025 | Revision

NSF (NSF International)

789 N. Dixboro Road, Ann Arbor, MI 48105 | cleone@nsf.org, www.nsf.org

ANSI/NSF/CAN 61-2025 (i193r1), Drinking Water System Components - Health Effects (revision of ANSI/NSF/CAN 61-2024) Final Action Date: 9/26/2025 | Revision

ANSI/NSF/CAN 61-2025 (i198r1), Drinking Water System Components - Health Effects (revision of ANSI/NSF/CAN 61-2024) Final Action Date: 10/2/2025 | Revision

RESNET (Residential Energy Services Network, Inc.)

P.O. Box 4561, Oceanside, CA 92052 | rick.dixon@resnet.us, www.resnet.us.com

ANSI/RESNET/ICC 1450-2025, Remote Virtual Inspection for Energy and Water Performance of Buildings (new standard) Final Action Date: 9/29/2025 | *New Standard*

TIA (Telecommunications Industry Association)

1320 North Courthouse Road, Suite 200, Arlington, VA 22201-2598 | tjenkins@tiaonline.org, www.tiaonline.org

ANSI/TIA 322-A-1-2025, Loading, Analysis, and Design Criteria Related to the Installation, Alteration and Maintenance of Communication Structures - Addendum 1 (addenda to ANSI/TIA 322-A-2023) Final Action Date: 10/1/2025 | Addenda

ULSE (UL Standards and Engagement)

12 Laboratory Drive, Research Triangle Park, NC | akhira.watson@ul.org, https://ulse.org/

ANSI/UL 248-21-2025, Standard for Low-Voltage Fuses - Part 21: Fuses for the Protection of Batteries and Battery Systems (new standard) Final Action Date: 10/1/2025 | New Standard

ANSI/UL 1004-9-2021 (R2025), Form Wound and Medium Voltage Rotating Electrical Machines (reaffirmation of ANSI/UL 1004-9-2021) Final Action Date: 10/3/2025 | Reaffirmation

ANSI/UL 2040-2015 (R2025), Standard for Safety for Folding Rollaway Tables (reaffirmation of ANSI/UL 2040-2015 (R2020)) Final Action Date: 10/3/2025 | Reaffirmation

ANSI/UL 854-2024 (R2025), Standard for Safety for Service-Entrance Cables (revision of ANSI/UL 854-2024) Final Action Date: 9/29/2025 | Revision

ANSI/UL 987-2025, Standard for Safety for Stationary and Fixed Electric Tools (revision of ANSI/UL 987-2020 (R2025)) Final Action Date: 9/30/2025 | *Revision*

ANSI/UL 60947-1-2025, Standard for Low-Voltage Switchgear and Controlgear - Part 1: General Rules (revision of ANSI/UL 60947-1-2022) Final Action Date: 9/30/2025 | *Revision*

Call for Members (ANS Consensus Bodies)

Directly and materially interested parties who wish to participate as a member of an ANS consensus body for the standards listed are requested to contact the sponsoring developer directly in a timely manner.

ANSI Accredited Standards Developer

INCITS Executive Board – ANSI Accredited SDO and US TAG to ISO/IEC JTC 1, Information Technology

The InterNational Committee for Information Technology Standards (INCITS), an ANSI accredited SDO, is the forum of choice for information technology developers, producers and users for the creation and maintenance of formal de jure IT standards. INCITS' mission is to promote the effective use of Information and Communication Technology through standardization in a way that balances the interests of all stakeholders and increases the global competitiveness of the member organizations.

The INCITS Executive Board serves as the consensus body with oversight of its 40+ Technical Committees. Additionally, the INCITS Executive Board has the international leadership role as the US Technical Advisory Group (TAG) to ISO/IEC JTC 1, Information Technology.

Membership in the INCITS Executive Board is open to all directly and materially interested parties in accordance with INCITS membership rules. To find out more about participating on the INCITS Executive Board, contact Jennifer Garner at jgarner@itic.org or visit http://www.incits.org/participation/membership-info for more information. Membership in all interest categories is always welcome; however, the INCITS Executive Board seeks to broaden its membership base in the following underrepresented categories:

- · Producer-Software
- · Producer-Hardware
- · Distributor
- Service Provider
- Users
- Consultants
- Government
- SDO and Consortia Groups
- · Academia
- General Interest

ANSI Accredited Standards Developer

SCTE (Society of Cable Telecommunications Engineers)

SCTE, an ANSI-accredited SDO, is the primary organization for the creation and maintenance of standards for the cable telecommunications industry. SCTE's standards mission is to develop standards that meet the needs of cable system operators, content providers, network and customer premises equipment manufacturers, and all others who have an interest in the industry through a fair, balanced and transparent process.

SCTE is currently seeking to broaden the membership base of its ANS consensus bodies and is interested in new members in all membership categories to participate in new work in fiber-optic networks, advanced advertising, 3D television, and other important topics. Of particular interest is membership from the content (program and advertising) provider and user communities.

Membership in the SCTE Standards Program is open to all directly and materially affected parties as defined in SCTE's membership rules and operating procedures.

More information is available at www.scte.org or by e-mail from standards@scte.org.

ANSI Accredited Standards Developer

AAMI - Association for the Advancement of Medical Instrumentation

AAMI Blood Pressure Monitoring (BP) Committee is seeking additional members from user, regulatory, and general interest categories to participate in the reaffirmation and future revision of AAMI BP22-1994 (R2016), Blood pressure transducers. AAMI's stakeholder category definitions are outlined in Section 4.5.1.2 of the AAMI Standards Program Policies and Procedures, available here. You may submit your request to join this committee here. Please direct inquiries to: Ladan Bulookbashi lbulookbashi@aami.org.

AAMI Transcutaneous Electrical Stimulator (NS-WG03) Working Group is seeking additional members from industry, regulatory, user and general interest categories to participate in the reaffirmation and future revision of AAMI NS4-2013 (R2017), Transcutaneous electrical nerve stimulators. AAMI's stakeholder category definitions are outlined in Section <u>4.5.1.2</u> of the *AAMI Standards Program Policies and Procedures*, available here. You may submit your request to join this committee here. Please direct inquiries to: Ladan Bulookbashi@aami.org.

AAMI EC_ECG Committee is seeking additional members from user, regulatory and general interest categories to participate in the reaffirmation and potential revisions of ANSI/AAMI EC12 ED3:2000, Disposable ECG electrodes; ANSI/AAMI EC53 ED2:2013, ECG trunk cables and patient leadwires; and ANSI/AAMI EC57 ED3:2012, Testing and reporting performance results of cardiac rhythm and ST segment measurement algorithms. AAMI's stakeholder category definitions are outlined in Section 4.5.1.2 of the AAMI Standards Program Policies and Procedures, available here. You may submit your request to join this committee here. Please direct inquiries to: Ladan Bulookbashi bulookbashi@aami.org.

AAMI (Association for the Advancement of Medical Instrumentation)

901 N. Glebe Road, Suite 300, Arlington, VA 22203 | LBulookbashi@aami.org, www.aami.org
BSR/AAMI BP22-1994 (R202x), Blood pressure transducers (reaffirmation of ANSI/AAMI BP22-1994 (R2016))

AAMI (Association for the Advancement of Medical Instrumentation)

901 N. Glebe Road, Suite 300, Arlington, VA 22203 | LBulookbashi@aami.org, www.aami.org
BSR/AAMI EC12-2000 (R202x), Disposable ECG electrodes (reaffirmation of ANSI/AAMI EC12-2000 (R2020))

AAMI (Association for the Advancement of Medical Instrumentation)

901 N. Glebe Road, Suite 300, Arlington, VA 22203 | LBulookbashi@aami.org, www.aami.org

BSR/AAMI EC53-2013 (R202x), ECG trunk cables and patient leadwires (reaffirmation of ANSI/AAMI EC53-2013 (R2020))

AAMI (Association for the Advancement of Medical Instrumentation)

901 N. Glebe Road, Suite 300, Arlington, VA 22203 | LBulookbashi@aami.org, www.aami.org

BSR/AAMI EC57-2012 (R202x), Testing and reporting performance results of cardiac rhythm and ST segment measurement algorithms (reaffirmation of ANSI/AAMI EC57-2012 (R2020))

AAMI (Association for the Advancement of Medical Instrumentation)

901 N. Glebe Road, Suite 300, Arlington, VA 22203 | LBulookbashi@aami.org, www.aami.org

BSR/AAMI NS4-2013 (R202x), Transcutaneous electrical nerve stimulators (reaffirmation of ANSI/AAMI NS4-2013 (R2017))

ABYC (American Boat and Yacht Council)

613 Third Street, Suite 10, Annapolis, MD 21403 | eparks@abycinc.org, www.abycinc.org

BSR/ABYC A-27-202x, Alternating Current (AC) Generator Sets (revision of ANSI/ABYC A-27-2021)

Interest Categories: Soliciting for membership categories: Manufacturer - Accessory

ABYC (American Boat and Yacht Council)

613 Third Street, Suite 10, Annapolis, MD 21403 | eparks@abycinc.org, www.abycinc.org

BSR/ABYC H-26-202x, Powering of Boats (revision of ANSI/ABYC H-26-2021)

Interest Categories: Soliciting for all categories except Manufacturer - Boats

ABYC (American Boat and Yacht Council)

613 Third Street, Suite 10, Annapolis, MD 21403 | eparks@abycinc.org, www.abycinc.org

BSR/ABYC S-8-202x, Boat Measurement and Weight (revision of ANSI/ABYC S-8-2021)

Interest Categories: Soliciting for all categories except Manufacturer - Boats

AHRI (Air-Conditioning, Heating, and Refrigeration Institute)

2311 Wilson Boulevard, Suite 400, Arlington, VA 22201 | jyeh2@ahrinet.org, www.ahrinet.org

BSR/AHRI Standard 920-202x (SI/I-P), Performance Rating of DX-Dedicated Outdoor Air System Units (new standard)

ASA (ASC S3) (Acoustical Society of America)

1305 Walt Whitman Road, Suite 300, Melville, NY 11747 | standards@acousticalsociety.org, www.acousticalsociety.org

BSR S3.39-202x, Specifications for Instruments to Measure Aural Acoustic Impedance, Admittance, and Absorbance (Aural Acoustic Immittance) (revision of ANSI/ASA S3.39-1987 (R2025))

ASABE (American Society of Agricultural and Biological Engineers)

2590 Niles Road, Saint Joseph, MI 49085 | stell@asabe.org, https://www.asabe.org/

BSR/ASABE S600-2011 (R202x), Manually Handled Collapsible Reusable Plastic Containers for Handling of Fruits and Vegetables (reaffirmation and redesignation of ANSI/ASABE S600-2011 (R2020))

ASABE (American Society of Agricultural and Biological Engineers)

2590 Niles Road, Saint Joseph, MI 49085 | stell@asabe.org, https://www.asabe.org/

BSR/ASAE S338-202x, Field Equipment for Agriculture - Safety Chain for Towed Equipment (revision and redesignation of ANSI/ASAE S338.5 MAY2006 (R2020))

ASME (American Society of Mechanical Engineers)

Two Park Avenue, M/S 6-2B, New York, NY 10016-5990 | ansibox@asme.org, www.asme.org

BSR/ASME IAM-2-202x, Industrial Investment Classification System (new standard)

ASSP (ASC A10) (American Society of Safety Professionals)

520 N. Northwest Hwy., Park Ridge, IL 60068 | LBauerschmidt@assp.org, www.assp.org

BSR/ASSP A10.23-202x, Safety Requirements for the Installation of Drilled Shafts (revision of ANSI/ASSP A10.23 -2019)

ATIS (Alliance for Telecommunications Industry Solutions)

1200 G Street NW, Suite 500, Washington, DC 20005 | akarditzas@atis.org, www.atis.org

BSR ATIS 1000109-2014 (S202x), Exchange-Interexchange Carrier Interfaces - 950+ XXXX EC-to-IC Access Signaling Protocols (stabilized maintenance of ANSI ATIS 1000109-2014 (R2019))

ATIS (Alliance for Telecommunications Industry Solutions)

1200 G Street NW, Suite 500, Washington, DC 20005 | akarditzas@atis.org, www.atis.org

BSR ATIS 1000603-2014 (S202x), ISDN - Minimal Set of Bearer Services for the Primary Rate Interface (stabilized maintenance of ANSI ATIS 1000603-2014 (R2019))

ATIS (Alliance for Telecommunications Industry Solutions)

1200 G Street NW, Suite 500, Washington, DC 20005 | akarditzas@atis.org, www.atis.org

BSR ATIS 1000604-2014 (S202x), ISDN - Minimal Set of Bearer Services for the Basic Rate Interface (stabilized maintenance of ANSI ATIS 1000604-2014 (R2019))

ATIS (Alliance for Telecommunications Industry Solutions)

1200 G Street NW, Suite 500, Washington, DC 20005 | akarditzas@atis.org, www.atis.org

BSR ATIS 1000609-2014 (R202x), Interworking between the ISDN User-Network Interface Protocol and Signalling System Number 7 ISDN User Part (reaffirmation of ANSI ATIS 1000609-2014 (R2019))

ATIS (Alliance for Telecommunications Industry Solutions)

1200 G Street NW, Suite 500, Washington, DC 20005 | akarditzas@atis.org, www.atis.org

BSR ATIS 1000615-2014 (S202x), Digital Subscriber Signaling System No. 1 (DSS1) - Layer 3 Overview (stabilized maintenance of ANSI ATIS 1000615-2014 (R2019))

ATIS (Alliance for Telecommunications Industry Solutions)

1200 G Street NW, Suite 500, Washington, DC 20005 | akarditzas@atis.org, www.atis.org

BSR ATIS 1000621-2014 (S202x), ISDN - User to User Signaling Supplementary Service (stabilized maintenance of ANSI ATIS 1000621-2014 (R2019))

ATIS (Alliance for Telecommunications Industry Solutions)

1200 G Street NW, Suite 500, Washington, DC 20005 | akarditzas@atis.org, www.atis.org

BSR ATIS 1000623-2014 (S202x), Digital Subscriber Signaling System No. 1 (DSS1) - Signaling Specification for the User Signaling Bearer Service (stabilized maintenance of ANSI ATIS 1000623-2014 (R2019))

ATIS (Alliance for Telecommunications Industry Solutions)

1200 G Street NW, Suite 500, Washington, DC 20005 | akarditzas@atis.org, www.atis.org

BSR ATIS 1000627-2014 (S202x), Broadband ISDN - ATM Layer Functionality and Specification (stabilized maintenance of ANSI ATIS 1000627-2014 (R2019))

ATIS (Alliance for Telecommunications Industry Solutions)

1200 G Street NW, Suite 500, Washington, DC 20005 | akarditzas@atis.org, www.atis.org

BSR ATIS 1000641-2014 (S202x), Calling Name Identification (stabilized maintenance of ANSI ATIS 1000641-2014 (R2019))

ATIS (Alliance for Telecommunications Industry Solutions)

1200 G Street NW, Suite 500, Washington, DC 20005 | akarditzas@atis.org, www.atis.org

BSR ATIS 1000642-2014 (S202x), ISDN - Call Deflection Supplementary Service (stabilized maintenance of ANSI ATIS 1000642-2014 (R2019))

ATIS (Alliance for Telecommunications Industry Solutions)

1200 G Street NW, Suite 500, Washington, DC 20005 | akarditzas@atis.org, www.atis.org

BSR/ATIS 1000060-2014 (S202x), Emergency Telecommunications Services (ETS): Long Term Evolution (LET) Access Network Security Requirement for National Security/Emergency Preparedness (NS/EP) Next Generation Network (NGN) Priority Services (stabilized maintenance of ANSI/ATIS 1000060-2014 (R2019))

ATIS (Alliance for Telecommunications Industry Solutions)

1200 G Street NW, Suite 500, Washington, DC 20005 | akarditzas@atis.org, www.atis.org

BSR/ATIS 1000616-2014 (S202x), ISDN - Call Hold Supplementary Service (stabilized maintenance of ANSI/ATIS 1000616-2014 (R2019))

ATIS (Alliance for Telecommunications Industry Solutions)

1200 G Street NW, Suite 500, Washington, DC 20005 | akarditzas@atis.org, www.atis.org

BSR/ATIS 1000620.a-2014 (S202x), Multi-Rate Circuit-Mode Bearer Service for ISDN - Addendum to the Circuit-Mode Bearer Service Category Description (stabilized maintenance of ANSI/ATIS 1000620.a-2014 (R2019))

ATIS (Alliance for Telecommunications Industry Solutions)

1200 G Street NW, Suite 500, Washington, DC 20005 | akarditzas@atis.org, www.atis.org

BSR/ATIS 1000632.1993 (R2019)-S202x, ISDN Supplementary Service Normal Call Transfer (stabilized maintenance of ANSI ATIS 1000632-1993 (R2019))

ATIS (Alliance for Telecommunications Industry Solutions)

1200 G Street NW, Suite 500, Washington, DC 20005 | akarditzas@atis.org, www.atis.org

BSR/ATIS 1000678.v4-2020 (R202x), Lawfully Authorized Electronic Surveillance (LAES) for Voice over Internet Protocol and Rich Communications Services Messaging in Wireline and Broadband Telecommunications Networks, Version 4 (reaffirmation of ANSI/ATIS 1000678.v4-2020)

AWS (American Welding Society)

8669 NW 36th Street, Suite 130, Miami, FL 33166-6672 | kbulger@aws.org, www.aws.org

BSR/AWS A5.29/A5.29M-202x, Specification for Low-Alloy Steel Electrodes for Flux Cored Arc Welding (revision of ANSI/AWS A5.29/A5.29M-2022)

BICSI (Building Industry Consulting Service International)

8610 Hidden River Parkway, Tampa, FL 33637 | publications@bicsi.org, www.bicsi.org

BSR/BICSI N2-202x, Practices for the Installation of Telecommunications and ICT Cabling Intended to Support Remote Power Applications (revision of ANSI/BICSI N2-2017)

BICSI (Building Industry Consulting Service International)

8610 Hidden River Parkway, Tampa, FL 33637 | publications@bicsi.org, www.bicsi.org

BSR/BICSI N3-202x, Planning and Installation Methods for the Bonding and Grounding of Telecommunication and ICT Systems and Infrastructure (revision of ANSI/BICSI N3-2019)

EOS/ESD (ESD Association, Inc.)

218 W. Court Street, Rome, NY 13440 | jricher@esda.org, https://www.esda.org

BSR/EOS ESD STM12.1-202x, ESD Association Standard Test Method for the Protection of Electrostatic Discharge Susceptible Items - Seating - Resistance Measurement (revision of ANSI/ESD STM12.1-2019)

ESTA (Entertainment Services and Technology Association)

271 Cadman Plaza, P.O. Box 23200, Brooklyn, NY 11202-3200 | standards@esta.org, www.esta.org

BSR/E1.66-202x, Safety Standard for Followspot Positions Erected for Short-term Use in Entertainment Venues (revision of ANSI/E1.66-2020)

Interest Categories: The Followspot Positions Working Group seeks new voting members in the Dealer/Rental company interest category. Interested parties inquire at standards@esta.org for further details.

ITI (INCITS) (InterNational Committee for Information Technology Standards)

700 K Street NW, Suite 600, Washington, DC 20001 | kquigley@itic.org, www.incits.org

INCITS 560-2023/AM1-202x, Information Technology - Fibre Channel - Physical Interfaces - 8 Amendment 1 (FC-PI -8-AM1) (addenda to INCITS 560-2023)

NSF (NSF International)

789 N. Dixboro Road, Ann Arbor, MI 48105 | mmilla@nsf.org, www.nsf.org

BSR/NSF 14-202x (i153r1), Plastics Piping System Components and Related Materials (revision of ANSI/NSF 14-2024)

NSF (NSF International)

789 N. Dixboro Road, Ann Arbor, MI 48105 | mmilla@nsf.org, www.nsf.org

BSR/NSF 14-202x (i154r1), Plastics Piping System Components and Related Materials (revision of ANSI/NSF 14-2024)

NSF (NSF International)

789 N. Dixboro Road, Ann Arbor, MI 48105-9723 | arose@nsf.org, www.nsf.org

BSR/NSF 49-202x (i207r1), Biosafety Cabinetry: Design, Construction, Performance and Field Certification (revision of ANSI/NSF 49-2024)

NSF (NSF International)

789 N. Dixboro Road, Ann Arbor, MI 48105-9723 | rbrooker@nsf.org, www.nsf.org

BSR/NSF 173-202x (i119r3), Dietary Supplements (revision of ANSI/NSF 173-2024a)

NSF (NSF International)

789 N. Dixboro Road, Ann Arbor, MI 48105-9723 | rbrooker@nsf.org, www.nsf.org

BSR/NSF 173-202x (i123r1), Dietary Supplements (revision of ANSI/NSF 173-2024a)

NSF (NSF International)

789 N. Dixboro Road, Ann Arbor, MI 48105-9723 | ajump@nsf.org, www.nsf.org

BSR/NSF/CAN 61-202x (i199r3), Drinking Water System Components - Health Effects (revision of ANSI/NSF/CAN 61-2024)

ULSE (UL Standards and Engagement)

12 Laboratory Drive, Research Triangle Park, NC 27709-3995 | michael.niedermayer@ul.org, https://ulse.org/

BSR/UL 136-202x, Standard for Pressure Cookers (revision of ANSI/UL 136-2019)

ULSE (UL Standards and Engagement)

12 Laboratory Drive, Research Triangle Park, NC 27709-3995 | johnny.hall@ul.org, https://ulse.org/

BSR/UL 142-202x, Standard for Steel Aboveground Tanks for Flammable and Combustible Liquids (revision of ANSI/UL 142-2021)

American National Standards (ANS) Process

Please visit ANSI's website (www.ansi.org) for resources that will help you to understand, administer and participate in the American National Standards (ANS) process. Documents posted at these links are updated periodically as new documents and guidance are developed, whenever ANS-related procedures are revised, and routinely with respect to lists of proposed and approved ANS. The main ANS-related linkis www.ansi.org/asd and here are some direct links as well as highlights of information that is available:

Where to find Procedures, Guidance, Interpretations and More...

Please visit ANSI's website (www.ansi.org)

• ANSI Essential Requirements: Due process requirements for American National Standards (always current edition):

www.ansi.org/essentialrequirements

• ANSI Standards Action (weekly public review announcements of proposed ANS and standards developer accreditation applications, listing of recently approved ANS, and proposed revisions to ANS-related procedures):

www.ansi.org/standardsaction

Accreditation information – for potential developers of American National Standards (ANS):

www.ansi.org/sdoaccreditation

• ANS Procedures, ExSC Interpretations and Guidance (including a slide deck on how to participate in the ANS process and the BSR-9 form):

www.ansi.org/asd

Lists of ANSI-Accredited Standards Developers (ASDs), Proposed ANS and Approved ANS:

www.ansi.org/asd

• American National Standards Key Steps:

www.ansi.org/anskeysteps

• American National Standards Value:

www.ansi.org/ansvalue

• ANS Web Forms for ANSI-Accredited Standards Developers:

https://www.ansi.org/portal/psawebforms/

• Information about standards Incorporated by Reference (IBR):

https://ibr.ansi.org/

• ANSI - Education and Training:

www.standardslearn.org

Accreditation Announcements (Standards Developers)

Public Review of Revised ASD Operating Procedures

HSI - Healthcare Standards Institute

Comment Deadline: November 10, 2025

HSI - The **Healthcare Standards Institute** has submitted revisions to its currently accredited operating procedures for documenting consensus on HSI-sponsored American National Standards, under which it was last reaccredited in 2025. As the revisions appear to be substantive in nature, the reaccreditation process is initiated.

To obtain a copy of the revised procedures or to offer comments, please contact: Haven Boisjoly, Healthcare Standards Institute (HSI) | 347 Park Ridge, Boerne, TX 78006 | (833) 721-1475, hboisjoly@hsi.health

To view/download a copy of the revisions during the public review period, click here.

Please submit any public comments on the revised procedures to HSI by **November 10, 2025**, with a copy to the ExSC Recording Secretary in ANSI's New York Office (jthompso@ANSI.org)

Meeting Notices (Standards Developers)

ANSI Accredited Standards Developer

ASA (ASC S1) - Acoustical Society of America Acoustics

Meeting Time: ASACOS Steering 11/18/2025 10:00 AM CST / 11:00 AM EST - ASACOS 11/18/2025 1:00 PM CST / 2:00 PM EST

2025 ASA Standards Winter Meeting Schedule

ASACOS and Steering meetings are being held virtually. For access via ZOOM, please contact Nancy A. Blair-DeLeon, ASA Standards Manager at nblairdeleon@acousticalsociety.org.

Meeting of ASACOS Steering Tuesday, 11/18/2025 10:00 AM CST / 11:00 AM EST Virtual via ZOOM

Meeting of ASACOS Tuesday, 11/18/2025 1:00 PM CST / 2:00 PM EST Virtual via ZOOM

Information Concerning

National Electrical Safety Code (NESC) 2028 Preprint

Opportunity for Public Input through March 26, 2026

The NESC 2025 Preprint contains over 500 change proposals and initial NESC Subcommittee recommendations that form the basis for soliciting public input during an NESC-public comment period now open through March 26, 2026. This publication has been prepared to provide all interested persons an opportunity to study and comment on the Proposed Revisions to be incorporated into the 2028 Edition of the National Electrical Safety Code (NESC). The NESC Preprint provides the full text of each proposal to revise the 2023 Edition of the NESC together with the recommendation of the subcommittee that has cognizance of the rule addressed by the Change Proposal (CP). Public comment is invited on the disposition for each initial recommendation.

To submit a public comment(s) on change proposals contained in the NESC Preprint, see https://standards.ieee.org/products-programs/nesc/comment-submission/. All public comments help to shape final recommendations made by NESC Technical Subcommittees to form the 2028 NESC. Please note that after this initial public comment opportunity, which is offered in accordance with NESC procedures, a final public comment period will be announced in ANSI Standards Action and comments received at that time will be addressed in accordance with ANSI's procedural requirements. To obtain a copy of the NESC Preprint, see https://ieeexplore.ieee.org/document/11060591

American National Standards Under Continuous Maintenance

The ANSI Essential Requirements: Due Process Requirements for American National Standards provides two options for the maintenance of American National Standards (ANS): periodic maintenance (see clause 4.7.1) and continuous maintenance (see clause 4.7.2). Continuous maintenance is defined as follows:

The standard shall be maintained by an accredited standards developer. A documented program for periodic publication of revisions shall be established by the standards developer. Processing of these revisions shall be in accordance with these procedures. The published standard shall include a clear statement of the intent to consider requests for change and information on the submittal of such requests. Procedures shall be established for timely, documented consensus action on each request for change and no portion of the standard shall be excluded from the revision process. In the event that no revisions are issued for a period of four years, action to reaffirm or withdraw the standard shall be taken in accordance with the procedures contained in the ANSI Essential Requirements. The Executive Standards Council (ExSC) has determined that for standards maintained under the Continuous Maintenance option, separate PINS announcements are not required. The following ANSI Accredited Standards Developers have formally registered standards under the Continuous Maintenance option.

AAMI (Association for the Advancement of Medical Instrumentation)

AARST (American Association of Radon Scientists and Technologists)

AGA (American Gas Association)

AGSC (Auto Glass Safety Council)

ASC X9 (Accredited Standards Committee X9, Incorporated)

ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.)

ASME (American Society of Mechanical Engineers)

ASTM (ASTM International)

GBI (Green Building Initiative)

HL7 (Health Level Seven)

Home Innovation (Home Innovation Research Labs)

IES (Illuminating Engineering Society)

ITI (InterNational Committee for Information Technology Standards)

MHI (Material Handling Industry)

NBBPVI (National Board of Boiler and Pressure Vessel Inspectors)

NCPDP (National Council for Prescription Drug Programs)

NEMA (National Electrical Manufacturers Association)

NFRC (National Fenestration Rating Council)

NISO (National Information Standards Organization)

NSF (NSF International)

PHTA (Pool and Hot Tub Alliance)

RESNET (Residential Energy Services Network, Inc.)

SAE (SAE International)

TCNA (Tile Council of North America)

TIA (Telecommunications Industry Association)

TMA (The Monitoring Association)

ULSE (UL Standards & Engagement)

To obtain additional information with regard to these standards, including contact information at the ANSI Accredited Standards Developer, please visit ANSI Online at www.ansi.org/asd, select "American National Standards Maintained Under Continuous Maintenance." Questions? psa@ansi.org.

ANSI-Accredited Standards Developers (ASD) Contacts

The addresses listed in this section are to be used in conjunction with standards listed in PINS, Call for Comment, Call for Members and Final Actions. This section is a list of developers who have submitted standards for this issue of *Standards Action* – it is not intended to be a list of all ANSI-Accredited Standards Developers. Please send all address corrections to the PSA Department at psa@ansi.org.

AAFS

American Academy of Forensic Sciences 410 North 21st Street Colorado Springs, CO 80904 www.aafs.org

Teresa Ambrosius tambrosius@aafs.org

AAMI

Association for the Advancement of Medical Instrumentation 901 N. Glebe Road, Suite 300 Arlington, VA 22203 www.aami.org

Ladan Bulookbashi LBulookbashi@aami.org

ABYC

American Boat and Yacht Council 613 Third Street, Suite 10 Annapolis, MD 21403 www.abycinc.org

Emily Parks eparks@abycinc.org

ACCA

Air Conditioning Contractors of America 1520 Belle View Boulevard, #5220 Alexandria, VA 22307 www.acca.org

David Bixby david.bixby@acca.org

ADA (Organization)

American Dental Association 211 E. Chicago Avenue Chicago, IL 60611 www.ada.org

Mary Swick swickm@ada.org

AGA (ASC Z380)

lescobar@aga.org

American Gas Association 400 North Capitol Street, NW, Suite 450 Washington, DC 20001 www.aga.org Luis Escobar

AHRI

Air-Conditioning, Heating, and Refrigeration Institute 2311 Wilson Boulevard, Suite 400 Arlington, VA 22201 www.ahrinet.org

Jerry Yeh jyeh2@ahrinet.org

ALI

Automotive Lift Institute
PO Box 85, 3699 Luker Road□
Cortland, NY 13045
www.autolift.org

Heather Almeida heather@autolift.org

AMCA

Air Movement and Control Association 30 West University Drive Arlington Heights, IL 60004 www.amca.org

Joseph Brooks jbrooks@amca.org

ANS

American Nuclear Society 1111 Pasquinelli Drive, Suite 350 Westmont, IL 60559 www.ans.org

Kathryn Murdoch kmurdoch@ans.org

ASA (ASC S3)

Acoustical Society of America 1305 Walt Whitman Road, Suite 300 Melville, NY 11747 www.acousticalsociety.org

Raegan Ripley standards@acousticalsociety.org

ASABE

American Society of Agricultural and Biological Engineers 2590 Niles Road Saint Joseph, MI 49085 https://www.asabe.org/

Sadie Stell stell@asabe.org

ASHRAE

American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. 180 Technology Parkway Peachtree Corners, GA 20092 www.ashrae.org

Kai Sosa ksosa@ashrae.org Mark Weber

mweber@ashrae.org Tanisha Meyers-Lisle tmlisle@ashrae.org

Thomas Loxley tloxley@ashrae.org

ASME

American Society of Mechanical Engineers Two Park Avenue, M/S 6-2B New York, NY 10016 www.asme.org

Terrell Henry ansibox@asme.org

ASSP (ASC A10)

American Society of Safety Professionals 520 N. Northwest Hwy. Park Ridge, IL 60068 www.assp.org Lauren Bauerschmidt

LBauerschmidt@assp.org

ASTM

ASTM International 100 Barr Harbor Drive West Conshohocken, PA 19428 www.astm.org

Laura Klineburger accreditation@astm.org

ATIS

Alliance for Telecommunications Industry Solutions 1200 G Street NW, Suite 500 Washington, DC 20005 www.atis.org

Anna Karditzas akarditzas@atis.org

AWS

American Welding Society 8669 NW 36th Street, Suite 130

Miami, FL 33166 www.aws.org

Kevin Bulger kbulger@aws.org

AWWA

American Water Works Association 6666 W. Quincy Avenue Denver, CO 80235 www.awwa.org

Madeline Rohr mrohr@awwa.org

BHMA

Builders Hardware Manufacturers

Association

529 14th Street NW, Suite 1280

Washington, DC 20045 www.buildershardware.com

Tony Gambrall

agambrall@kellencompany.com

BICSI

Building Industry Consulting Service International 8610 Hidden River Parkway

Tampa, FL 33637

www.bicsi.org

Allen Dean

publications@bicsi.org

BOMA

Building Owners and Managers Association 1101 15th Street, NW, Suite 800 Washington, DC 20005

www.boma.org

Kia Lor

education@boma.org

EOS/ESD

ESD Association, Inc. 218 W. Court Street Rome, NY 13440 https://www.esda.org

Jennifer Richer jricher@esda.org

ESTA

Entertainment Services and Technology

Association

Richard Nix

271 Cadman Plaza, P.O. Box 23200

Brooklyn, NY 11202 www.esta.org

standards@esta.org

FM

FM Approvals One Technology Way Norwood, MA 02062 www.fmapprovals.com

Josephine Mahnken

josephine.mahnken@fmapprovals.com

HL7

Health Level Seven

455 E. Eisenhower Parkway, Suite 300

#025

Ann Arbor, MI 48108

www.hl7.org

Lynn Laakso lynn@hl7.org

IAPMO (ASSE Chapter)

ASSE International Chapter of IAPMO 18927 Hickory Creek Drive, Suite 220 Mokena, IL 60448

www.asse-plumbing.org

Terry Burger

standards@iapmostandards.org

IAPMO (WES)

International Association of Plumbing &

Mechanical Officials

4755 East Philadelphia Street

Ontario, CA 91761 http://www.iapmo.org

Hugo Aguilar

hugo.aguilar@iapmo.org

ICC

International Code Council 4051 Flossmoor Road Country Club Hills, IL 60478

www.iccsafe.org

Karl Aittaniemi

kaittaniemi@iccsafe.org

IEEE

Institute of Electrical and Electronics

Engineers 445 Hoes Lane Piscataway, NJ 08854 www.ieee.org

Suzanne Merten s.merten@ieee.org

IEEE

Institute of Electrical and Electronics
Engineers
445 Hoos Lane, 3rd Floor

445 Hoes Lane, 3rd Floor Piscataway, NJ 08854

www.ieee.org

Teresa Belmont t.belmont@ieee.org

ISEA (ASC Z87)

International Safety Equipment Association 1101 Wilson Boulevard, Suite 1425 Arlington, VA 22209 www.safetyequipment.org

Diana Jones

djones@safetyequipment.org

ITI (INCITS)

InterNational Committee for Information Technology Standards 700 K Street NW, Suite 600 Washington, DC 20001

www.incits.org

Kim Quigley kquigley@itic.org

NECA

National Electrical Contractors Association 1201 Pennsylvania Avenue, Suite 1200

Washington, DC 20004 www.neca-neis.org

Jeff Noren

Jeff.Noren@NECAnet.org

NEMA

National Electrical Manufacturers Association

1812 N Moore Street, Suite 2200

Arlington, VA 22209 www.nema.org

Michael Leibowitz

mike.leibowitz@nema.org

NEMA (ASC C80)

National Electrical Manufacturers

Association

1300 North 17th Street, Suite 900

Rosslyn, VA 22209 www.nema.org

David Richmond

david.richmond@nema.org

NFPA

National Fire Protection Association

One Batterymarch Park Quincy, MA 02169 www.nfpa.org

Dawn Michele Bellis dbellis@nfpa.org

NSF

NSF International 789 N. Dixboro Road Ann Arbor, MI 48105 www.nsf.org Allan Rose arose@nsf.org Amy Jump

ajump@nsf.org

Cassandra Leone cleone@nsf.org

Monica Milla mmilla@nsf.org Rachel Brooker rbrooker@nsf.org

RESNET

Residential Energy Services Network, Inc. P.O. Box 4561

Oceanside, CA 92052 www.resnet.us.com

Richard Dixon rick.dixon@resnet.us

RESOLVE

Resolve, Inc.

2445 M Street, NW, Suite 550 Washington, DC 20037 www.resolve.ngo

Hannah Alday

pr3standards@resolve.ngo

SAE

SAE International

755 West Big Beaver Road

Troy, MI 48084 www.sae.org Mark Zar

mark.zar@sae.org

TIA

Telecommunications Industry Association 1320 North Courthouse Road, Suite 200

Arlington, VA 22201 www.tiaonline.org Teesha Jenkins

tjenkins@tiaonline.org

ULSE

UL Standards & Engagement

12 Laboratory Drive

Research Triangle Park, NC 27709

https://ulse.org/ Doreen Stocker Doreen.Stocker@ul.org

Johnny Hall johnny.hall@ul.org

Marina Currie
marina.currie@ul.org
Michael Niedermayer
michael.niedermayer@ul.org

Nicolette Weeks Nicolette.A.Weeks@ul.org

ULSE

UL Standards & Engagement

12 Laboratory Drive

Research Triangle Park, NC https://ulse.

org/

Akhira Watson akhira.watson@ul.org

ULSE

UL Standards & Engagement

12 Laboratory Drive

Research Triangle Park, NC 27709

https://ulse.org/

Adam Payrot
Adam.Payrot@ul.org

ULSE

UL Standards & Engagement 1603 Orrington Ave, Suite 2000

Evanston, IL 60201 https://ulse.org/

Aaron Zheng aaron.zheng@ul.org Lisette Delgado Lisette.delgado@ul.org

ULSE

UL Standards & Engagement 1603 Orrington Avenue Evanston, IL 60201 https://ulse.org/

Vanessa Johanneson Vanessa.Johanneson@ul.org

ULSE

UL Standards & Engagement 1603 Orrington Avenue, Suite 2000 Evanston, IL 60201 https://ulse.org/

Mitchell Gold mitchell.gold@ul.org

ULSE

UL Standards & Engagement 47173 Benicia Street Fremont, CA 94538 https://ulse.org/ Linda Phinney

Linda.L.Phinney@ul.org

ULSE

UL Standards and Engagement 100 Queen St. Suite 1040 Ottawa, ON Canada, ON K1P 1 https://ulse.org/ Felipe Luz Felipe.Luz@ul.org

ULSE

UL Standards and Engagement 12 Laboratory Dr Research Triangle, NC 27709 https://ulse.org/

Anastasia Letaw anastasia.letaw@ul.org

ISO & IEC Draft International Standards

This section lists proposed standards that the International Organization for Standardization (ISO) and the International Electrotechnical Commission (IEC) are considering for approval. The proposals have received substantial support within the technical committees or subcommittees that developed them and are now being circulated to ISO and IEC members for comment and vote. Standards Action readers interested in reviewing and commenting on these documents should order copies from ANSI.

COMMENTS

Comments regarding ISO documents should be sent to ANSI's ISO Team (isot@ansi.org); comments on ISO documents must be submitted electronically in the approved ISO template and as a Word document as other formats will not be accepted.

Those regarding IEC documents should be sent to the USNC/IEC team at ANSI's New York offices (usnc@ansi.org). The final date for offering comments is listed after each draft.

ORDERING INSTRUCTIONS

ISO and IEC Drafts can be made available by contacting ANSI's Customer Service department. Please e-mail your request for an ISO or IEC Draft to Customer Service at sales@ansi.org. When making your request, please provide the date of the Standards Action issue in which the draft document you are requesting appears.

ISO Standards

Agricultural food products (TC 34)

ISO/DIS 24223, Milk and milk products - Guidance on sample preparation for physical and chemical testing - 12/20/2025, \$53.00

Cryogenic vessels (TC 220)

ISO/DIS 21029-1, Cryogenic vessels - Transportable vacuum insulated vessels of not more than 1 000 litres volume - Part 1: Design, fabrication, inspection and tests - 12/18/2025, \$146.00

Fine ceramics (TC 206)

ISO/DIS 19613, Fine ceramics (advanced ceramics, advanced technical ceramics) - Measurement of viscosity of ceramic slurry by use of a rotational viscometer - 12/20/2025, \$77.00

Governance of organizations (TC 309)

ISO/DIS 37200, Managing the risk of modern slavery: Guidance for the prevention, identification and response to human trafficking and forced labour - 12/25/2025, \$119.00

Medical devices for injections (TC 84)

ISO/DIS 7864, Sterile hypodermic needles for single use - Requirements and test methods - 12/19/2025, \$88.00

ISO/DIS 8537, Sterile single-use syringes, with or without needle, for insulin - 12/25/2025, \$98.00

ISO/DIS 9626, Stainless steel needle tubing for the manufacture of medical devices - Requirements and test methods - 12/18/2025, \$82.00

ISO/DIS 7886-1, Sterile hypodermic syringes for single use - Part 1: Syringes for manual use - 12/25/2025, \$77.00

Nickel and nickel alloys (TC 155)

ISO/DIS 4653, Ferronickel - Determination of carbon, sulphur, silicon, phosphorus, nickel, cobalt, chromium, and copper contents by Spark Emission Spectrometry - 12/19/2025, \$88.00

Plastics (TC 61)

ISO/DIS 9994, Lighters - Safety specifications - 12/19/2025, \$98.00

Railway applications (TC 269)

ISO/DIS 22083, Railway applications - Concepts and basic requirements for the planning of railway operation in the events of predictable natural hazards - 12/22/2025, \$71.00

(TC 333)

ISO/DIS 12467-1, Chemical analysis of lithium composite oxides - Part 1: Determination of main components by inductively coupled plasma optical emission spectrometry - 12/25/2025, \$67.00

ISO/DIS 12467-2, Chemical analysis of lithium composite oxides - Part 2: Determination of trace elemental impurities by inductively coupled plasma optical emission spectrometry - 12/25/2025, \$71.00

Traditional Chinese medicine (TC 249)

ISO/DIS 25662, Traditional Chinese medicine - Leonurus japonicus herb - 12/18/2025, \$67.00

Transport information and control systems (TC 204)

ISO/DIS 23375, Intelligent transport systems - Collision evasive lateral manoeuvre systems (CELM) - Requirements and test procedures - 12/25/2025, \$107.00

Water quality (TC 147)

- ISO/DIS 9697, Water quality Gross beta activity Test method using thick source 12/22/2025, \$62.00
- ISO/DIS 13169, Water quality Uranium Test method using alpha liquid scintillation counting 12/25/2025, \$67.00

ISO/IEC JTC 1, Information Technology

- ISO/IEC 14888-3:2018/DAmd 1, Amendment 1: IT Security techniques Digital signatures with appendix Part 3: Discrete logarithm based mechanisms Amendment 1 12/25/2025, \$67.00
- ISO/IEC DIS 42105, Information technology Artificial intelligence Guidance for human oversight of AI systems 12/18/2025, \$98.00
- ISO/IEC DIS 19941-1, Cloud computing Part 1: Interoperability and portability 12/19/2025, \$155.00

IEC Standards

All-or-nothing electrical relays (TC 94)

94/1172/FDIS, IEC 61811-1/AMD1 ED2: Amendment 1 - Electromechanical telecom elementary relays of assessed quality - Part 1: Generic specification and blank detail specification, 11/14/2025

Cables, wires, waveguides, r.f. connectors, and accessories for communication and signalling (TC 46)

46F/724(F)/FDIS, IEC 60153-2 ED4: Hollow metallic waveguides - Part 2: Relevant specifications for ordinary rectangular waveguides, 10/17/2025

Documentation and graphical symbols (TC 3)

3D/463/VD, IEC 61360-C00184 ED3: Switchgear and controlgear assembly objects for building information modelling, 11/14/2025

Electric road vehicles and electric industrial trucks (TC 69)

69/1096/FDIS, ISO 15118-21: Road vehicles - Vehicle to grid communication interface - Part 21: Common 2nd generation network layer and application layer requirements conformance test plan, 11/14/2025

Electric traction equipment (TC 9)

9/3256/CDV, IEC 62486 ED3: Railway applications - Current collection systems - Technical criteria for the interaction between pantograph and overhead contact line (to achieve free access), 12/26/2025

Electrical equipment in medical practice (TC 62)

62B/1391/CDV, IEC 63524 ED1: Artificial Intelligence enabled Medical Devices - Computer assisted analysis software for pulmonary images - Algorithm performance test methods, 12/26/2025

Electrical installations of buildings (TC 64)

64/2786/FDIS, IEC 60364-7-711 ED3: Low-voltage electrical installations - Part 7-711: Requirements for special installations or locations - Temporary electrical installations for exhibitions and entertainment related purposes, 11/14/2025

Electromagnetic compatibility (TC 77)

77A/1270/CD, IEC TR 61000-1-9/AMD1 ED1: Amendment 1 - Electromagnetic compatibility (EMC) - Part 1-9: General - Evaluation of uncertainty for the measurement of harmonic current emissions, 12/26/2025

Environmental conditions, classification and methods of test (TC 104)

104/1134/CD, IEC 60068-2-67 ED2: Environmental testing - Part 2-67: Tests - Test Cy: Damp heat, steady state, accelerated test primarily intended for components, 11/28/2025

Fibre optics (TC 86)

- 86B/5129(F)/FDIS, IEC 61300-3-50 ED2: Fibre optic interconnecting devices and passive components Basic test and measurement procedures Part 3-50: Examinations and measurements Crosstalk for optical spatial switches, 10/24/2025
- 86B/5115/CDV, IEC 61754-38 ED1: Fibre optic interconnecting devices and passive components Fibre optic connector interfaces Part 38:Type SEN connector family, 12/26/2025

High Voltage Direct Current (HVDC) transmission for DC voltages above 100 kV (TC 115)

115/419/CD, IEC TR 63363-2 ED1: Performance of voltage sourced converter (VSC) based high-voltage direct current (HVDC) transmission - Part 2: Transient conditions, 11/28/2025

Lamps and related equipment (TC 34)

34D/1798/CD, IEC 60598-2-25 ED2: Luminaires - Part 2: Particular requirements - Section 25: Luminaires for use in clinical areas of hospitals and health care buildings, 12/26/2025

Nuclear instrumentation (TC 45)

- 45A/1631/CD, IEC 61227 ED3: Nuclear power plants Control rooms Operator controls, 11/28/2025
- 45B/1092/CDV, IEC 62533 ED2: Radiation protection instrumentation Highly sensitive hand-held instruments for photon detection of radioactive material, 12/26/2025

Rotating machinery (TC 2)

2/2272/CD, IEC 60034-30-2 ED2: Rotating electrical machines -Part 30-2: Efficiency classes of variable speed AC motors (IEcode), 11/28/2025

Safety of household and similar electrical appliances (TC 61)

61D/559/CD, IEC TS 63542 ED2: Refrigerant detection systems for flammable refrigerants, 11/28/2025

Secondary cells and batteries (TC 21)

21A/948/FDIS, IEC 63369-1 ED1: Carbon footprint calculation applicable to industrial lithium-ion batteries - Part 1: General requirements and methodology, 11/14/2025

Semiconductor devices (TC 47)

- 47/2961/FDIS, IEC 60749-21 ED3: Semiconductor devices Mechanical and climatic test methods Part 21: Solderability, 11/14/2025
- 47/2962/FDIS, IEC 60749-23 ED2: Semiconductor devices Mechanical and climatic test methods Part 23: High temperature operating life, 11/14/2025
- 47/2963/FDIS, IEC 60749-26 ED5: Semiconductor devices Mechanical and climatic test methods Part 26: Electrostatic discharge (ESD) sensitivity testing Human body model (HBM), 11/14/2025

Solar photovoltaic energy systems (TC 82)

82/2518/NP, PNW TS 82-2518 ED1: Measurement specifications for research-level perovskite photovoltaic cells, 11/28/2025

Standard voltages, current ratings and frequencies (TC 8)

- 8/1770/CD, IEC PAS 63282-10-1: LVDC systems Part 10-1: Topology and standard voltages for LVDC power system - Distribution system, 11/28/2025
- 8/1771/CD, IEC PAS 63282-10-2: LVDC systems Part 10-2: Topology and standard voltages for LVDC power system - Installation system, 11/28/2025

Wind turbine generator systems (TC 88)

88/1124/DTS, IEC TS 61400-4-1 ED1: Wind energy generation systems - Part 4-1: Reliability assessment of drivetrain components in wind turbines, 11/28/2025

ISO/IEC JTC 1, Information Technology

(TC)

JTC1-SC41/544/CD, ISO/IEC TR 30203 ED1: Internet of Things (IoT) - IoT applications for construction, 11/28/2025

JTC1-SC41/543/NP, PNW JTC1-SC41-543 ED1: Digital twin - Process and guidance for digital twin model construction , 12/26/2025

Newly Published ISO & IEC Standards

Listed here are new and revised standards recently approved and promulgated by ISO - the International Organization for Standardization – and IEC – the International Electrotechnical Commission. Most are available at the ANSI Electronic Standards Store (ESS) at www.ansi. org. All paper copies are available from Standards resellers (http://webstore.ansi.org/faq.aspx#resellers).

ISO Standards

Additive manufacturing (TC 261)

ISO/ASTM 52929:2025, Additive manufacturing of metals -Powder bed fusion - Presentation of material properties in material data sheets, \$127.00

Applications of statistical methods (TC 69)

ISO 16355-3:2025, Applications of statistical and related methods to new technology and product development process - Part 3: Quantitative approaches for the acquisition of voice of customer and voice of stakeholder, \$230.00

Equipment for fire protection and fire fighting (TC 21)

ISO 7240-32:2025, Fire detection and alarm systems - Part 32: Non-resettable line-type heat detectors, \$230.00

Fasteners (TC 2)

ISO 8739:2025, Fasteners - Parallel grooved pins, with pilot point - Full-length diamond grooves, \$84.00

Health Informatics (TC 215)

ISO/IEEE 11073-10103:2025, Health informatics - Device interoperability - Part 10103: Nomenclature, implantable device, cardiac, \$287.00

Light metals and their alloys (TC 79)

ISO 3210:2025, Anodizing of aluminium and its alloys Assessment of quality of sealed anodic oxidation coatings by
measurement of the loss of mass after immersion in acid
solution(s), \$84.00

Mechanical vibration and shock (TC 108)

ISO 13379-1:2025, Condition monitoring and diagnostics of machine systems - Data interpretation and diagnostics techniques - Part 1: General guidelines, \$230.00

Non-destructive testing (TC 135)

ISO 5577:2025, Non-destructive testing - Ultrasonic testing - Vocabulary, \$230.00

Paper, board and pulps (TC 6)

ISO 5267-2:2025, Pulps - Determination of drainability - Part 2: Canadian Standard freeness method, \$127.00

Plain bearings (TC 123)

ISO 21433:2025, Plain bearings - Handling of plain bearings, \$84.00

Plastics pipes, fittings and valves for the transport of fluids (TC 138)

ISO 24690:2025, Glass reinforced thermosetting plastic (GRP) pipes - Test method for the determination of long-term pressure endurance strength, \$84.00

Solar energy (TC 180)

ISO 9806:2025, Solar energy - Solar thermal collectors - Test methods, \$287.00

Solid mineral fuels (TC 27)

ISO 1953:2025, Coal - Size analysis by sieving, \$127.00

Starch (including derivatives and by-products) (TC 93)

ISO 21921:2025, Oxidized starch in food applications - Specifications and test methods, \$56.00

Surface active agents (TC 91)

ISO 4323:2025, Surface active agents - Soaps - Determination of chloride content by potentiometric method, \$84.00

Sustainable development in communities (TC 268)

ISO 37190:2025, Guidance for practical implementation of ISO 37155 series for supervising at each life cycle phase of smart community infrastructures, \$127.00

(TC 331)

ISO 17298:2025, Biodiversity - Considering biodiversity in the strategy and operations of organizations - Requirements and guidelines, \$172.00

Tractors and machinery for agriculture and forestry (TC 23)

ISO 20019:2025, Agricultural vehicles - Mechanical connections on towed vehicles - Dimensions for hitch rings, \$56.00

Water quality (TC 147)

ISO 18724:2025, Water quality - Determination of dissolved chromium(VI) in water - Photometric method, \$201.00

Welding and allied processes (TC 44)

ISO 15614-11:2025, Specification and qualification of welding procedures for metallic materials - Welding procedure test - Part 11: Electron and laser beam welding, \$172.00

IEC Technical Specifications

Health Informatics (TC 215)

IEC/TS 81001-2-2:2025, \$287.00

ISO Technical Reports

Safety of toys (TC 181)

ISO/TR 8124-9:2025, Safety of toys - Part 9: Safety aspects related to mechanical and physical properties - Comparison of ISO 8124-1, EN 71-1 and ASTM F963, \$287.00

Transport information and control systems (TC 204)

ISO/TR 24315-2:2025, Intelligent transport systems - Management of electronic traffic regulations (METR) - Part 2: Operational concepts (ConOps), \$259.00

ISO Technical Specifications

Steel (TC 17)

ISO/TS 5486:2025, Metallographic determination of ferrite in an austenitic matrix of stainless steel, \$84.00

Transport information and control systems (TC 204)

ISO/TS 24315-3:2025, Intelligent transport systems - Management of electronic traffic regulations (METR) - Part 3: System of systems requirements and architecture (SoSR), \$287.00

ISO/IEC JTC 1, Information Technology

- ISO/IEC 8663:2025, Information technology Brain-computer interfaces Vocabulary, \$172.00
- ISO/IEC 25642:2025, Information technology Data governance Data collaboration framework, \$56.00
- ISO/IEC TS 11801-9903:2025, Information technology Generic cabling systems for customer premises Part 9903: Matrix modelling of channels and links, \$259.00

IEC Standards

All-or-nothing electrical relays (TC 94)

- IEC 63522-1 Ed. 1.0 en:2025, Electrical relays Tests and measurements - Part 1: Visual inspection and check of dimensions, \$52.00
- IEC 63522-1 Ed. 1.0 b:2025, Electrical relays Tests and measurements Part 1: Visual inspection and check of dimensions, \$52.00

- IEC 63522-10 Ed. 1.0 b:2025, Electrical relays Tests and measurements Part 10: Heating, \$52.00
- IEC 63522-10 Ed. 1.0 en:2025, Electrical relays Tests and measurements Part 10: Heating, \$52.00

Insulators (TC 36)

- IEC 62217 Ed. 3.0 b:2025, Polymeric HV insulators for indoor and outdoor use General definitions, test methods and acceptance criteria. \$322.00
- IEC 62217 Ed. 3.0 en:2025, Polymeric HV insulators for indoor and outdoor use General definitions, test methods and acceptance criteria, \$322.00
- IEC 62217 Ed. 3.0 en:2025 CMV, Polymeric HV insulators for indoor and outdoor use General definitions, test methods and acceptance criteria, \$644.00

Nuclear instrumentation (TC 45)

IEC 63435 Ed. 1.0 en:2025, Nuclear facilities - Human machine interfaces - Operator support systems, \$322.00

Other

- CISPR 16-1-4 Ed. 5.0 b:2025, Specification for radio disturbance and immunity measuring apparatus and methods Part 1-4:
 Radio disturbance and immunity measuring apparatus Antennas and test sites for radiated disturbance measurements, \$580.00
- CISPR 16-1-4 Ed. 5.0 en:2025, Specification for radio disturbance and immunity measuring apparatus and methods Part 1-4:
 Radio disturbance and immunity measuring apparatus Antennas and test sites for radiated disturbance measurements, \$580.00
- S+ CISPR 16-1-4 Ed. 5.0 en:2025 (Redline version), Specification for radio disturbance and immunity measuring apparatus and methods Part 1-4: Radio disturbance and immunity measuring apparatus Antennas and test sites for radiated disturbance measurements, \$985.00

Semiconductor devices (TC 47)

IEC 62047-53 Ed. 1.0 en:2025, Semiconductor devices - Microelectromechanical devices - Part 53: MEMS electrothermal transfer device, \$103.00

International Organization for Standardization (ISO)

Establishment of ISO Technical Committee

U.S. TAG to ISO TC 353, Safety, security and good production practices of cannabis facilities and operations

Comment Deadline: October 17, 2025

UL Standards & Engagement has been appointed by the American National Standards Institute (ANSI) as an administrator to an International Organization for Standardization (ISO) Technical Committee (TC), ISO/TC 353, Safety, security and good production practices of cannabis facilities and operations.

As the ANSI U.S. TAG administrator, UL Standards & Engagement is responsible for transmitting the official U. S. position to proposals within activities under the responsibility of ISO/TC 353, as well as for bringing to the ISO any new work items that would support the broad efforts in the U.S. in this area of standardization.

To ensure that all interested parties have an opportunity to contribute to the development of the U.S. position on key issues that are considered by ISO/TC 353, UL Standards & Engagement is now soliciting U.S. stakeholders to participate in the ANSI U.S. TAG. Participation in the ANSI U.S. TAG is open to all U.S. national interested parties who are directly and materially affected by all of the TAG's activity. Individuals who are interested in becoming a member of the ANSI U.S. TAG for ISO/TC 353 are invited to contact Grace Callahan, Secretary of the TAG, at grace-callahan@ul.org.

Scope:

Standardization in the field of safety, security and quality systems of cannabis facilities and operations in jurisdictions where such facilities and operations are legal, covering the supply chain from cultivation, processing, production, packaging, distribution, transportation and retail stores for cannabis and cannabis products.

Standardization includes but not limited to terminology; methods of tests; cannabis equipment and their operation; waste disposal; air quality; good production practices; good manufacturing practices; security of facilities and operations; and related quality management systems.

Excluded:

- fire protection of buildings and facilities (covered by ISO/TC 21)
- methods of analysis of food products and traceability (covered by ISO/TC 34)
- fire safety of buildings and materials (covered by ISO/TC 92)
- quality management systems (covered by ISO/TC 176)
- environmental management systems and monitoring (covered by ISO/TC 207)
- cosmetics good manufacturing practices (GMP) (covered by ISO/TC 217)
- occupational health and safety management systems (covered by ISO/TC 283)
- alarm and electronic security systems (covered by IEC/TC 79)

International Organization for Standardization (ISO)

New Secretariats

ISO/TC 106/SC 8 - Dental implants

Comment Deadline: October 31, 2025

The American Dental Association (ADA) has requested ANSI to delegate the responsibilities of the administration of the ISO/TC 106/SC 8 – *Dental implants* secretariat to the American Dental Association (ADA). The secretariat was previously held by the U.S. Food and Drug Administration (FDA) and the secretariat transfer is supported by the U.S. TAG.

ISO/TC 106/SC 8 operates under the following scope:

Dental implants – Standardization in oral health care relating to devices surgically implanted into bone and/or soft tissues in the oro-facial region, and related accessories, including:

- · terms and definitions;
- · performance, safety, and specification requirements;
- · and laboratory test methods.

Organizations wishing to comment on the delegation of the responsibilities should contact ANSI's ISO Team (isot@ansi.org).

New Secretariats

ISO/TC 8/SC 2 – Marine environment protection

Comment Deadline: October 17, 2025

The U.S. Coast Guard (USCG) has requested ANSI to delegate the responsibilities of the administration of the ISO/TC 8/SC 2 – *Marine environment protection* secretariat to the U.S. Coast Guard (USCG). The secretariat was previously held by the U.S. DOT Maritime Administration (MARAD) and the secretariat transfer is supported by the U.S. TAG.

ISO/TC 8/SC 2 operates under the following scope:

Standardization of marine pollution abatement materials, equipment and technologies and environmental matters to be used in shipbuilding and operation of ships, comprising sea-going ships, vessels for inland navigation, offshore structures, ship-to-shore interface and all other marine structures subject to International Maritime Organization (IMO) requirements.

Organizations wishing to comment on the delegation of the responsibilities should contact ANSI's ISO Team (isot@ansi.org).

Registration of Organization Names in the United States

The Procedures for Registration of Organization Names in the United States of America (document ISSB 989) require that alphanumeric organization names be subject to a 90-day Public Review period prior to registration. For further information, please contact the Registration Coordinator at (212) 642-4975.

When organization names are submitted to ANSI for registration, they will be listed here alphanumerically. Alphanumeric names appearing for the first time are printed in bold type. Names with confidential contact information, as requested by the organization, list only public review dates.

Public Review

NOTE: Challenged alphanumeric names are underlined. The Procedures for Registration provide for a challenge process, which follows in brief. For complete details, see Section 6.4 of the Procedures.

A challenge is initiated when a letter from an interested entity is received by the Registration Coordinator. The letter shall identify the alphanumeric organization name being challenged and state the rationale supporting the challenge. A challenge fee shall accompany the letter. After receipt of the challenge, the alphanumeric organization name shall be marked as challenged in the Public Review list. The Registration Coordinator shall take no further action to register the challenged name until the challenge is resolved among the disputing parties.

Proposed Foreign Government Regulations

Call for Comment

U.S. manufacturers, exporters, trade associations, U.S domiciled standards development organizations and conformity assessment bodies, consumers, or U.S. government agencies may be interested in proposed foreign technical regulations notified by Member countries of the World Trade Organization (WTO). In accordance with the WTO Agreement on Technical Barriers to Trade (TBT Agreement), Members are required to notify to the WTO Secretariat in Geneva, Switzerland proposed technical regulations that may significantly affect trade. In turn, the Secretariat circulates the notifications along with the full texts. The purpose of the notification requirement is to provide global trading partners with an opportunity to review and comment on the regulations before they become final. The USA Enquiry Point for the WTO TBT Agreement is located at the National Institute of Standards and Technology (NIST) in the Standards Coordination Office (SCO). The Enquiry Point relies on the WTO's ePing SPS&TBT platform to distribute the notified proposed foreign technical regulations (notifications) and their full texts available to U.S. stakeholders. Interested U.S. parties can register with ePing to receive e-mail alerts when notifications are added from countries and industry sectors of interest to them. The USA WTO TBT Enquiry Point is the official channel for distributing U.S. comments to the network of WTO TBT Enquiry Points around the world. U.S. business contacts interested in commenting on the notifications are asked to review the comment guidance prior to submitting comments. For nonnotified foreign technical barriers to trade for non-agricultural products, stakeholders are encouraged to reach out as early as possible to the Office of Trade Agreements Negotiations and Compliance (TANC) in the International Trade Administration (ITA) at the Department of Commerce (DOC), which specializes in working with U.S. stakeholders to remove unfair foreign government-imposed trade barriers. The U.S. Department of Agriculture's Foreign Agricultural Service actively represents the interests of U.S. agriculture in the WTO committees on Agriculture, Sanitary and Phytosanitary (SPS) measures and Technical Barriers to Trade (TBT). FAS alerts exporters to expected changes in foreign regulations concerning food and beverage and nutrition labeling requirements, food packaging requirements, and various other agriculture and food related trade matters. Working with other Federal agencies and the private sector, FAS coordinates the development and finalization of comments on measures proposed by foreign governments to influence their development and minimize the impact on U.S. agriculture exports. FAS also contributes to the negotiation and enforcement of free trade agreements and provides information about tracking regulatory changes by WTO Members. The Office of the United States Trade Representative (USTR) WTO & Multilateral Affairs (WAMA) office has responsibility for trade discussions and negotiations, as well as policy coordination, on issues related technical barriers to trade and standards-related activities.

Online Resources:

WTO's ePing SPS&TBT platform: https://epingalert.org/

Register for ePing: https://epingalert.org/en/Account/Registration

WTO committee on Agriculture, Sanitary and Phytosanitary (SPS) measures:

https://www.wto.org/english/tratop_e/sps_e/sps_e.htm

WTO Committee on Technical Barriers to Trade (TBT): https://www.wto.org/english/tratop_e/tbt_e/tbt_e.htm

USA TBT Enquiry Point: https://www.nist.gov/standardsgov/usa-wto-tbt-enquiry-point

Comment guidance:

 $\underline{https://www.nist.gov/standardsgov/guidance-us-stakeholders-commenting-notifications-made-wto-members-tbt-committee}$

NIST: https://www.nist.gov/

TANC: https://www.trade.gov/office-trade-agreements-negotiation-and-compliance-tanc
Examples of TBTs: https://tcc.export.gov/report a barrier/trade barrier examples/index.asp.

Report Trade Barriers: https://tcc.export.gov/Report a Barrier/index.asp.

USDA FAS: https://www.fas.usda.gov/about-fas

FAS contribution to free trade agreements: https://www.fas.usda.gov/topics/trade-policy/trade-agreements

Tracking regulatory changes: https://www.fas.usda.gov/tracking-regulatory-changes-wto-members

USTR WAMA: https://ustr.gov/trade-agreements/wto-multilateral-affairs/wto-issues/technical-barriers-trade

Contact the USA TBT Enquiry Point at (301) 975-2918; E usatbtep@nist.gov or notifyus@nist.gov.

1.0 PURPOSE AND SCOPE

1.2 Scope

- 3 The test methods established here are designed to measure the resistance of seating. The resistances
- 4 considered here are measured from various seating components to a groundable point, such as a
- 5 conductive or dissipative caster or a drag chain. This document provides a method for measuring the
- 6 resistance of seating with resistance less than 1.0 x 10⁹ ohms.
- NOTE: Measurements may be limited in accuracy below 1.0 x 10³ ohms. The lowest measurement value will be limited
- 8 to the value obtained in Annex A.2.
- 9 Resistivity measurements and measurements of triboelectric charging are not within the scope or purpose
- 10 of this standard test method.
- 11 This document does not apply to electrically initiated explosive devices, flammable liquids, or powders.

12 13

14

1

2

5.0 TEST EQUIPMENT AND CONDITIONS

5.1 Resistance Measurement Apparatus (Meter)

- 15 The measurement apparatus, called the meter, whether it is an instrument or a collection of instruments,
- shall be capable of the following:
- 17 The resistance range of the meter shall be $\leq 1.0 \times 10^3$ ohms to $\geq 1.0 \times 10^{10}$ ohms.
- 18 NOTE: For example, a meter with a range of 1.0 x 10² ohms to 1.0 x 10¹² ohms meets this requirement.
- 19 The meter shall apply a voltage of 10 volts (± 5%), either open circuit or under load, for measurements <
- 20 1.0×10^4 ohms.
- The meter shall apply a voltage of 10 volts $(\pm 5\%_1)$, while under load, for measurements from $\geq 1.0 \times 10^4$
- ohms to < 1.0 x 10⁶ ohms and a voltage of 100 volts $(\pm 5\%)$ while under load for measurements of \geq 1.0 x
- 23 10⁶ ohms
- 24 For the measurements, a calibrated meter should be used.

25 26

27

5.2 Resistance Measurement Electrode(s)

- A cylindrical electrode that shall be 2.27 kg ± 0.06 kg with a diameter of 63.5 mm ± 3 mm having a contact
- surface made of electrically conductive <u>elastomer (such as rubber)</u> with a Shore-A durometer hardness between 50 and 70 as per ASTM D2240. The resistance between two of these electrodes shall be less
- 30 than or equal to 1.0 x 10³ ohms when measured on a metallic surface. See Annex A.2
- 31 Conductive rubber electrodes are used for material evaluation and qualification.
- NOTE: Over time, conductive <u>rubber materialselastomer</u> used as the contact surface of the probes can warp. This could cause measurements to change. At this time there is no standardized method to verify if this has occurred, but
- the user should be aware of this phenomenon.

35 36

5.3 Specimen Support Surface

- A planar (flat) surface, when used for specimen support, shall be at least as large as the sample specimens
 being tested.
- 39 The specimen support surface shall also meet one of the following criteria:
- 40 <u>Surface resistivity greater than 1.0 x 10¹¹ ohms/square when measured per ASTM D257</u>
- Surface resistance greater than 1.0 x 10¹⁰ ohms when measured per ANSI/ESD STM11.11
- 42 Resistance point to point of at least one order of magnitude greater than the measured item's upper limit
- 43 <u>using the resistance measurement electrodes, as defined in Section 5.2, spaced at least 150 mm apart</u>
 44 (edge-to-edge).
- 45 NOTE: For example, if the minimum surface resistance requirement for the specimen support surface is
- 46 greater than 1.0×10^{10} ohms, a specimen support surface of 1.0×10^{12} ohms meets this requirement.

- The specimen support surface shall be measured in the same humidity conditions at which the material will be tested. A planar (flat) surface, when used for specimen support, shall have a surface resistivity greater than 1.0 x 10¹¹ ohms/square when measured per ASTM D257 or a surface resistance greater than 1.0 x
- 50 10¹⁰ ohms when measured per ANSI/ESD STM11.11.
- 51 The specimen support surface shall be measured in the same humidity conditions at which the material will 52 be tested.
- An alternate method to verify the properties of the specimen support surface may be used by measuring the resistance point to point of the material with the resistance measurement electrodes spaced at least 150 mm apart (edge-to-edge).

56 57

5.5 Controlled Test Environment

- 58 Shall be an environment that can meet the following conditions:
- 59 12% RH \pm 5% RH at a temperature of 23°C \pm 3°C.
- 60 The test equipment and samples shall remain in this environment until all testing is completed.

61 62

63

6.0 TEST PROCEDURES

6.1 Specimen Preparation

- There shall be three specimens labeled to be uniquely identifiable.
- Each specimen of seating shall be <u>assembled and</u> configured in the way it will be used in the intended application.

67 68

69 70

71

72

6.1.2 Environmental Conditioning

- The samples shall be preconditioned for a period of 48 hours in an environment of $12\% \pm 3\%$ relative humidity and $23 \degree C \pm 3 \degree C$ the controlled test environment (Section 5.5). If the test environment holds less fewer than the required number of seating units, repeat this procedure until all the samples have been conditioned and tested.
- 73 The samples shall remain in this environment until all testing is completed.

74 75

89

6.2 Determine Number of Groundable Points Required for Testing

- Identify all groundable points according to the manufacturer's specification. For seating, the feet, casters,
 and/or drag chains typically provide the groundable points to connect the seating to the flooring.
- If all groundable points are electrically connected (that is, the resistance between all groundable points is less than 1.0 x 10⁸ ohms), for the measurements in Section 6.3, at least one groundable point shall be selected. The remaining groundable points can be omitted from testing.
- If all groundable points are not electrically connected by a resistance of less than 1.0 x 10⁸ ohms, the measurements in Section 6.3 shall be taken using all groundable points.
- To determine whether the resistance between all groundable points is less than 1.0 x 10⁸ ohms, the resistance between the groundable points shall be measured as follows.
- 1. Identify all groundable points and label them A, B, C, etc.
- 2. Place the seating on one or several specimen support surfaces such that all groundable points make contact with a specimen support surface (Figure 1).
- 88 3. Place a first metal plate so that it is in contact only with groundable point A.
 - 4. Place a second metal plate so that it is in contact only with groundable point B.
- 90 5. Connect the meter leads to each of the electrodes.
- 91 NOTE: In place of electrodes E1 and E2, the meter may be connected directly to the metal plates using a clip lead.
- 92 6. Set the test voltage to 10 volts.
- 93 7. Energize the measurement equipment.

- 94 8. If the indicated resistance is less than 1.0 x 10⁶ ohms, record the value after 5 seconds and continue 95 with step 11.
- 96 9. If the indicated resistance is equal to or greater than 1.0 x 10⁶ ohms, de-energize the equipment.
- 97 10. Energize the measurement equipment at 100 volts. Record the resistance after the instrument's known electrification time or a maximum of 15 seconds.
- NOTE: If switching the test voltage to 100 volts results in a resistance reading of less than 1.0 x 10⁶ ohms, the reading made with the 100-volt test voltage is used.
- 101 11. Repeat Steps 5 to 10 with each remaining groundable point, starting with groundable point C, with the first electrode connected to groundable point A.
- 103 12. If all measurements are less than 1.0 x 108 ohms, all groundable points are electrically connected.

105 6.4 Reporting of Test Results

104

106

124125

126

- The following shall be reported:
- 107 standard test method followed
- environmental conditioning (temperature, relative humidity, and time of conditioning)
- manufacturer name and model number for the resistance measurement apparatus and the resistance
 measurement electrode(s)
- 111 date of test completion
- name of the organization completing the testing
- name of the specimen manufacturer and a manufacturer's description of the specimen being evaluated
- if the method in Section 6.2 is used, all values in ohms for resistance groundable point to groundable point
- all values in ohms for resistance of all seating components to groundable point(s)
- minimum and maximum resistance for each seating component to groundable point(s)
- 118 The following should be reported:
- resistance measurement test voltage
- equipment calibration due date and serial number
- verification data, as described in Annex A
- serial numbers and/or lots of the specimens
- 123 See Table 1 for an example of a report datasheet.

ANNEX A (NORMATIVE) – Verification Procedure of Measurement Set-up

A.1 Verification of the Resistance Measurement Apparatus

- 127 Check the resistance measurement apparatus by measuring two or more known resistors (see Figure 4),
- for example, from a resistor decade box. Use a resistor for the lowest resistance range of the meter, as
- defined in Section 5.1 (1.0 x 10³ ohms), and a resistor for the highest resistance range as described in
- 130 Section 5.1 (1.0 x 10¹⁰ ohms), each with a tolerance of ± 5%. At a minimum, check one resistor with a value
- 131 between 1.0 x 10³ ohms and 1.0 x 10⁵ ohms and one resistor with a value between 1.0 x 10⁷ ohms and
- 132 1.0×10^{10} ohms each with a tolerance of $\pm 5\%$.
- 133 NOTE: If a meter with a broader resistance range than defined in Section 5.1 is used, a resistor with a value equal to
- the lowest resistance range of the meter, and a resistor with a value equal to the highest resistance range may be used.

Tracking number 14i153r1 © 2025 NSF

Revision to NSF/ANSI 14-2024 Issue 153, Revision 1 (September 2025)

Not for publication. This document is part of the NSF standard development process. This draft text is for circulation for review and/or approval by an NSF Standards Committee and has not been published or otherwise officially adopted. All rights reserved. This document may be reproduced for informational purposes only.

[Note – The recommended changes to the standard which include the current text of the relevant section(s) indicate deletions by use of strikeout and additions by gray highlighting. Rationale statements are in *italics* and only used to add clarity; these statements will NOT be in the finished publication.]

NSF/ANSI Standard for Plastics —

Plastics Piping System Components and Related Materials

9 Quality assurance

9.10 Product-specific quality assurance requirements

Tables 9.2 through 9.40 provide product-specific quality assurance requirements.

Table 9.31

PVC pressure pipe and fabricated fittings for water transmission and distribution

Test	Pipe	Machined coupling	Fabricated fitting
dimension ^a	hourly	hourly	_
sustained pressure b	6 mo	_	_
burst pressure a,c	24 h ^d	8 h	_
5 s hydrostatic proof ^e	every length	every coupling	_
flattening ^{af}	8 h	_	_
lap shear	_	_	every 200 fittings
pressure test – 2 h	_	_	every 50 fittings
product standard(s)	AWWA C900	AWWA C900	AWWA C900

^a Beginning of production of each material and size and thereafter one specimen from each extrusion outlet.

:

<u>Rationale</u>: This ballot clarifies that the flattening test for C900 pipe should be conducted every 8 hours only for pipe with nominal diameters less than 14", based on requirements in Section 5.1.6 of the AWWA C900-22 standard.

^b Beginning of production specimens of 4 or 6 in., and 8 in. and larger.

^c Ring tensile may be used as a substitute for burst pressure per Section 5.1.4 of AWWA C900.

^d For sizes greater than 12 in., at least one specimen shall be tested from each production run (lot) or every 100 lengths of pipe produced from each extrusion outlet, whichever is more frequent.

e Requirement does not apply for pipes that are not hydrostatically tested per AWWA C900 Section 5.1.14 and marked per Section 6.1.2 e

f Beginning of production of each material and size and thereafter one specimen from each extrusion outlet for nominal diameters less than 14".

Tracking number 14i154r1 © 2025 NSF

Revision to NSF/ANSI 14-2024 Issue 154, Revision 1 (September 2025)

Not for publication. This document is part of the NSF standard development process. This draft text is for circulation for review and/or approval by an NSF Standards Committee and has not been published or otherwise officially adopted. All rights reserved. This document may be reproduced for informational purposes only.

[Note – The recommended changes to the standard which include the current text of the relevant section(s) indicate deletions by use of strikeout and additions by gray highlighting. Rationale statements are in *italics* and only used to add clarity; these statements will NOT be in the finished publication.]

NSF/ANSI Standard for Plastics —

Plastics Piping System Components and Related Materials

Quality assurance

9.10 Product-specific quality assurance requirements

Tables 9.2 through 9.40 provide product-specific quality assurance requirements.

Table 9.30b

PVCO pipe and fittings for underground fire service test frequency

Test	Pipe	Coupling	Gasket
pipe outside diameter	hourly	_	_
wall thickness	hourly	_	_
sustained pressure	semi-annually	annually	_
leakage	annually	annually	_
assembly	annually	annually	_
flattening ^a	8 h	_	_
burst ^{ab}	3 mo	3 mo	_
extrusion quality	8 h	_	_
hydrostatic integrity	each ^{bc}	each ^{bc}	_
minimum tensile strength	_	_	annually
ultimate elongation	_	_	annually
maximum set	_	_	annually
product standard(s)	UL 1285	UL 1285	UL 157

^a Beginning of production of each material and size and thereafter one specimen from each extrusion outlet for nominal diameters less than 14". For sizes 14" and larger, one sample every 100 pieces.

:

<u>Rationale</u>: This ballot clarifies the flattening test for UL 1285 pipe should be conducted every 8 hours only for pipe with nominal diameters less than 14", based on requirements in Section 23.1.c of the UL 1285-2022 standard.

^{ab} Ring tensile may be used as a substitute for burst pressure per Section 23.1 of UL 1285.

Fach length of pipe and each coupling shall be tested according to Section 4.3.4.4 of AWWA C909.

Tracking number 173i119r3 © 2025 NSF

Revision to NSF/ANSI 173-2024a Issue 119, Revision 3 (September 2025)

Not for publication. This document is part of the NSF standard development process. This draft text is for circulation for review and/or approval by an NSF Standards Committee and has not been published or otherwise officially adopted. All rights reserved. This document may be reproduced for informational purposes only.

[Note – the recommended changes to the standard which include the current text of the relevant section(s) indicate deletions by use of strikeout and additions by grey highlighting. Revision 2 changes are indicated by yellow highlighting. Revision 3 changes are indicated by blue highlighting. Rationale Statements are in italics and only used to add clarity; these statements will NOT be in the finished publication.]

NSF/ANSI Standard for Nutrition and Wellness –

Dietary Supplements

- 1 General
- 1.1 Purpose

This standard provides test methods and evaluation criteria for dietary supplement products to allow for the determination that the ingredients in the product are accurately identified, that the product contains the quantity of dietary ingredients and marker constituents declared on the product label, and that the product does not contain unacceptable quantities of contaminants, and to help ensure products do not contain ingredients at levels that pose a serious or undisclosed risk to consumer health.

This standard provides criteria for determining that good manufacturing practices (GMP) were followed in the production of dietary supplements.

- •
- •
- •

5.2 Quantity

- 5.2.1 Dietary ingredients
- •
- •
- •

5.2.1.1 Ingredient acceptability

Product ingredients shall be reviewed by the certifying body to help ensure each ingredient can be reasonably expected to be safe for its intended use in dietary supplements. For Each dietary ingredient within a product formulation shall be reviewed to evaluate the dietary ingredient's maximum use level (MUL) against established thresholds, including either an upper safe level (USL) or a typical use level (TUL). the dietary ingredient's maximum use level (MUL) shall not exceed established upper safe levels (USLs) or typical use levels (TULs). Please see the ingredient

Tracking number 173i119r3 © 2025 NSF

Revision to NSF/ANSI 173-2024a Issue 119, Revision 3 (September 2025)

Not for publication. This document is part of the NSF standard development process. This draft text is for circulation for review and/or approval by an NSF Standards Committee and has not been published or otherwise officially adopted. All rights reserved. This document may be reproduced for informational purposes only.

acceptability review process flow chart in Figure X. A prerequisite to the use of this process is that the dietary ingredient shall be characterized as to its chemical or botanical identity, source, and manufacturing process in sufficient detail such that the established USLs and TULs are relevant to the specified dietary ingredient under the conditions of use indicated on the label for the intended population.

When either an USL or a TUL from an authoritative body is not available, other scientific assessments may be considered to establish the either an USL or a TUL. USLs shall be based on a scientific review of the available safety data while TULs shall be established using a history of safe use (HoSU) approach. and Both USLs and TULs shall be established by a qualified professional who shall qualified to assess the safety of the dietary ingredient, such as a toxicologist or other scientific professional with relevant expertise, with reference to relevant the specifications of the dietary ingredient. The MUL shall be supported by an established threshold, either an USL or a TUL. If no available threshold supports the MUL, then a separate safety assessment shall be conducted to substantiate safe use at the proposed MUL. A safety assessment is required when the MUL exceeds the established USL or TUL for the dietary ingredient.

An MUL above the established USL or TUL may be acceptable, with or without additional statements, if a safety assessment can substantiate safe use at the proposed MUL. If a safety assessment identifies a risk of adverse health effects at the MUL, the product label shall include a statement or a reference to a product ingredient disclosure that addresses any relevant health risks identified. The statement shall be agreed upon between the certifying body and the company seeking certification. The certifying body maintains the ability to deny certification if a safety assessment identifies a serious risk to health.

Revision to NSF/ANSI 173-2024a Issue 119, Revision 3 (September 2025)

Not for publication. This document is part of the NSF standard development process. This draft text is for circulation for review and/or approval by an NSF Standards Committee and has not been published or otherwise officially adopted. All rights reserved. This document may be reproduced for informational purposes only.

Figure X
Ingredient acceptability review process

Revision to NSF/ANSI 173-2024a Issue 119, Revision 3 (September 2025)

Not for publication. This document is part of the NSF standard development process. This draft text is for circulation for review and/or approval by an NSF Standards Committee and has not been published or otherwise officially adopted. All rights reserved. This document may be reproduced for informational purposes only.

Note 1. Prerequisite to the use of this process is that the dietary ingredient has been characterized as to its chemical or botanical identity, source, and manufacturing process in sufficient detail to allow for an ingredient acceptability evaluation by a qualified professional who shall qualified to assess the safety of the dietary ingredient, such as a toxicologist or other scientific professional with relevant expertise, with reference to relevant specifications.

Note 2. CB = Certifying Body, HoSU = history of safe use, MUL = maximum use level (maximum daily intake based on the product label), TUL = typical use level, USL = upper safe level

- ^a Authoritative body means any global health agency but does not include trade associations or other industry bodies. In addition, the ingredient specification should be consistent with the authoritative review (i.e. source, species, and production process).
- ^b Should a safety assessment identify risk of adverse health effects at the MUL, the product label shall include a statement <mark>or a reference to a product ingredient disclosure</mark> that addresses any relevant health risks identified. The statement shall be agreed upon between the certifying body and the company seeking certification.
- ^c Serious risk to health is defined as effects that may result in irreversible damage to the body, physical impairment, hospitalization or that otherwise may increase the risk of life-threatening events.
- ^d A full self-affirmed GRAS dossier reviewed by an expert panel may be used to demonstrate safety at the MUL; standalone GRAS statements without supporting documentation are not considered sufficient.
- ^e Old dietary ingredient status (ingredients listed per UNPA, CRN, or NNFA) may be used to establish HoSU; however, ODI status shall be substantiated with supporting data.
- ^f Compositional equivalence may be established based on chemical analysis, supported by an ingredient fingerprint using NMR, MS, etc.
- ⁹ Client-provided assessments and ingredient assessments need to be independently peer-reviewed by experts qualified to evaluate ingredient safety.
- ^h Demonstration of regulatory compliance is not in scope of the standard and is the responsibility of product manufacturers. The interim ingredient assessment is intended to establish safe use of the ingredient to protect consumer health and prevent the certification of unsafe ingredients.

Revision to NSF/ANSI 173-2024a Issue 123, Revision 1 (September 2025)

Not for publication. This document is part of the NSF standard development process. This draft text is for circulation for review and/or approval by an NSF Standards Committee and has not been published or otherwise officially adopted. All rights reserved. This document may be reproduced for informational purposes only.

[Note – the recommended changes to the standard which include the current text of the relevant section(s) indicate deletions by use of strikeout and additions by grey highlighting. Rationale Statements are in *italics* and only used to add clarity; these statements will NOT be in the finished publication.]

NSF/ANSI Standard for Nutrition and Wellness –

Dietary Supplements

.

٠

5 Product requirements

•

5.3 Contaminants

٠

•

5.3.5.2 Sexual wellness products

Products marketed for sexual wellness shall not contain any of the following compounds and any of their analogs at a concentration greater than 50 μ g/g, verified by testing in accordance with Section 7.4. Other substances which that are not dietary ingredients and have similar biological activity may be adulterants.

Substance

2-hydroxypropylnortadalafil acetaminophen acetaminotadalafil

chlorpheniramine dapoxetine dexamethasone diclofenac dimethylacetildenafil

...

Commented [RB1]: This is an existing table that will be formatted properly when added to the standard. I am sorry if the formatting causes any confusion but as with all ballots the substances highlighted in grey are the ones suggested to add to this existing table.

Revision to NSF/ANSI 173-2024a Issue 123, Revision 1 (September 2025)

Not for publication. This document is part of the NSF standard development process. This draft text is for circulation for review and/or approval by an NSF Standards Committee and has not been published or otherwise officially adopted. All rights reserved. This document may be reproduced for informational purposes only.

hydrocortisone hydroxyvardenafil ibuprofen imidazosagatriazinone indomethacin lodenafil carbonate meloxicam methocarbamol mirodenafil naproxen n-butylnortadalafil omeprazole piperiacetildenafil piroxicam prednisolone prednisone

•

5.3.5.3 Joint health or wellness products & products making pain or inflammation claims

Products marketed for joint health or wellness, pain reduction/relief, inflammation reduction/relief, or similar shall not contain any of the following compounds at a concentration greater than 50 μ g/g, verified by testing in accordance with Section 7.4. Other substances which that are not dietary ingredients and have similar biological activity may be adulterants.

Substance

acetaminophen chlorpheniramine dexamethasone diclofenac hydrocortisone ibuprofen indomethacin meloxicam Commented [RB2]: This is an existing table that will be formatted properly when added to the standard. I am sorry if the formatting causes any confusion but as with all ballots the substances highlighted in grey are the ones suggested to add to this existing table.

Revision to NSF/ANSI 173-2024a Issue 123. Revision 1 (September 2025)

Not for publication. This document is part of the NSF standard development process. This draft text is for circulation for review and/or approval by an NSF Standards Committee and has not been published or otherwise officially adopted. All rights reserved. This document may be reproduced for informational purposes only.

methocarbamol naproxen omeprazole piroxicam prednisolone prednisone

5.3.5.4 Sports performance and Dehydroepiandrosterone (DHEA) products

Products marketed for sports performance products, e.g., products optimizing skeletal muscle growth, or as containing DHEA shall not contain any of the following compounds at a concentration greater 50 μ g/g, verified by testing in accordance with Section 7.4. Other substances—which that are not dietary ingredients and have similar biological activity may be adulterants.

5.3.5.5 Blood glucose management and support products

Products marketed for blood glucose, glucose metabolism, or hyperglycemic metabolism, support or similar shall not contain any of the following compounds at a concentration >50 ug/g, verified by testing in accordance with section 7.4. Other substances which are not dietary ingredients and have similar biological activity may be adulterants.

Substance

Buformin

Carbutamide

Glyburide

Metformin

Nateglinide

Phenformin

Pioglitazone

Rosiglitazone

Tolazamide

Tolbutamide

5.3.5.6 Nootropic & Sleep support products

Products marketed nootropic, cognitive, memory, or sleep support or similar shall not contain any of the following compounds at a concentration >50 ug/g, verified by testing in accordance with section 7.4. Other substances that are not dietary ingredients and have similar biological activity may be adulterants.

Commented [RB3]: This table will be formatted to match the style of the standard when it is published.

Revision to NSF/ANSI 173-2024a Issue 123, Revision 1 (September 2025)

Not for publication. This document is part of the NSF standard development process. This draft text is for circulation for review and/or approval by an NSF Standards Committee and has not been published or otherwise officially adopted. All rights reserved. This document may be reproduced for informational purposes only.

Substance

1,4-dimethylamylamine

(DMAA)

4-Amino-3-

phenylbutanoic acid

Adrafinil

Alprazolam

Amphetamine

Aniracetam

Diazepam

Diphenhydramine

Donepezil

Doxepin

Etiracetam

Fonturacetam

Galantamine

Levetiracetam

Meclofenoxate

Methylphenidate

Modafinil

Nefiracetam

Noopept

Oxiracetam

Phenobarbital

Picamilon

Piracetam

Pitolisant

Pyrilamine

Solriamfetol

Zolpidem

Zopiclone

5.3.5.7 Cardiovascular and hypolipidemic support products

Products marketed as cardiovascular and/or hypolipidemic support or similar shall not contain any of the following compounds at a concentration >50 ug/g, verified by testing in accordance with section 7.4. Other substances that are not dietary ingredients and have similar biological activity may be adulterants.

Commented [RB4]: This table will be formatted to match the style of the standard when it is published.

Revision to NSF/ANSI 173-2024a Issue 123, Revision 1 (September 2025)

Not for publication. This document is part of the NSF standard development process. This draft text is for circulation for review and/or approval by an NSF Standards Committee and has not been published or otherwise officially adopted. All rights reserved. This document may be reproduced for informational purposes only.

Substance

Atorvastatin

Cerivastatin

Lovastatin

Mevastatin

Pitavastatin

Pravastatin

Rosuvastatin

Simvastatin

•

•

_

Commented [RB5]: This table will be formatted to match the style of the standard when it is published.

Tracking number 61i199r3 © 2025 NSF

Not for publication. This document is part of the NSF standard development process. This draft text is for circulation for review and/or approval by an NSF Standards Committee and has not been published or otherwise officially adopted. All rights reserved. This document may be reproduced for informational purposes only.

[Note – the recommended changes to the standard which include the current text of the relevant section(s) indicate deletions by use of strikeout and additions by grey highlighting and the most recent revision in yellow highlighting. Rationale Statements are in *italics* and only used to add clarity; these statements will NOT be in the finished publication.]

NSF/ANSI/CAN Standard for Drinking Water Additives -Drinking Water System Components – **Health Effects** 1.3 Normative references Agilent Application Note 5991-4434EN: Determination of 17 Organotin Compounds in Beverages Using Triple Quadrupole GC-MS/MS System Thermo Fisher Scientific Application Note 52099: The Determination of Organotins in Water Using Triple Quadrupole GC-MS/MS 2 Definitions

2.67 organotin: An organometallic chemical compound containing at least one tin-carbon bond.

Issue 199, Revision 3 (September 2025)

Not for publication. This document is part of the NSF standard development process. This draft text is for circulation for review and/or approval by an NSF Standards Committee and has not been published or otherwise officially adopted. All rights reserved. This document may be reproduced for informational purposes only.

Table 3.1 Material-specific analyses

Material type	Required analyses			
Plastic materials				
polyurethane (PUR)	GC/MS, b VOCs, regulated metals a,c			
polyvinyl chloride (PVC) and chlorinated polyvinyl chloride (CPVC)	regulated metals, ^{a,c} phenolics, ^b VOCs, organotin <mark>s</mark> , ^g lead, antimony, ^h residual vinyl chloride monomer (RVCM) ⁱ			
PVC (flexible)	GC/MS, ^b VOCs, regulated metals, ^{a,c} lead, phthalates, ^j RVCM, ^j organotin <mark>s</mark> , ^g zinc ^k			

⁹ The analysis for organotin monomethyltin trichloride, dimethyltin dichloride, monobutyltin trichloride, dibutyltin dichloride, monooctyltin trichloride, and dioctyltin dichloride is required when tin-based stabilizers are used.

Table 3.2

Material specific analyses not listed in Table 3.1 or materials without formulation information (excluding coatings and process media)

Material type	Material specific analyses ^a	Suggested Method ^b
	nylon monomers = 11-aminoundecanoic acid, 1,10-diaminodecane,	LC/UV
plastic materials not listed in Table 3.1	laurolactam, adipic acid, 2-methyl-1,5-pentanediamine organotins monomethyltin trichloride, dimethyltin dichloride, monobutyltin trichloride, dibutyltin dichloride, monooctyltin trichloride, dioctyltin dichloride.	derivatization GC/MS/MS
	sulphone monomer, 4,4'-dichlorodiphenyl sulfone, and diphenyl sulfone	LC/UV
other materials not listed in Table 3.1 without formulation information (excluding coatings and process media)	chlorobenzenediamine, and dichlorobenzenediamine isomers	derivatization GC/ECD
	organotins monomethyltin trichloride, dimethyltin dichloride, monobutyltin trichloride, dibutyltin dichloride, monooctyltin trichloride, dioctyltin dichloride.	derivatization GC/MS/MS
	volatile organic compounds including 2-methylpropene (isobutylene), tetrahydrofuran, cyclohexanone, acetone, 1,3-butadiene, 2-chloro-1,3-butadiene (chloroprene), epichlorohydrin, methyl ethyl ketone, 2-methyl-1,3-butadiene (isoprene), divinyl benzene (vinyl styrene), 2,4-dichlorobenzoic acid, 2-methylpropene (isobutylene) MTBE, alphamethyl styrene, hexafluoropropylene, vinylidene fluoride, hydroquinone monomethyl ether, acrylonitrile	EPA 524.2

Revision to NSF/ANSI/CAN 61-2024 Issue 199, Revision 3 (September 2025)

Not for publication. This document is part of the NSF standard development process. This draft text is for circulation for review and/or approval by an NSF Standards Committee and has not been published or otherwise officially adopted. All rights reserved. This document may be reproduced for informational purposes only.

N-1.7 Analysis methods

- •
- •
- •

N-1.7.3 Metals analysis

Analyses for metals shall be performed, except as otherwise provided for herein, in accordance with currently accepted U.S. Environmental Protection Agency (U.S. EPA) Methods (see 40 C.F.R. Part 141³ and U.S. EPA 600/4-79-020,⁹ *Methods for Chemical Analysis of Water and Wastes*). When no U.S. EPA Method is provided, analyses shall be performed in accordance with *Standard Methods for the Examination of Water and Wastewater* (most current edition). If neither of these two documents addresses the required parameters and matrix, or if an alternate method is desired, method validation shall be completed prior to the application of the method (see Section N-1.7.2.5) 2.59).

- •
- •
- •

N-1.7.4.1 General requirements for analysis of organics

Analyses for organics shall be performed, except as otherwise provided for herein, in accordance with currently accepted U.S. EPA Methods (see 40 C.F.R. Part 141³ and U.S. EPA 600/4-79-020,9 *Methods for Chemical Analysis of Water and Wastes*). When no U.S. EPA Method is provided, analyses shall be performed in accordance with *Standard Methods for the Examination of Water and Wastewater*⁴ (most current edition). If neither of these two documents addresses the required parameters and matrix, or if an alternate method is desired, method validation shall be completed prior to the application of the method (see Section N-1.7.2.5 2.59).

- •
- •

N-1.7.4.6 Organotin analysis

Analysis for organotins monomethyltin trichloride, dimethyltin dichloride, monobutyltin trichloride, dibutyltin dichloride, monooctyltin trichloride, and dioctyltin dichloride shall be performed in accordance with either Thermo Fisher Scientific application note 52099 or Agilent application note 5991-4434EN or an alternate validated method with equivalent sensitivity.

N-1.7.4.67 Per- and polyfluoroalkyl substances analysis

- •
- •
- •

Proposed Revisions to RES-001: Reusable packaging system design standard — Container design and performance

Note: Additions are shown as underlined text and deletions are shown as strikethrough.

A copy of the standard and rationale for changes available upon request. Contact pr3standards@resolve.ngo

10 Labeling and digital requirements

10.3 Container data disclosure

Table 3

Data elements for containers

(See Clause <u>10.3</u>.)

Data element	Data type	Description
Asset product identifier	Numeric	The stock keeping unit (SKU) or product identifier of the reusable asset, e.g., class-level UPC/EAN number or GTIN used to order from the asset manufacturer.
Asset description	Alphanumeric	Description of the asset, e.g., "12 oz reusable plastic cup", "12 oz reusable aluminum lid", "1 L reusable HDPE food container", "300 mL glass bottle".
Reusable asset identifier (if available)	Numeric	The identifier given to the reusable asset just prior to use in a reusable packaging system, e.g., class-level GRAI, instance-level GRAI+Serial component, or MH10 identifier.
Manufacturer	Alphanumeric	Name or brand of the manufacturer of the reusable asset.

Material(s)	Alphanumeric	Materials of construction of the reusable asset by percentage, e.g., X% PET, X% aluminum.
Weight	Numeric	Total weight of the reusable asset, e.g., 75 g with unit of measure.
Volume	Numeric	Capacity of the reusable asset, e.g., 12 oz, 300 mL with unit of measure, or null if a lid or sleeve.
Colour	Alphanumeric	Primary colour of the reusable asset with Pantone <u>CMYK</u> or HEX number (e.g., purple HEX #8A2BE2).
Use	Alphanumeric	Applicable uses that the asset was designed to support, e.g., hot or cold beverages, cold foods.
Country of manufacture	Alphanumeric	ISO 3166 country code of location of asset manufacturing.
Durability	Numeric	Minimum number of uses the reusable asset was designed to withstand (see Clause 4).
Dimensions	Alphanumeric	Overall dimensions of the reusable asset, length, width (or diameter), height, and unit of measure.
Stacking percentage	Numeric	Represents the percentage of nesting when two reusable assets are stacked together. The percentage is defined as the amount of asset height that is absorbed through nesting.

BSR/UL 136, Standard for Safety for Pressure Cookers

1. Cover Misalignment Test

PROPOSAL

- 4.3 The cover shall be constructed to comply with ene of all of the following:
- a) When the cover is opened the maximum normal operating pressure shall be released before the fastening means is fully disengaged;
- b) a) The cover shall be removable only after the pressure within the cooker is zero (0) 0.005 psig (0.034 kPa); or and
- e) b) The opening of the cover when the cooker is under pressure shall not result in hazardous displacement of the cover or escape of steam or water liquid that would result in burn or intervito persons.

8A Cover Misalignment Test

- 8A.1 Pressure cookers shall be constructed so that the container does not build up pressure when the cover is not locked or the cover and the gasket are incorrectly fitted.
- 8A.2 Two samples of each size and type of cooker are to be subjected to this test. Each pressure cooker sample is to be equipped with a calibrated pressure-indicating device as described in 7.4.
- Exception: When a series of pressure cookers is to be investigated in which the body height is the only difference, two representative samples of largest size cooker is to be tested.
- 8A.3 The pressure cooker is to be operated under the conditions in 7.5 7.6. The cover or gasket is to be fitted in the most unfavorable position, including cover adjusted to a position immediately before cover lock position when the cover lock is not fully encaged, and cover and gasket misalignment, and other positions; that may allow the pressure cooker to build up pressure.
- 8A.4 The pressure in the container shall not exceed 0.58 psig (4 kPa). Opening of the cover shall not result in hazardous displacement of the cover or escape of steam or liquid.
- 13.3 The cover locked position of a pressure cooker shall be marked readily visible on the appliance when user closes the cover. The cover locked position shall be obvious to the user, to confirm that the cover is in the locked position.

BSR/UL 142, Standard for Safety for Steel Aboveground Tanks for Flammable and Combustible Liquids

3. Tanks with operating pressure in excess of 1 psi and less than 15 psi

PROPOSAL

1.1 These requirements cover steel primary, secondary and diked type atmospheric storage tanks intended for the storage of noncorrosive, stable flammable and combustible liquids with a specific gravity (spg) not exceeding 1.0 in aboveground applications, except for tanks storing liquids with a specific gravity that exceeds 1.0, covered in Section 12.

These requirements additionally cover steel primary, secondary and diked type atmospheric storage tanks intended for the storage of noncorrosive, stable flammable and combustible liquids which operate at a pressure over 1 psi and less than 6 psi (low pressure tanks) are covered in Section 13A.

13A Tanks Storing Liquids at a Pressure Greater than 1 psi

13A.1 General

13A.1.1 Tanks optionally covered for storage of liquids and that operate at a pressure over 1 psi shall meet the following construction and performance requirements based on the maximum operating pressure identified in the 52.1.1(h) marking.

13A.2 Horizontal Cylindrical Tanks

- 13A.2<u>.1 Tanks</u> shall be limited to liquids with a maximum specific gravity of 1.0 and a maximum pressure of 6 psi.
- 13A.<u>2.2</u>3 The steel thickness of tanks storing liquids at a pressure over 1 psi shall be determined by one of the following methods:
 - a) The tank shall be evaluated per the requirements of Section 43, Hydrostatic Strength Test, except the test pressure shall be three times the rated tank pressure based on the maximum anticipated operational pressure.
 - b) Tank construction shall be evaluated by a Professional Engineer using calculations or by a tank builder using UL approved design tools or guides for approval. The tank design shall be based on using the maximum anticipated operating pressure. The calculations or analysis shall be based on two times the weight of a full tank containing a liquid with a specific gravity of 1.
- 13A.<u>2.3</u>4 Horizontal tank heads shall be flanged flat or dished. Joint types shall be limited to full penetration and complete fusion welds (see Figure 6.2).
- 13A.<u>2.4</u>5 Integral supports for all tanks shall be evaluated per Part IV Tank Supports, except the support load test or evaluations shall be based on two times the weight of a full tank containing the maximum specific gravity load
- 13A.3B Vertical Cylindrical Tanks-Storing Liquids at a Pressure Greater than 1 psi-
- 13B.1 Tanks optionally covered for storage of liquids and that operate at a pressure over 1 psi shall meet the following construction and performance requirements based on the maximum operating pressure identified in the 52.1.1(i) marking.
- 13A.3.1B.2 Tanks shall be limited to liquids with a maximum specific gravity of 1.0 and a maximum pressure of 2.5 psi.

13A.3.2B.3 The steel thickness of tanks storing liquids at a pressure over 1 psi shall be determined by one of the following methods:

- a) For vertical tanks with flat bottoms and without support: Calculate the equivalent height of the tank by adding an additional 2.5 feet of height for each psi of additional operational pressure. The resulting equivalent height shall be used in Table 17.1, footnotes a) and b), to determine the steel thickness.
 - 1) The same method shall be used for determining the secondary tank steel thickness for secondary containment tanks.
 - 21) The tank roof shall meet the thickness requirements of will be constructed in the same manner as the tank floor.
 - 32) The manway assembly shall will be rated for twice the maximum tank pressure by the manway assembly manufacturer. For
- b) The tank shall be evaluated per the requirements of Section 43, Hydrostatic Strength Test, where the test pressure is three times the rated tank pressure based on the maximum anticipated operational pressure.
- c) Tank construction shall be evaluated by a Professional Engineer using calculations or design tools or guides for approval using the maximum anticipated operating pressure. The calculations or analysis shall be based on two times the weight of a full tank containing a liquid with a specific gravity of 1.
- 13<u>A.3.3</u>B.4 Provisions will be provided on vertical tanks to prevent shell movement when the tank is under pressure. This could include anchoring the tank or by elevating the tank floor.
- 13<u>A.3.4</u>B.5 Integral supports for all tanks shall be evaluated per Part IV, Tank Supports, where the support load test or evaluations are based on two times the weight of a full tank containing the maximum specific gravity load.
- 52.1.1 (h) Tanks complying with Section 13A shall be marked with the maximum pressure under which the tank can operate, "Maximum pressure is ______".
- 52.1.1 (i) Tanks complying with Section 13B shall be marked with the maximum pressure under which the tank can operate, "Maximum pressure is ______".

BSR/UL 1699, Standard for Safety for Arc-Fault Circuit-Interrupters

3. Withdrawal of Proposal: Alternative indicator for the Dust Test - Talcum Powder

PROPOSAL

The state of the s