CONTENTS

American National Standards
- Project Initiation Notification System (PINS) ... 2
- Call for Comment on Standards Proposals .. 16
- Final Actions - (Approved ANS) .. 30
- Call for Members (ANS Consensus Bodies) ... 33
- Calls for Participation/Experts .. 37
- Accreditation Announcements (Standards Developers) ... 38
- Meeting Notices (Standards Developers) ... 39
- American National Standards (ANS) Process .. 40
- ANSI Under Continuous Maintenance ... 41
- ANSI-Accredited Standards Developer Contact Information 42

International Standards
- ISO and IEC Draft Standards ... 44
- ISO and IEC Newly Published Standards .. 49
- International Organization for Standardization (ISO) ... 51
- US Participation in International Standards Development Activities 52

Registration of Organization Names in the United States .. 53

Proposed Foreign Government Regulations .. 54
Project Initiation Notification System (PINS)

ANSI Procedures require notification of ANSI by ANSI-accredited standards developers (ASD) of the initiation and scope of activities expected to result in new or revised American National Standards (ANS). Early notification of activity intended to reaffirm or withdraw an ANS and in some instances a PINS related to a national adoption is optional. The mechanism by which such notification is given is referred to as the PINS process. For additional information, see clause 2.4 of the ANSI Essential Requirements: Due Process Requirements for American National Standards.

Following is a list of proposed actions and new ANS that have been received recently from ASDs. Please also review the section in Standards Action entitled "American National Standards Maintained Under Continuous Maintenance" for additional or comparable information with regard to standards maintained under the continuous maintenance option. Use the following Public Document Library url to access PDF & EXCEL reports of approved & proposed ANS: List of Approved and Proposed ANS

Directly and materially affected interests wishing to receive more information or to submit comments are requested to contact the standards developer directly within 30 days of the publication of this announcement.

AISI (American Iron and Steel Institute)
3425 Brighton Court | Bethlehem, PA 18020-1335 www.steel.org
Contact: Jay Larson; jlarson@steel.org

Revision
BSR/AISI S230-202x, Standard for Cold-Formed Steel Framing - Prescriptive Method for One- and Two-Family Dwellings (revision of ANSI/AISI S230-2019)
Stakeholders: Cold-Formed Steel industry.
Project Need: Updates will be made in order to align the standard with the latest industry codes and standards, which are expected to include the 2020 edition AISI design standards and the 2022 edition of ASCE 7.
Scope: This standard provides a prescriptive method for the construction of detached one- and two-family dwellings, townhouses, other attached single-family dwellings, and accessory structures not more than three stories in height using repetitive in-line framing practices.

AISI (American Iron and Steel Institute)
3425 Brighton Court | Bethlehem, PA 18020-1335 www.steel.org
Contact: Jay Larson; jlarson@steel.org

Supplement
Stakeholders: Cold-Formed Steel industry.
Project Need: With new research findings, the current standard will be updated and improved.
Scope: The supplement will clarify the application of safety and resistance factors for the design of filled diaphragms.
Revision

Stakeholders: USDOE, USDOE contractors, USNRC, USNRC licensees, and ISO.
Project Need: It is recognized that the ANS 8.12 standard should be revised to extend the areas of applicability by providing wider range of subcritical data (for various isotopic compositions of MOX and densities of powder or pellets) to cover a wider domain of MOX fuel fabrication and operation. The intent is to make the standard more useful to the user community.
Scope: This standard provides guidance for operations with plutonium-uranium oxide fuel mixtures outside nuclear reactors. The principal objective of this standard is to provide subcritical configuration data for MOX fuel for various isotopic compositions and powder/pellet densities.

ASTM (ASTM International)
100 Barr Harbor Drive | West Conshohocken, PA 19428-2959 www.astm.org
Contact: Laura Klineburger; accreditation@astm.org

New Standard

Stakeholders: Electrical industries.
Project Need: Guidance within this document is to aid designers, shipyards, equipment vendors, and ship owners and operators to provide practices of addressing electrical hazardous area classifications, material characteristics, ignition hazard analysis, design, selection, installation (erection), initial inspection, maintenance & inspections, repair, overhaul, reclamation, and testing of electrical, instrumentation, systems, assemblies, units, and other hazardous area considerations.
Scope: This Guide to emphasize the importance of properly installed and maintained listed or certified safe electrical equipment in hazardous areas in order to reduce the risk of fire or explosion onboard gas-fueled ships.

ASTM (ASTM International)
100 Barr Harbor Drive | West Conshohocken, PA 19428-2959 www.astm.org
Contact: Laura Klineburger; accreditation@astm.org

New Standard

Stakeholders: Olefin-Based Pipe industries.
Project Need: To provide a standard specification for polyethylene drainage pipe and fittings as produced as pipe and fittings with and without recycled material content. Users would be manufacturers of polyethylene drainage pipe and fittings products and end users of polyethylene drainage pipe and fittings products.
Scope: This specification covers the identification of physical properties of polyethylene plastic pipe and fittings products in accordance with a cell classification system. It is not the function of this specification to provide specific engineering data for design purposes, to specify manufacturing tolerances, or to determine suitability for use for a specific application.
AWS (American Welding Society)
8669 NW 36th Street, Suite 130 | Miami, FL 33166-6672 www.aws.org
Contact: Rakesh Gupta; gupta@aws.org

Revision
Stakeholders: Welding industry.
Project Need: Update the standard to the current practices.
Scope: This document establishes standard procedures for determination of moisture content of welding fluxes and welding electrode coverings. The test involves combustion of a sample in an oxygen carrier gas at elevated temperature. Any water evolved from the sample or formed by the combustion process is measured by means of either Karl Fischer titration or infrared detection. The key differences between these methods and traditional thermogravimetric techniques are the inclusion of instrument calibration procedures, system verification checks, and use of more accurate analytical techniques for water detection.

AWS (American Welding Society)
8669 NW 36th Street, Suite 130 | Miami, FL 33166-6672 www.aws.org
Contact: Rakesh Gupta; gupta@aws.org

Revision
BSR/AWS A5.1/A5.1M-202X, Specification for Carbon Steel Electrodes for Shielded Metal Arc Welding (revision of ANSI/AWS A5.1/A5.1M-2012)
Stakeholders: Welding industry.
Project Need: Revising based on latest practices.
Scope: This specification establishes the requirements for classification of carbon steel electrodes for shielded metal arc welding. The requirements include mechanical properties of weld metal, weld metal soundness, and usability of electrode. Requirements for composition of the weld metal, moisture content of low-hydrogen electrode coverings, standard sizes and lengths, marking, manufacturing, and packaging are also included. A guide to the use of the standard is included in an annex. Optional supplemental requirements include improved toughness and ductility, lower moisture contents, and diffusible hydrogen limits. This specification makes use of both U.S. Customary Units and the International System of Units (SI). Since these are not equivalent, each system must be used independently of the other.

AWS (American Welding Society)
8669 NW 36th Street, Suite 130 | Miami, FL 33166-6672 www.aws.org
Contact: Rakesh Gupta; gupta@aws.org

Reaffirmation
Stakeholders: Welding industry.
Project Need: To reaffirm that this standard is still good as is.
Scope: The chemical composition requirements for electrodes and rods for welding cast iron are specified. Copper-base rods used for braze welding of cast iron are not included. Major topics include general requirements, testing, packaging, and application guidelines.
Reaffirmation

Stakeholders: Welding industry.
Project Need: To reaffirm that this standard is still good as is.
Scope: This specification prescribes requirements for the classification of bare magnesium-alloy welding electrodes and rods for use with the gas metal arc, gas tungsten arc, oxyfuel gas, and plasma arc welding processes. Classification is based upon chemical composition of the welding wire. Standard sizes, finish, winding requirements, package forms and weights, product information, and chemical composition limits are specified.

Revision

Stakeholders: Welding industry.
Project Need: Will be revising per current practices.
Scope: This specification prescribes the requirements for classification of surfacing electrodes for shielded metal arc welding. Classification is based upon the chemical composition of the deposited weld metal except for tungsten carbide electrodes, where classification is based on the mesh range, quantity, and composition of the tungsten carbide granules. A guide is appended to the specification as a source of information concerning the classification system employed and intended use of the classified electrodes. This specification makes use of both U.S. Customary Units and the International System of Units (SI). Since these are not equivalent, each system must be used independently of the other.

Revision

Stakeholders: Welding industry.
Project Need: Bringing this standard up to the latest practices.
Scope: This specification provides requirements for the classification of solid and composite carbon steel electrodes and fluxes for submerged arc welding. Electrode classification is based on chemical composition of the electrode for solid electrodes, and chemical composition of the weld metal for composite electrodes. Flux classification is based on the mechanical properties of weld metal produced with the flux and an electrode classified in this standard. Additional requirements are included for sizes, marking, manufacturing, and packaging. The form and usability of the flux are also included. A guide is appended to the specification as a source of information concerning the classification system employed and the intended use of submerged arc fluxes and electrodes. This specification makes use of both U.S. Customary Units and the International System of Units (SI). Since these are not equivalent, each system must be used independently of the other.
AWS (American Welding Society)
8669 NW 36th Street, Suite 130 | Miami, FL 33166-6672 www.aws.org
Contact: Rakesh Gupta; gupta@aws.org

Revision
BSR/AWS A5.18/A5.18M-202X, Specification for Carbon Steel Electrodes and Rods for Gas Shielded Arc Welding
(revision of ANSI/AWS A5.18/A5.18M-2021)
Stakeholders: Welding industry.
Project Need: Updating per latest practices.
Scope: This specification prescribes the requirements for classification of carbon steel electrodes and rods, including solid, composite stranded, and composite metal-cored electrodes for gas-shielded arc welding. Classification is based on chemical composition of the electrode for solid electrodes and rods, chemical composition of weld metal for composite stranded and composite metal-cored electrodes and rods, and the as-welded mechanical properties of the weld metal for each. Additional requirements are included for usability, manufacturing, diameters, lengths, and packaging. A guide is appended to the specification as a source of information concerning the classification system employed and the intended use of the electrodes and rods. This specification makes use of both U.S. Customary Units and the International System of Units (SI). Since these units are not equivalent, each system must be used independently of the other.

AWS (American Welding Society)
8669 NW 36th Street, Suite 130 | Miami, FL 33166-6672 www.aws.org
Contact: Rakesh Gupta; gupta@aws.org

Revision
BSR/AWS A5.23/A5.23M-202X, Specification for Low-Alloy and High-Manganese Steel Electrodes and Fluxes for Submerged Arc Welding (revision of ANSI/AWS A5.23/A5.23M-2021)
Stakeholders: Welding industry.
Project Need: Will update per latest practices.
Scope: This specification provides requirements for the classification of solid and composite carbon steel, low-alloy steel, and high-manganese steel electrodes and fluxes for submerged arc welding. Electrode classification is based on chemical composition of the electrode for solid electrodes, and chemical composition of the weld metal for composite electrodes. Fluxes may be classified using a multiple-pass classification system or a two-run classification system, or both, under this specification. Multiple-pass classification is based on the mechanical properties and the deposit composition of weld metal produced with the flux and an electrode classified herein. Two-run classification is based upon mechanical properties only. Additional requirements are included for sizes, marking, manufacturing, and packaging. The form and usability of the flux are also included. A guide is appended to the specification as a source of information concerning the classification system employed and the intended use of submerged arc fluxes and electrodes. This specification makes use of both U.S. Customary Units and the International System of Units (SI). Since these are not equivalent, each system must be used independently of the other.
AWS (American Welding Society)
8669 NW 36th Street, Suite 130 | Miami, FL 33166-6672
www.aws.org
Contact: Rakesh Gupta; gupta@aws.org

National Adoption
BSR/AWS A4.2M-202X (ISO 8249202x MOD), Standard Procedures for Calibrating Magnetic Instruments to Measure the Delta Ferrite Content of Austenitic and Duplex Ferritic-Austenitic Stainless Steel Weld Metal (national adoption of ISO 8249 with modifications and revision of ANSI/AWS A4.2M-2020 (ISO 8249-2018 MOD))

Stakeholders: Welding professionals.
Scope: Calibration procedures are specified for a number of commercial instruments that can then provide reproducible measurements of the ferrite content of austenitic stainless steel weld metals. Certain of these instruments can be further calibrated for measurements of the ferrite content of duplex ferritic-austenitic stainless steel weld metals. Calibration with primary standards (non-magnetic coating thickness standards from the U.S. National Institute of Standards and Technology) is the preferred method for appropriate instruments. Alternatively, these and other instruments can be calibrated with weld-metal-like secondary standards. Reproducibility of measurement after calibration is specified. Problems associated with accurate determination of ferrite content are described.

National Adoption
BSR/AWS A4.5M/A4.5-2020 (ISO 15792-3-202x MOD), Standard Methods for Classification Testing of Positional Capacity and Root Penetration of Welding Consumables in a Fillet Weld (national adoption of ISO 15792-2 with modifications and revision of ANSI/AWS A4.5M/A4.5-2020 (ISO 15792-3-2011))

Stakeholders: Welding industry.
Project Need: Updating standard based on the revised ISO 15792-2.
Scope: This standard describes preparation and assessment of a fillet weld test piece. Test conditions prescribed and results required should not be considered to be requirements or expectations for a procedure qualification. This specification makes use of both U.S. Customary Units and the International System of Units (SI). Since these are not equivalent, each system must be used independently of the other.

National Adoption
BSR/AWS A5.01M/A5.01-202X (ISO 14344-202X MOD), Welding and Brazing Consumables - Procurement of Filler Metals and Fluxes (national adoption of ISO 14344 with modifications and revision of ANSI/AWS A5.01M/A5.01:2019 (ISO 14344:2010 MOD))

Stakeholders: Welding industry.
Project Need: Will update based on revised ISO 14344.
Scope: This document provides a means by which the information needed for the procurement of welding and brazing consumables to a filler metal specification can be stated clearly, concisely, and completely. It includes a method by which the heat, lot, testing, and certification requirements that are essential to so many of today’s welding and brazing applications can be specified in the procurement document. This specification makes use of both U.S. Customary Units and the International System of Units (SI). Since these are not equivalent, each system must be used independently of the other.
AWS (American Welding Society)
8669 NW 36th Street, Suite 130 | Miami, FL 33166-6672 www.aws.org
Contact: Stephen Borrero; sborrero@aws.org

Revision
Stakeholders: Engineers within the Welding industry.
Project Need: Update the technological advances for reinforcing steel bars.
Scope: This code covers the requirements for welding reinforcing steel in most reinforced concrete applications. It contains a body of rules for the regulations of welding reinforcing steel and provides suitable acceptance criteria for such welds.

AWS (American Welding Society)
8669 NW 36th Street, Suite 130 | Miami, FL 33166-6672 www.aws.org
Contact: Stephen Borrero; sborrero@aws.org

Revision
BSR/AWS G2.5/G2.5M-202x, Guide for the Fusion Welding of Zirconium and Zirconium Alloys (revision of ANSI/AWS G2.5/G2.5M-2012)
Stakeholders: Engineers, students, welders, program managers, government agencies, civil engineers, Automotive industry, Aerospace industry, Marine and Shipbuilding industry, Structural industry, higher education instructors, welding equipment manufacturers, welding filler metal manufacturers, welding consultants, structural steel inspectors and firms, and testing agencies.
Project Need: This document is needed to provide continued proper procedures and instructions for those companies fabricating and using zirconium equipment world-wide.
Scope: The standard Guide for the Fusion Welding of Zirconium and Zirconium Alloys provides instructional guidance for the welding of zirconium and zirconium alloys. This guide explains processes, equipment, materials, workshop practices, joint preparation, welding techniques, tests, and the repair of defects.

B11 (B11 Standards, Inc.)
P.O. Box 690905 | Houston, TX 77269 https://www.b11standards.org/
Contact: Chris Felinski; cfelinski@b11standards.org

Revision
BSR B11.0-202x, Safety of Machinery (revision of ANSI B11.0-2020)
Stakeholders: Machine users, distributors, rebuilders, integrators, and manufacturers.
Project Need: Update to current approaches and technology relevant to safety of machinery.
Scope: This type-A standard applies to new, existing, modified, or rebuilt power-driven machines, not portable by hand while working, that are used to process materials by cutting; forming; pressure; electrical, thermal or optical techniques; lamination; or a combination of these processes. This includes associated equipment used to transfer material or tooling, including fixtures, to assemble/disassemble, and to inspect or test. The associated equipment, including logic controller(s) and associated software or logic together with the machine actuators and sensors, are considered a part of the industrial machinery.
EOS/ESD (ESD Association, Inc.)
7900 Turin Road, Building 3 | Rome, NY 13440 www.esda.org
Contact: Jennifer Kirk; jkirk@esda.org

Revision

Stakeholders: Electronics industry including telecom, consumer, medical, and industrial.
Project Need: The purpose of the document is to establish a methodology for both testing and reporting information associated with transmission line pulse (TLP) testing. This document covers TLP systems applying quasi-rectangular pulses with a wide range of pulse widths and rise times. All such systems are referred to as TLP systems.
Scope: The scope and focus of this document pertain to TLP testing techniques of active and passive (semiconductor) components. The focus of the document is on quasi-static application of TLP testing techniques; however, the techniques can also be applied to study transient behavior of such components.

HSI (Healthcare Standards Institute)
10231 Kotzebue Street | San Antonio, TX 78217 www.hsi.health/
Contact: Veronica Muzquiz Edwards; hboisjoly@ingenesis.com

National Adoption
BSR/HSI/ISO 8184-202x, Immunization Management (identical national adoption of ISO/NP 8184)

Stakeholders: Industry and commerce large industry, industry and commerce SMEs, government, consumers, labor, academic and research bodies, standards application businesses, and non-governmental organizations.
Project Need: The guidelines for safe and effective vaccine administration start from the delivery of the purchased vaccine to the healthcare provider and the organization that will be storing the vaccine. This standard addresses the identification of risks related to the implementation of the above-mentioned stages, which is undoubtedly crucial for the safety and life of the client. The aim of preventative vaccination is both to achieve individual immunity to diseases and to reduce the unwanted health effects that may result from an infectious disease. In addition, they also protect the whole of society against the possibility of infection, i.e., to achieve “herd immunity” which effectively protects everybody. Herd immunity can only be achieved if a sufficiently large proportion of the population is vaccinated. The refusal of preventative vaccinations has two consequences. First, the loss of health after an infectious disease (complications, partial loss of health, and even death). Second, there is an economic impact not only related to healthcare costs, but also when an individual is no longer able to contribute to the active labor force. Until vaccination standards are created, there is a risk of unsafe, inefficient vaccine practices. Over the past year, COVID has shown that not only countries but smaller bodies inside of countries are choosing different ways to handle vaccine administration. The world has yet to see what the proven best practices are. This new standard will have this as its goal.
Scope: A new standard which provides guidance for the safe and effective management of vaccine administration. The standard will gather best practices to address typical risks for this field such as transport, storage, cold chain, education, administration, observation/surveillance systems, and action taken in response to adverse events.
Scope: This document provides a standard notation called Abstract Syntax Notation One (ASN.1) that is used for the definition of data types, values, and constraints on data types. This document defines a number of simple types, with their tags, and specifies a notation for referencing these types and for specifying values of these types; defines mechanisms for constructing new types from more basic types, and specifies a notation for defining such types and assigning them tags, and for specifying values of these types; defines character sets (by reference to other Recommendations and/or International Standards) for use within ASN.1.

Stakeholders: ICT industry.

Project Need: Adoption of this International Standard is beneficial to the ICT industry.

Scope: This document is part of Abstract Syntax Notation One (ASN.1) and provides notation for specifying information object classes, information objects, and information object sets.

Stakeholders: ICT industry.

Project Need: Adoption of this International Standard is beneficial to the ICT industry.

Scope: This document is part of Abstract Syntax Notation One (ASN.1) and provides notation for specifying user-defined constraints, table constraints, and contents constraints.
ITI (INCITS) (InterNational Committee for Information Technology Standards)
700 K Street NW, Suite 600 | Washington, DC 20001 www.incits.org
Contact: Deborah Spittle; comments@standards.incits.org

National Adoption
Stakeholders: ICT industry.
Project Need: Adoption of this International Standard is beneficial to the ICT industry.
Scope: This document is part of Abstract Syntax Notation One (ASN.1) and defines notation for parameterization of ASN.1 specifications.

ITI (INCITS) (InterNational Committee for Information Technology Standards)
700 K Street NW, Suite 600 | Washington, DC 20001 www.incits.org
Contact: Deborah Spittle; comments@standards.incits.org

National Adoption
Stakeholders: ICT industry.
Project Need: Adoption of this International Standard is beneficial to the ICT industry.
Scope: Document specifies a set of basic encoding rules that may be used to derive the specification of a transfer syntax for values of types defined using the notation specified in Rec. ITU-T X.680 | ISO/IEC 8824-1, Rec. ITU-T X.681 | ISO/IEC 8824-2, Rec. ITU-T X.682 | ISO/IEC 8824-3, and Rec. ITU-T X.683 | ISO/IEC 8824-4, collectively referred to as Abstract Syntax Notation One or ASN.1. These basic encoding rules are also to be applied for decoding such a transfer syntax in order to identify the data values being transferred. It also specifies a set of canonical and distinguished encoding rules that restrict the encoding of values to just one of the alternatives provided by the basic encoding rules.

ITI (INCITS) (InterNational Committee for Information Technology Standards)
700 K Street NW, Suite 600 | Washington, DC 20001 www.incits.org
Contact: Deborah Spittle; comments@standards.incits.org

National Adoption
Stakeholders: ICT industry.
Project Need: Adoption of this International Standard is beneficial to the ICT industry.
Scope: Specifies a set of Packed Encoding Rules that may be used to derive a transfer syntax for values of types defined in Rec. ITU-T X.680 | ISO/IEC 8824-1. These Packed Encoding Rules are also to be applied for decoding such a transfer syntax in order to identify the data values being transferred.
ITI (INCITS) (InterNational Committee for Information Technology Standards)
700 K Street NW, Suite 600 | Washington, DC 20001 www.incits.org
Contact: Deborah Spittle; comments@standards.incits.org

National Adoption

Stakeholders: ICT industry.

Project Need: Adoption of this International Standard is beneficial to the ICT industry.

Scope: Defines a notation for specifying encodings of ASN.1 types or of parts of types. It provides several mechanisms for such specification, including: direct specification of the encoding using standardized notation; specification of the encoding by reference to standardized encoding rules; specification of the encoding of an ASN.1 type by reference to an encoding structure; and specification of the encoding using non-ECN notation.

ITI (INCITS) (InterNational Committee for Information Technology Standards)
700 K Street NW, Suite 600 | Washington, DC 20001 www.incits.org
Contact: Deborah Spittle; comments@standards.incits.org

National Adoption

Stakeholders: ICT industry.

Project Need: Adoption of this International Standard is beneficial to the ICT industry.

Scope: Specifies a set of basic XML Encoding Rules (BASIC-XER) that may be used to derive a transfer syntax for values of types defined in Rec. ITU-T X.680 | ISO/IEC 8824-1 and Rec. ITU-T X.681 | ISO/IEC 8824-2. This document also specifies a set of Canonical XML Encoding Rules (CXER) which provide constraints on the basic XML Encoding Rules and produce a unique encoding for any given ASN.1 value. This document further specifies a set of extended XML Encoding Rules (EXTENDED-XER) which adds further encoders options, and also allows the ASN.1 specifier to vary the encoding that would be produced by BASIC-XER. It is implicit in the specification of these encoding rules that they are also used for decoding.

ITI (INCITS) (InterNational Committee for Information Technology Standards)
700 K Street NW, Suite 600 | Washington, DC 20001 www.incits.org
Contact: Deborah Spittle; comments@standards.incits.org

National Adoption

Stakeholders: ICT industry.

Project Need: Adoption of this International Standard is beneficial to the ICT industry.

Scope: Document specifies two versions of a mapping from any XSD Schema into an Abstract Syntax Notation One (ASN.1) schema. The ASN.1 schema for both versions support the same semantics and validate the same set of XML documents. This document specifies the final XER encoding instructions that are to be applied as part of the defined mapping to ASN.1 types, but does not specify which syntactic form is to be used for the specification of those final XER encoding instructions, or the order or manner of their assignment.
National Adoption

Stakeholders: ICT industry.
Project Need: Adoption of this International Standard is beneficial to the ICT industry.
Scope: Specifies a set of Basic Octet Encoding Rules (BASIC-OER) that may be used to derive a transfer syntax for values of the types defined in Rec. ITU-T X.680 | ISO/IEC 8824-1, Rec. ITU-T X.681 | ISO/IEC 8824-2, Rec. ITU-T X.682 | ISO/IEC 8824-3, Rec. ITU-T X.683 | ISO/IEC 8824-4. This document also specifies a set of Canonical Octet Encoding Rules (CANONICAL-OER) which provides constraints on the Basic Octet Encoding Rules and produces a unique encoding for any given ASN.1 value. It is implicit in the specification of these encoding rules that they are also to be used for decoding.

National Adoption

Stakeholders: ICT industry.
Project Need: Adoption of this International Standard is beneficial to the ICT industry.
Scope: Specifies a set of JavaScript Object Notation Encoding Rules (JER) that may be used to derive a transfer syntax for values of types defined in Rec. ITU-T X.680 | ISO/IEC 8824-1, Rec. ITU-T X.681 | ISO/IEC 8824-2, Rec. ITU-T X.682 | ISO/IEC 8824-3 and Rec. ITU-T X.683 | ISO/IEC 8824-4. It is implicit in the specification of these encoding rules that they are also to be used for decoding. The encoding rules specified in this document: are used at the time of communication; are intended for use in circumstances where interoperability with applications using JSON is the major concern in the choice of encoding rules; allow the extension of an abstract syntax by addition of extra values for all forms of extensibility described in Rec. ITU-T X.680 | ISO/IEC 8824-1.
National Adoption
Stakeholders: ICT industry.
Project Need: Adoption of this International Standard is beneficial to the ICT industry.
Scope: Specifies a coding format, referred to as JPEG XT, which is designed primarily for continuous-tone photographic content.

National Adoption
Stakeholders: ICT industry.
Project Need: Adoption of this International Standard is beneficial to the ICT industry.
Scope: Specifies a coding format, referred to as JPEG XT, which is designed primarily for continuous-tone photographic content.

National Adoption
Stakeholders: ICT industry.
Project Need: Adoption of this International Standard is beneficial to the ICT industry.
Scope: Specifies a coding format, referred to as JPEG XT, which is designed primarily for continuous-tone photographic content.

National Adoption
Stakeholders: ICT industry.
Project Need: Adoption of this International Standard is beneficial to the ICT industry.
Scope: Specifies a coding format, referred to as JPEG XT, which is designed primarily for continuous-tone photographic content.
ITI (INCITS) (InterNational Committee for Information Technology Standards)

700 K Street NW, Suite 600 | Washington, DC 20001 www.incits.org

Contact: Deborah Spittle; comments@standards.incits.org

National Adoption

Stakeholders: ICT industry.

Project Need: Adoption of this International Standard is beneficial to the ICT industry.

Scope: Specifies a method for measuring productivity of digital copying devices and multifunctional devices with various copying modes and a single one-sided original. The document is applicable to digital copying devices and multifunctional devices. The document is intended to be used for black and white (B&W) as well as color digital copying devices and multifunctional devices of any underlying marking technology. This document includes instructions for the creation of test charts, test setup procedure, test procedure, and the reporting requirements for the digital copying productivity measurements.

TAPPI (Technical Association of the Pulp and Paper Industry)

15 Technology Parkway South, Suite 115 | Peachtree Corners, GA 30092 www.tappi.org

Contact: William Millians; standards@tappi.org

Reaffirmation

BSR/TAPPI T 573 sp-202x, Accelerated temperature aging of printing and writing paper by dry oven exposure apparatus (reaffirmation of ANSI/TAPPI T 573 sp-2015)

Stakeholders: Manufacturers of pulp, paper, packaging, or related products; consumers or converters of such products; and suppliers of equipment, supplies, or raw materials for the manufacture of such products.

Project Need: To conduct required five-year review of an existing TAPPI/ANSI Standard.

Scope: This standard practice describes a laboratory procedure for accelerating the aging of printing and writing paper within sealed glass tubes through exposure to elevated temperature within an oven. The standard practice applies to all types of printing and writing paper whether it is plain base paper, has internal additives, is coated, is printed or contains any variants of printing and writing paper found in normal usage.

TMA (The Monitoring Association)

7918 Jones Branch Drive, Suite 510 | McLean, VA 22102 www.csaaul.org

Contact: Bryan Ginn; bginn@tma.us

Revision

Stakeholders: Security Monitoring industry.

Project Need: Modify CS-V-01 to be in full harmony with changes that are about to be made to UL 827 to fully incorporate the procedures of CS-V-01.

Scope: This monitoring industry has moved in a direction for over 20 years to better qualify alarm notification to PSAP (ECC) centers, in an attempt to reduce false alarms. This is the next step to build upon what industry has learned. UL 827 is being brought up to date in recognition of the need to further reduce “calls for service” that end up as false alarms. The plan, that is about to take place, is to incorporate the fundamentals of CS-V-01 into UL 827 and in order for this to be done in an easy-to-understand fashion is remove the current exceptions that NRTL recognized systems would be treated differently. Also, there are several typos being addressed.
Call for Comment on Standards Proposals

American National Standards

This section solicits public comments on proposed draft new American National Standards, including the national adoption of ISO and IEC standards as American National Standards, and on proposals to revise, reaffirm or withdraw approval of existing American National Standards. A draft standard is listed in this section under the ANSI-accredited standards developer (ASD) that sponsors it and from whom a copy may be obtained. Comments in connection with a draft American National Standard must be submitted in writing to the ASD no later than the last day of the comment period specified herein. Such comments shall be specific to the section(s) of the standard under review and include sufficient detail so as to enable the reader to understand the commenter’s position, concerns and suggested alternative language, if appropriate. Please note that the ANSI Executive Standards Council (ExSC) has determined that an ASD has the right to require that interested parties submit public review comments electronically, in accordance with the developer’s procedures.

Ordering Instructions for "Call-for-Comment" Listings

1. Order from the organization indicated for the specific proposal.
2. Use the full identification in your order, including the BSR prefix; for example, Electric Fuses BSR/SAE J554.
3. Include remittance with all orders.
4. BSR proposals will not be available after the deadline of call for comment.

Comments should be addressed to the organization indicated, with a copy to the Board of Standards Review, American National Standards Institute, 25 West 43rd Street, New York, NY 10036. e-mail: psa@ansi.org

* Standard for consumer products

Comment Deadline: September 26, 2021

ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.)
180 Technology Parkway, Peachtree Corners, GA 30092 | cking@ashrae.org, www.ashrae.org

Addenda

This addendum adds a new definition to Section 3 and revises Sections 5.1, 5.2, 5.4, 5.8, 9.1, and 10.6.
Click here to view these changes in full
Send comments (copy psa@ansi.org) to: http://www.ashrae.org/standards-research--technology/public-review-drafts

RESNET (Residential Energy Services Network, Inc.)
4867 Patina Court, Oceanside, CA 92057 | rick.dixon@resnet.us, www.resnet.us.com

Addenda

Addendum D adds procedures for calculating a CO2 Rating Index to standard ANSI/RESNET/ICC 301-2019 the standard for calculating an Energy Rating Index.
Click here to view these changes in full
Send comments (copy psa@ansi.org) to: RESNET using the online comment form which is accessed by following the “STANDARDS AND AMENDMENTS CURRENTLY OUT FOR PUBLIC COMMENT” link on webpage: https://www.resnet.us/about/standards/resnet-ansi/
UL (Underwriters Laboratories)
47173 Benicia Street, Fremont, CA 94538 | Marcia.M.Kawate@ul.org, https://ul.org/

Revision

BSR/UL 343-202x, Standard for Safety for Pumps for Oil-Burning Appliances (revision of ANSI/UL 343-2013 (R2017))
The following topic is being recirculated: (1) Addition of biodiesel (B6-B20) requirements for pumps for oil-burning appliances.

Click here to view these changes in full
Send comments (copy psa@ansi.org) to: Follow the instructions in the following website to enter comments into the CSDS Work Area: https://csds.ul.com/Home/ProposalsDefault.aspx

UL (Underwriters Laboratories)
12 Laboratory Drive, Research Triangle Park, NC 27709-3995 | Nicolette.A.Weeks@ul.org, https://ul.org/

Revision

This proposal covers: (1) Vibration and insulation test for exhaust canopy used in mobile food preparation vehicle.

Click here to view these changes in full
Send comments (copy psa@ansi.org) to: Follow the instructions in the following website to enter comments into the CSDS Work Area: https://csds.ul.com/Home/ProposalsDefault.aspx

UL (Underwriters Laboratories)
12 Laboratory Drive, Research Triangle Park, NC 27709-3995 | Nicolette.A.Weeks@ul.org, https://ul.org/

Revision

BSR/UL 1046-202x, Standard for Grease Filters for Exhaust Ducts (August 27, 2021) (revision of ANSI/UL 1046-2012 (R2017))
This proposal covers: (1) Addition of Drop Test to UL 1046.

Click here to view these changes in full
Send comments (copy psa@ansi.org) to: Follow the instructions in the following website to enter comments into the CSDS Work Area: https://csds.ul.com/Home/ProposalsDefault.aspx

Comment Deadline: October 11, 2021

AAMI (Association for the Advancement of Medical Instrumentation)
901 N. Glebe Road, Suite 300, Arlington, VA 22203 | drobertson@aami.org, www.aami.org

Revision

BSR/AAMI PB70-202x, Liquid barrier performance and classification of protective apparel and drapes intended for use in health care facilities (revision of ANSI/AAMI PB70-2012)
Establishes minimum barrier performance requirements, a classification system, and associated labeling requirements for protective apparel, surgical drapes, and drape accessories intended for use in health care facilities.

Single copy price: Free
Obtain an electronic copy from: drobertson@aami.org
Send comments (copy psa@ansi.org) to: Darren Robertson; drobertson@aami.org
Comment Deadline: October 11, 2021

ALI (ASC A14) (American Ladder Institute)

330 N. Wabash Avenue, Suite 2000, Chicago, IL 60611-6610 | info@americanladderinstitute.org, www.americanladderinstitute.org

Reaffirmation

BSR A14.7-2012 (R202x), Standard for Mobile Ladder Stands and Mobile Ladder Stand Platforms (reaffirmation and redesignation of ANSI A14.7-2012)

This standard is to provide reasonable safety for life, limb, and property by establishing requirements for the design, construction, testing, care, maintenance and use of mobile ladder stands and mobile ladder stand platforms, including labeling/marking of these units. It is not the purpose of this standard to specify all the details of construction of mobile ladder stands and mobile ladder stand platforms. These criteria are for the purpose of providing adequate general requirements and testing methods needed for consistency.

Single copy price: $295.00

Obtain an electronic copy from: info@americanladderinstitute.org

Order from: American Ladder Institute, 330 N. Wabash Avenue, Suite 2000, Chicago, IL 60611

Send comments (copy psa@ansi.org) to: info@americanladderinstitute.org

ASC X9 (Accredited Standards Committee X9, Incorporated)

275 West Street, Suite 107, Annapolis, MD 21401 | Ambria.frazier@x9.org, www.x9.org

New Standard

This standard provides requirements, recommendations, and information regarding consumer information, business data, general data protection, and breach notification. Topics addressed within the scope of Part 1: Data Protection include the following:
- NIST Security and Privacy Controls;
- Cryptography and Key Management; and
- Device Management and Security.

Single copy price: Free

Obtain an electronic copy from: ambria.frazier@x9.org

Send comments (copy psa@ansi.org) to: Ambria Frazier; Ambria.frazier@x9.org

ASC X9 (Accredited Standards Committee X9, Incorporated)

275 West Street, Suite 107, Annapolis, MD 21401 | Ambria.frazier@x9.org, www.x9.org

New Standard

This standard provides requirements, recommendations, and information regarding consumer information, data protection, and breach notification. Topics addressed within the scope of Part 2: Breach Notification include the following:
- Data Operations Framework;
- Data Breach Processes; and
- Breach Requirements.

Single copy price: Free

Obtain an electronic copy from: ambria.frazier@x9.org

Send comments (copy psa@ansi.org) to: Ambria Frazier; Ambria.frazier@x9.org
Comment Deadline: October 11, 2021

ASC X9 (Accredited Standards Committee X9, Incorporated)
275 West Street, Suite 107, Annapolis, MD 21401 | Ambria.frazier@x9.org, www.x9.org

Revision
BSR X9.100-10-202x, Paper for MICR Documents (revision of ANSI X9.100-10-2016)
This standard establishes paper specifications for the MICR documents that are used in the US Payments System. While checks, substitute checks (IRDs), and deposit tickets are the primary documents considered in these specifications, users of MICR/OCR E-13B font readers will be well served by applying these specifications to internal documents, when intended for use in reader/sorters.
Single copy price: $60.00
Obtain an electronic copy from: ambria.frazier@x9.org
Send comments (copy psa@ansi.org) to: Ambria Frazier; Ambria.frazier@x9.org

ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.)
180 Technology Parkway, Peachtree Corners, GA 30092 | cking@ashrae.org, www.ashrae.org

Revision
BSR/ASHRAE Standard 41.2-202x, Standard Methods for Air Velocity and Airflow Measurements (revision of ANSI/ASHRAE Standard 41.2-2018)
This revision of ANSI/ASHRAE Standard 41.2-2018 prescribes methods for air velocity and airflow measurement, including consideration of density effects.
Single copy price: $35.00
Obtain an electronic copy from: http://www.ashrae.org/standards-research--technology/public-review-drafts
Order from: standards.section@ashrae.org
Send comments (copy psa@ansi.org) to: http://www.ashrae.org/standards-research--technology/public-review-drafts

ASME (American Society of Mechanical Engineers)
Two Park Avenue, M/S 6-2B, New York, NY 10016-5990 | ansibox@asme.org, www.asme.org

Revision
BSR/ASME STS-1-202x, Steel Stacks (revision of ANSI/ASME STS-1-2017)
The Standard applies to steel stacks; i.e., those stacks where the primary supporting shell is made of steel. It outlines the consideration that must be made for both the mechanical and structural design, such as what consideration must be taken for wind- and seismic-induced vibrations. The document provides guidelines for the selection of material, linings, and coatings, and gives the requirements for lighting and lightning protection based upon existing building and federal codes. Additionally, this Standard gives the requirements for climbing and access based upon current Occupational Safety and Health Administration (OSHA) standards, emphasizes the important areas regarding fabrication and construction, and outlines areas requiring maintenance and inspection following initial operation. Although many of the topics within these guidelines may be used for all stacks, this Standard is intended to provide design guidelines for stacks containing nonflammable gases, such as combustion exhaust gases at low internal pressures.
Single copy price: Free
Obtain an electronic copy from: https://cstools.asme.org/csconnect/PublicReviewPage.cfm
Send comments (copy psa@ansi.org) to: Justin Cassamassino; cassasmassinoj@asme.org
Comment Deadline: October 11, 2021

AWI (Architectural Woodwork Institute)
46179 Westlake Drive, Suite 120, Potomac Falls, VA 20165-5874 | cdermyre@awinet.org, www.awinet.org

New Standard
BSR/AWI 1232-202x, Manufactured Wood Casework (new standard)
Provides standards and tolerances for the quality and fit of manufactured wood casework and related interior finishes. Establishing minimum aesthetic and performance requirements intended to provide a well-defined degree of control over a project's quality of materials and workmanship.
Single copy price: Free
Order from: cdermyre@awinet.org
Send comments (copy psa@ansi.org) to: https://forms.gle/32jPeFSunAdsAXAJ6

B11 (B11 Standards, Inc.)
P.O. Box 690905, Houston, TX 77269 | cfelinski@b11standards.org, https://www.b11standards.org/

Revision
BSR B11.15-202x, Safety Requirements for Pipe, Tube, and Shape Bending Machines (revision of ANSI B11.15-2001 (R2020))
The requirements of this standard apply to any power-driven machine designed for bending pipe, tube, and shapes by means of bending dies, clamp dies, pressure dies, mandrels, wiper dies, vertical bending punches, radius dies, wing dies, and associated tooling.
NOTE: In the context of this standard, “machine” refers to pipe-, tube-, and shape-bending machines.
Single copy price: $100.00
Obtain an electronic copy from: cfelinski@b11standards.org
Send comments (copy psa@ansi.org) to: David Felinski; dfelinski@b11standards.org

BIFMA (Business and Institutional Furniture Manufacturers Association)
678 Front Avenue NW, Grand Rapids, MI 49504 | skooy@bifma.org, www.bifma.org

Reaffirmation
This standard Test Method is intended for determining volatile organic compound (VOCs including aldehydes) emissions from office furniture and seating under environmental and product usage conditions that are typical of those found in buildings.
Single copy price: Free
Obtain an electronic copy from: skooy@bifma.org
Send comments (copy psa@ansi.org) to: Steven Kooy; skooy@bifma.org
Comment Deadline: October 11, 2021

BIFMA (Business and Institutional Furniture Manufacturers Association)
678 Front Avenue NW, Grand Rapids, MI 49504 | skooy@bifma.org, www.bifma.org

Reaffirmation
This standard is intended to provide performance requirements for the emissions of volatile organic compounds (VOCs), including Formaldehyde and Aldehydes, from office furniture and seating. This standard specifies acceptance levels that define low-emitting furniture independent of construction materials, manufacturing processes, mechanical designs, or aesthetic designs. This standard is intended to apply to a newly manufactured product and does not apply to products that have been in use. The acceptance criteria set forth in this Standard were not independently developed or validated by BIFMA, but are the most prevalent criteria in the industry. This Standard is not intended to be a health- or safety-based standard. This standard does not purport to address all of the safety, health, comfort (e.g., odor), and performance concerns, if any, associated with the use of this standard. It is the responsibility of the user of this standard to establish appropriate safety, health, and other performance conditions and to determine the applicability of regulatory limitations prior to use of this standard.
Single copy price: Free
Obtain an electronic copy from: skooy@bifma.org
Send comments (copy psa@ansi.org) to: Steven Kooy; skooy@bifma.org

CSA (CSA America Standards Inc.)
8501 E. Pleasant Valley Road, Cleveland, OH 44131 | ansi.contact@csagroup.org, www.csagroup.org

Reaffirmation
Detailed test and examination criteria for automatic gas ignition systems and components, designed to ignite and reignite an appliance burner(s), for use with natural, manufactured, and mixed gases; liquefied petroleum gases; and LP gas-air mixtures.
Single copy price: Free
Obtain an electronic copy from: ansi.contact@csagroup.org
Send comments (copy psa@ansi.org) to: ansi.contact@csagroup.org

CSA (CSA America Standards Inc.)
8501 E. Pleasant Valley Road, Cleveland, OH 44131 | ansi.contact@csagroup.org, www.csagroup.org

Reaffirmation
Details test and examination criteria for gas appliance sediment traps having a maximum operating gas pressure rating of ¾ psi. A sediment trap is defined as a device intended to protect appliance gas controls from dirt and foreign particles which may be present in gas piping.
Single copy price: Free
Obtain an electronic copy from: ansi.contact@csagroup.org
Send comments (copy psa@ansi.org) to: ansi.contact@csagroup.org
Comment Deadline: October 11, 2021

CSA (CSA America Standards Inc.)
8501 E. Pleasant Valley Road, Cleveland, OH 44131 | ansi.contact@csagroup.org, www.csagroup.org

Reaffirmation
Details test and examination criteria for automatic intermittent pilot ignition systems designed to be adapted to existing continuous pilot burners on listed forced-air heating appliances and boilers equipped with atmospheric burners. These systems may include pilot igniters and cables, pilot flame sensors, associated system controls, two automatic valves in series controlling main burner gas, associated system wiring and pressure regulators. This standard does not apply to a system for use on appliances equipped with power burners or to direct vent appliances.
Single copy price: Free
Obtain an electronic copy from: ansi.contact@csagroup.org
Send comments (copy psa@ansi.org) to: ansi.contact@csagroup.org

CSA (CSA America Standards Inc.)
8501 E. Pleasant Valley Road, Cleveland, OH 44131 | ansi.contact@csagroup.org, www.csagroup.org

Reaffirmation
BSR Z21.87-2007 (R202x) and BSR Z21.87a-2010 (R202x), Automatic gas shutoff devices for hot water supply systems (same as CSA 4.6) (reaffirmation of ANSI Z21.87-2007 (R2017) and ANSI Z21.87a-2010 (R2017))
Details test and examination criteria for automatic gas shutoff valves and devices which operate when the temperature sensing element is at 210 F (99 C) or less.
Single copy price: Free
Obtain an electronic copy from: ansi.contact@csagroup.org
Send comments (copy psa@ansi.org) to: ansi.contact@csagroup.org

CSA (CSA America Standards Inc.)
8501 E. Pleasant Valley Road, Cleveland, OH 44131 | ansi.contact@csagroup.org, www.csagroup.org

Reaffirmation
Details test and examination criteria for manually operated electric gas ignition system which is intended to form an integral part of a gas appliance. An ignition system shall ignite gas at the main or pilot burner using either spark or hot-surface ignition. These ignition systems and components are for use with natural, manufactured and mixed gases; liquefied petroleum; and LP gas-air mixtures.
Single copy price: Free
Obtain an electronic copy from: ansi.contact@csagroup.org
Send comments (copy psa@ansi.org) to: ansi.contact@csagroup.org
Comment Deadline: October 11, 2021

HI (Hydraulic Institute)
6 Campus Drive, Suite 104, Parsippany, NJ 07054-4406 | esuarez@pumps.org, www.pumps.org

Revision
BSR/HI 14.6-202x, Rotodynamic Pumps for Hydraulic Performance Acceptance Tests (revision of ANSI/HI 14.6 -2016)
This standard provides acceptance criteria and uniform procedures for performance, net positive suction head, and hydrostatic pressure testing; and data recording and reporting of test results for rotodynamic pumps. It provides acceptance grades that can be specified for various types of applications. It also defines test procedures that will result in consistent and repeatable results.
Single copy price: $50.00
Obtain an electronic copy from: esuarez@pumps.org
Send comments (copy psa@ansi.org) to: Edgar Suarez; esuarez@pumps.org

NEMA (ASC C137) (National Electrical Manufacturers Association)
1300 N 17th Street, Suite 900, Rosslyn, VA 22209 | Michael.Erbesfeld@nema.org, www.nema.org

Revision
BSR/C137.4-202X, Standard for Digital Interface with Auxiliary Power for Devices (revision of ANSI C137.4-2019)
This standard specifies the requirements for a digital addressable lighting interface between a driver and a device, such as a sensor or communication device. It includes the auxiliary power, electromechanical interface and communication protocol requirements. This standard builds on the interface specified in the IEC 62386 series of standards, by adding specific requirements to enable powering of a device and addressing data exchange.
Single copy price: $84.00
Obtain an electronic copy from: michael.erbesfeld@nema.org
Order from: Michael Erbesfeld; Michael.Erbesfeld@nema.org
Send comments (copy psa@ansi.org) to: Michael Erbesfeld; Michael.Erbesfeld@nema.org

NSF (NSF International)
789 N. Dixboro Road, Ann Arbor, MI 48105-9723 | mleslie@nsf.org, www.nsf.org

Revision
BSR/NSF 55-202x (i58r1), Ultraviolet Microbiological Water Treatment Systems (revision of ANSI/NSF 55-2020)
The purpose of this Standard is to establish minimum requirements for the reduction of microorganisms using ultraviolet radiation (UV). UV water treatment systems covered by this Standard are intended for water that may be either microbiologically safe or microbiologically unsafe. This Standard also specifies the minimum product literature and labeling information that a manufacturer shall supply to authorized representatives and system owners, as well as the minimum service-related obligations that the manufacturer shall extend to system owners.
Single copy price: Free
Send comments (copy psa@ansi.org) to: Monica Leslie; mleslie@nsf.org
Comment Deadline: October 11, 2021

NSF (NSF International)
789 N. Dixboro Road, Ann Arbor, MI 48105-9723 | mleslie@nsf.org, www.nsf.org

Revision

BSR/NSF 58-202x (i91r1), Reverse Osmosis Drinking Water Treatment Systems (revision of ANSI/NSF 58-2020)
The purpose of this Standard is to establish minimum requirements for materials, design and construction, and performance of reverse osmosis drinking water treatment systems. This Standard also specifies the minimum product literature that manufacturers shall supply to authorized representatives and owners, as well as the minimum service-related obligations that manufacturers shall extend to system owners.

Single copy price: Free
Send comments (copy psa@ansi.org) to: Monica Leslie; mleslie@nsf.org

NSF (NSF International)
789 N. Dixboro Road, Ann Arbor, MI 48105-9723 | mleslie@nsf.org, www.nsf.org

Revision

BSR/NSF 62-202x (i43r1), Drinking Water Distillation Systems (revision of ANSI/NSF 62-2020)
This standard establishes minimum materials, design and construction, and performance requirements for point-of-use and point-of-entry drinking-water distillation systems and the components used in these systems. Distillation systems covered by this standard are designed to reduce specific chemical contaminants from potable drinking water supplies. Systems covered under this standard may also be designed to reduce microbiological contaminants, including bacteria, viruses, and cysts, from potable drinking water supplies. It is recognized that a system may be effective in controlling one or more of these contaminants, but systems are not required to control all.

Single copy price: Free
Send comments (copy psa@ansi.org) to: Monica Leslie; mleslie@nsf.org

NSF (NSF International)
789 N. Dixboro Road, Ann Arbor, MI 48105-9723 | aburr@nsf.org, www.nsf.org

Revision

BSR/NSF 332-202x (i9r1), Sustainability Assessment for Resilient Floor Coverings (revision of ANSI/NSF 332-2015)
This sustainability standard establishes a consistent approach to the evaluation and determination of environmentally preferable and sustainable resilient floor coverings. The Standard includes relevant criteria across the product(s) life cycle from raw material extraction through manufacturing, use, and end-of-life management. As used in this Standard, “resilient floor coverings” includes, but is not limited to, vinyl tile, vinyl composition tile, sheet vinyl, rubber, polymeric, and linoleum flooring products in which the wearing surface is non-textile. Also included are flooring accessories such as wall base, moldings, and stair treads.

Single copy price: Free
Send comments (copy psa@ansi.org) to: Andrea Burr; aburr@nsf.org
Comment Deadline: October 11, 2021

NSF (NSF International)
789 N. Dixboro Road, Ann Arbor, MI 48105-9723 | mleslie@nsf.org, www.nsf.org

Revision
BSR/NSF 401-202x (i26r1), Drinking Water Treatment Units - Emerging Compounds/Incidental Contaminants (revision of ANSI/NSF 401-2020)
It is the purpose of this Standard to establish minimum requirements for materials, design and construction, and performance of drinking-water treatment systems that are designed to reduce specific emerging compounds/incidental contaminants in public or private water supplies, such as pharmaceutical, personal care products, and endocrine-disrupting compounds. This Standard also specifies the minimum product literature and labeling information that a manufacturer shall supply to authorized representatives and system owners as well as the minimum service-related obligations that the manufacturer shall extend to system owners.
Single copy price: Free
Send comments (copy psa@ansi.org) to: Monica Leslie; mleslie@nsf.org

RESNET (Residential Energy Services Network, Inc.)
4867 Patina Court, Oceanside, CA 92057 | rick.dixon@resnet.us, www.resnet.us.com

Addenda
Single copy price: $55.00
Obtain an electronic copy from: RESNET’s website by following the “STANDARDS AND AMENDMENTS CURRENTLY OUT FOR PUBLIC COMMENT” link on webpage https://www.resnet.us/about/standards/resnet-ansi/
Order from: Rick Dixon, Standards Manager, RESNET, P.O. Box 4561, Oceanside, CA 92052
Send comments (copy psa@ansi.org) to: RESNET using the online comment form which is accessed by following the “STANDARDS AND AMENDMENTS CURRENTLY OUT FOR PUBLIC COMMENT” link on webpage: https://www.resnet.us/about/standards/resnet-ansi/

Revision
This standard establishes procedures for testing the airtightness of dwelling enclosures, airtightness of space heating and cooling air distribution systems, and the airflow of mechanical ventilation systems. Its primary use is in evaluating the energy performance of homes.
Single copy price: $55.00
Obtain an electronic copy from: RESNET’s website by following the “STANDARDS AND AMENDMENTS CURRENTLY OUT FOR PUBLIC COMMENT” link on webpage https://www.resnet.us/about/standards/resnet-ansi/
Order from: Rick Dixon, Standards Manager, RESNET, P.O. Box 4561, Oceanside, CA 92052
Send comments (copy psa@ansi.org) to: RESNET using the online comment form which is accessed by following the “STANDARDS AND AMENDMENTS CURRENTLY OUT FOR PUBLIC COMMENT” link on webpage: https://www.resnet.us/about/standards/resnet-ansi/
Comment Deadline: October 11, 2021

TAPPI (Technical Association of the Pulp and Paper Industry)

15 Technology Parkway South, Suite 115, Peachtree Corners, GA 30092 | standards@tappi.org, www.tappi.org

Reaffirmation

BSR/TAPPI T 650 om-2015 (R202x), Solids content of black liquor (reaffirmation of ANSI/TAPPI T 650 om-2015)

This method is designed to measure gravimetrically the solids content of weak and strong black liquors as they exist, or will exist, at the point of injection into the recovery furnace. This method can be used to calibrate rapid or routine control procedures. The method will measure the “solids” remaining after removal of water and other nonaqueous volatile materials normally lost in commercial evaporation systems. The sampling procedure is compatible with additional black liquor analytical procedures such as chemical analyses, heating value, and so on.

Single copy price: Free
Obtain an electronic copy from: standards@tappi.org
Order from: standards@tappi.org
Send comments (copy psa@ansi.org) to: William Millians, standards@tappi.org

Revision

BSR/TAPPI T 444 sp-202x, Silver tarnishing by paper and paperboard (revision and redesignation of ANSI/TAPPI T 444 om-2012)

This method is for identifying papers and boards that will tarnish or stain silver. The appearance of the tarnish or stain of silver by a test specimen of the sample is reported, together with the distribution of the tarnishing or staining. Reducible sulfur activity is a common cause of tarnishing. Certain sample types, such as water-repellent or metal-coated papers or board, may require modification of the test procedure. In most cases, water-repellent or metal-coated samples may be tested without wetting the test specimen and by prolonging the time in contact with the silver to at least 24 h. When such sample types are tested, state any modification of the procedure which is used in the report. The principles involved in this test method might be used to test samples for their staining or corrosion properties with respect to other metals, such as steel, copper, nickel, brass, etc. In such cases, it is necessary to use plates or forms of the particular metal or alloy in question and to make such modifications as may be required for the particular purpose. For example, in the case of metal that would rust, the paper might not be wetted; it could instead be heated in an atmosphere of high humidity. Specific details of testing for tarnishing or staining papers are beyond the scope of this test method. This information is given only as examples of extensions of the test method which may be possible.

Single copy price: Free
Obtain an electronic copy from: standards@tappi.org
Order from: standards@tappi.org
Send comments (copy psa@ansi.org) to: William Millians, standards@tappi.org
Comment Deadline: October 11, 2021

UL (Underwriters Laboratories)
333 Pfingsten Road, Northbrook, IL 60062-2096 | alan.t.mcgrath@ul.org, https://ul.org/

National Adoption

BSR/UL 60730-2-6-202X, Standard for automatic electrical controls - Part 2-6: Particular requirements for automatic electrical pressure sensing controls including mechanical requirements (national adoption of IEC 60730-2-6 with modifications and revision of ANSI/UL 60730-2-6-2016)
Adoption of the first amendment to IEC 60730-2-6.
Single copy price: Free
Order from: http://www.shopulstandards.com
Send comments (copy psa@ansi.org) to: Follow the instructions in the following website to enter comments into the CSDS Work Area: https://csds.ul.com/Home/ProposalsDefault.aspx

UL (Underwriters Laboratories)
333 Pfingsten Road, Northbrook, IL 60062-2096 | alan.t.mcgrath@ul.org, https://ul.org/

National Adoption

Adoption of the first amendment to IEC 60730-2-14.
Single copy price: Free
Order from: http://www.shopulstandards.com
Send comments (copy psa@ansi.org) to: Follow the instructions in the following website to enter comments into the CSDS Work Area: https://csds.ul.com/Home/ProposalsDefault.aspx

UL (Underwriters Laboratories)
333 Pfingsten Road, Northbrook, IL 60062 | Elizabeth.Northcott@ul.org, https://ul.org/

Revision

BSR/UL 962-202x, Standard for Safety for Household and Commercial Furnishings (revision of ANSI/UL 962-2020)
(1) Revision to upholstered flammability testing requirements; (2) Revisions to the standard scope to clarify that UL 962 also covers motorized drives for motor-operated furniture; (3) Revisions to the standard scope to specify that UL 2999 applies to individual commercial office furnishings and to delete references to these types of products in the scope of UL 962; (4) Alternative compliance criteria for glass panels used in mirrors; (5) Expansion of the scope to include commercial tables, lab benches, and similar furnishings and to add performance, marking, and instruction requirements specific to these types of furnishings; (6) Replace references to UL 60065 and UL 60950-1 with UL 62368-1, Audio/Video, Information and Communication Technology Equipment - Part 1: Safety Requirements; (7) Revisions to specify that a self-protected combination motor and motor controller complies with Section 30A.4, Controls – Protective Controls; (8) Revision to Section 31.3, Commercial Furnishing Flammability, to clarify the flammability test requirements for commercial furnishings; (9) Addition of new paragraph 24.12 to address the risk of fire or injury to persons due to overheating of equipment located in an enclosed or confined area of a furnishing; (10) Revisions to correct cross reference in paragraph 31.2.2.
Single copy price: Free
Order from: http://www.shopulstandards.com
Send comments (copy psa@ansi.org) to: Follow the instructions in the following website to enter comments into the CSDS Work Area: https://csds.ul.com/Home/ProposalsDefault.aspx
Project Withdrawn

In accordance with clause 4.2.1.3.3 Discontinuance of a standards project of the ANSI Essential Requirements, an accredited standards developer may abandon the processing of a proposed new or revised American National Standard or portion thereof if it has followed its accredited procedures. The following projects have been withdrawn accordingly:

AWS (American Welding Society)

8669 NW 36th Street, Suite 130, Miami, FL 33166-6672 | pportela@aws.org, www.aws.org

BSR/AWS C5.1-199x, Recommended Practices for Plasma Arc Welding (new standard)
Inquiries may be directed to Peter Portela; pportela@aws.org

AWS (American Welding Society)

8669 NW 36th Street, Suite 130, Miami, FL 33166-6672 | pportela@aws.org, www.aws.org

BSR/AWS C5.2-2001 (R202x), Recommended Practices for Plasma Arc Cutting and Gouging (reaffirmation of ANSI/AWS C5.2-2001)
Inquiries may be directed to Peter Portela; pportela@aws.org

AWS (American Welding Society)

8669 NW 36th Street, Suite 130, Miami, FL 33166-6672 | pportela@aws.org, www.aws.org

BSR/AWS C5.4-1993, Recommended Practices for Stud Welding (new standard)
Inquiries may be directed to Peter Portela; pportela@aws.org

AWS (American Welding Society)

8669 NW 36th Street, Suite 130, Miami, FL 33166-6672 | pportela@aws.org, www.aws.org

BSR/AWS C5.7:2000, Recommended Practices for Electroslag Welding (new standard)
Inquiries may be directed to Peter Portela; pportela@aws.org

AWS (American Welding Society)

8669 NW 36th Street, Suite 130, Miami, FL 33166-6672 | pportela@aws.org, www.aws.org

BSR/AWS C5.5/C5.5M-202x, Recommended Practices for Gas Tungsten Arc Welding (revision of ANSI/AWS C5.5/C5.5M-2003)
Inquiries may be directed to Peter Portela; pportela@aws.org

AWS (American Welding Society)

8669 NW 36th Street, Suite 130, Miami, FL 33166-6672 | pportela@aws.org, www.aws.org

BSR/AWS C5.10/C5.10M-202x, Recommended Practices for Shielded Gases for Welding and Cutting (new standard)
Inquiries may be directed to Peter Portela; pportela@aws.org
Project Withdrawn

AWS (American Welding Society)
8669 NW 36th Street, Suite 130, Miami, FL 33166-6672 | pportela@aws.org, www.aws.org

BSR/AWS D10.13/D10.13M-202x, Recommended Practices for the Brazing of Copper Tubing and Fittings for Medical Gas Systems (new standard)
Inquiries may be directed to Peter Portela; pportela@aws.org
Final Actions on American National Standards

The standards actions listed below have been approved by the ANSI Board of Standards Review (BSR) or by an ANSI-Audited Designator, as applicable.

ANS (American Nuclear Society)
555 North Kensington Avenue, La Grange Park, IL 60526 | kmurdoch@ans.org, www.ans.org

Reaffirmation

ASQ (American Society for Quality)
600 N Plankinton Avenue, Milwaukee, WI 53203 | standards@asq.org, www.asq.org

New Standard
ANSI/ASQ ID1-2021, Inspection techniques and requirements - Guidelines (new standard) Final Action Date: 8/23/2021

AWWA (American Water Works Association)
6666 W. Quincy Avenue, Denver, CO 80235 | polson@awwa.org, www.awwa.org

Reaffirmation
ANSI/AWWA C517-2016 (R2021), Resilient-Seated Cast-Iron Eccentric Plug Valves (reaffirmation of ANSI/AWWA C517-2016) Final Action Date: 8/23/2021

Reaffirmation
ANSI/AWWA C541-2016 (R2021), Hydraulic and Pneumatic Cylinder and Vane-Type Actuators for Valves (reaffirmation of ANSI/AWWA C541-2016) Final Action Date: 8/16/2021

Reaffirmation
ANSI/AWWA C542-2016 (R2021), Electric Motor Actuators for Valves and Slide Gates (reaffirmation of ANSI/AWWA C542-2016) Final Action Date: 8/16/2021

Revision
ANSI/AWWA C654-2021, Disinfection of Wells (revision of ANSI/AWWA C654-2013) Final Action Date: 8/23/2021

CTA (Consumer Technology Association)
1919 South Eads Street, Arlington, VA 22202 | vlancaster@cta.tech, www.cta.tech

* Revision

ITI (INCITS) (InterNational Committee for Information Technology Standards)
700 K Street NW, Suite 600, Washington, DC 20001 | comments@standards.incits.org, www.incits.org

National Adoption

NAAMM (National Association of Architectural Metal Manufacturers)
123 College Place, #1101, Norfolk, VA 23510 | wlewis7@cox.net, www.naamm.org

New Standard
ANSI/NAAMM MBG 533-2021, Welding Standards for Fabrication of Steel, Stainless Steel and Aluminum Bar Grating (new standard) Final Action Date: 8/23/2021
NEMA (ASC C8) (National Electrical Manufacturers Association)
1300 North 17th Street, Suite 900, Arlington, VA 22209 | Khaled.Masri@nema.org, www.nema.org

Reaffirmation

Reaffirmation

Revision

NSF (NSF International)
789 N. Dixboro Road, Ann Arbor, MI 48105-9723 | mleslie@nsf.org, www.nsf.org

Revision
ANSI/NSF 42-2021 (i118r1), Drinking Water Treatment Units - Aesthetic Effects (revision of ANSI/NSF 42-2020) Final Action Date: 8/16/2021

Revision
ANSI/NSF 44-2021 (i48r1), Residential Cation Exchange Water Softeners (revision of ANSI/NSF 44-2018) Final Action Date: 8/16/2021

Revision
ANSI/NSF 53-2021 (i137r1), Drinking Water Treatment Units - Health Effects (revision of ANSI/NSF 53-2020) Final Action Date: 8/16/2021

Revision
ANSI/NSF 58-2021 (i95r1), Reverse Osmosis Drinking Water Treatment Systems (revision of ANSI/NSF 58-2020) Final Action Date: 8/16/2021

Revision
ANSI/NSF 62-2021 (i42r1), Drinking Water Distillation Systems (revision of ANSI/NSF 62-2020) Final Action Date: 8/16/2021

Revision
ANSI/NSF 244-2021 (i17r1), Supplemental Microbiological Water Treatment Systems - Filtration (revision of ANSI/NSF 244-2020) Final Action Date: 8/16/2021

Revision
ANSI/NSF 401-2021 (i24r1), Drinking Water Treatment Units - Emerging Compounds/Incidental Contaminants (revision of ANSI/NSF 401-2020) Final Action Date: 8/16/2021

UL (Underwriters Laboratories)
47173 Benicia Street, Fremont, CA 94538 | Linda.L.Phinney@ul.org, https://ul.org/

Revision
ANSI/UL 758-2021, Standard for Safety for Appliance Wiring Material (revision of ANSI/UL 758-2021) Final Action Date: 8/17/2021
Revision
ANSI/UL 867-2021, Standard for Safety for Electrostatic Air Cleaners (revision of ANSI/UL 867-2018) Final Action Date: 8/17/2021

Revision

Revision
ANSI/UL 5085-2-2021, Standard for Safety for Low Voltage Transformers (revision of ANSI/UL 5085-2-2012 (R2017)) Final Action Date: 8/17/2021
Directly and materially interested parties who wish to participate as a member of an ANS consensus body for the standards listed are requested to contact the sponsoring developer directly in a timely manner.

AAMI (Association for the Advancement of Medical Instrumentation)
901 N. Glebe Road, Suite 300, Arlington, VA 22203 | drobertson@aami.org, www.aami.org
Darren Robertson; drobertson@aami.org

BSR/AAMI PB70-202x, Liquid barrier performance and classification of protective apparel and drapes intended for use in health care facilities (revision of ANSI/AAMI PB70-2012)

ASME (American Society of Mechanical Engineers)
Two Park Avenue, M/S 6-2B, New York, NY 10016-5990 | ansibox@asme.org, www.asme.org
Terrell Henry; ansibox@asme.org

BSR/ASME STS-1-202x, Steel Stacks (revision of ANSI/ASME STS-1-2017)

EOS/ESD (ESD Association, Inc.)
7900 Turin Road, Building 3, Rome, NY 13440 | jkirk@esda.org, www.esda.org
Jennifer Kirk; jkirk@esda.org

HI (Hydraulic Institute)
6 Campus Drive, Suite 104, Parsippany, NJ 07054-4406 | esuarez@pumps.org, www.pumps.org
Edgar Suarez; esuarez@pumps.org

BSR/HI 14.6-202x, Rotodynamic Pumps for Hydraulic Performance Acceptance Tests (revision of ANSI/HI 14.6-2016)

ITI (INCITS) (InterNational Committee for Information Technology Standards)
700 K Street NW, Suite 600, Washington, DC 20001 | comments@standards.incits.org, www.incits.org
Deborah Spittle; comments@standards.incits.org

Call for Members (ANS Consensus Bodies)

ITI (INCITS) (InterNational Committee for Information Technology Standards)
700 K Street NW, Suite 600, Washington, DC 20001 | comments@standards.incits.org, www.incits.org

Call for Members (ANS Consensus Bodies)
NSF (NSF International)
789 N. Dixboro Road, Ann Arbor, MI 48105-9723 | mleslie@nsf.org, www.nsf.org
Monica Leslie; mleslie@nsf.org

BSR/NSF 58-202x (i91r1), Reverse Osmosis Drinking Water Treatment Systems (revision of ANSI/NSF 58-2020)

BSR/NSF 62-202x (i43r1), Drinking Water Distillation Systems (revision of ANSI/NSF 62-2020)

BSR/NSF 332-202x (i9r1), Sustainability Assessment for Resilient Floor Coverings (revision of ANSI/NSF 332-2015)

BSR/NSF 401-202x (i26r1), Drinking Water Treatment Units - Emerging Compounds/Incidental Contaminants (revision of ANSI/NSF 401-2020)

TAPPI (Technical Association of the Pulp and Paper Industry)
15 Technology Parkway South, Suite 115, Peachtree Corners, GA 30092 | standards@tappi.org, www.tappi.org
William Millians; standards@tappi.org

BSR/TAPPI T 444 sp-202x, Silver tarnishing by paper and paperboard (revision and redesignation of ANSI/TAPPI T 444 om-2012)

BSR/TAPPI T 573 sp-202x, Accelerated temperature aging of printing and writing paper by dry oven exposure apparatus (reaffirmation of ANSI/TAPPI T 573 sp-2015)

BSR/TAPPI T 650 om-2015 (R202x), Solids content of black liquor (reaffirmation of ANSI/TAPPI T 650 om-2015)
Call for Members (ANS Consensus Bodies)

ANSI Accredited Standards Developer

INCITS Executive Board – ANSI Accredited SDO and US TAG to ISO/IEC JTC 1, Information Technology

The InterNational Committee for Information Technology Standards (INCITS), an ANSI accredited SDO, is the forum of choice for information technology developers, producers and users for the creation and maintenance of formal de jure IT standards. INCITS’ mission is to promote the effective use of Information and Communication Technology through standardization in a way that balances the interests of all stakeholders and increases the global competitiveness of the member organizations.

The INCITS Executive Board serves as the consensus body with oversight of its 40+ Technical Committees. Additionally, the INCITS Executive Board has the international leadership role as the US Technical Advisory Group (TAG) to ISO/IEC JTC 1, Information Technology.

Membership in the INCITS Executive Board is open to all directly and materially affected parties in accordance with INCITS membership rules. To find out more about participating on the INCITS Executive Board, contact Jennifer Garner at jgarner@itic.org or visit http://www.incits.org/participation/membership-info for more information.

Membership in all interest categories is always welcome; however, the INCITS Executive Board seeks to broaden its membership base in the following categories:

- Service Providers
- Users
- Standards Development Organizations and Consortia
- Academic Institutions

ANSI Accredited Standards Developer

SCTE (Society of Cable Telecommunications Engineers)

SCTE, an ANSI-accredited SDO, is the primary organization for the creation and maintenance of standards for the cable telecommunications industry. SCTE’s standards mission is to develop standards that meet the needs of cable system operators, content providers, network and customer premises equipment manufacturers, and all others who have an interest in the industry through a fair, balanced and transparent process.

SCTE is currently seeking to broaden the membership base of its ANS consensus bodies and is interested in new members in all membership categories to participate in new work in fiber-optic networks, advanced advertising, 3D television, and other important topics. Of particular interest is membership from the content (program and advertising) provider and user communities. Membership in the SCTE Standards Program is open to all directly and materially affected parties as defined in SCTE’s membership rules and operating procedures. More information is available at www.scte.org or by e-mail from standards@scte.org.

Membership in the SCTE Standards Program is open to all directly and materially affected parties as defined in SCTE’s membership rules and operating procedures. More information is available at www.scte.org or by e-mail from standards@scte.org.
The American Renewable Energy Standards and Certification Association (ARESCA) is calling for nominations for experts to serve on two new consensus bodies.

- **The National Adoptions Subcommittee**, in alignment with the US TAG for TC88 will focus on the adoption of IEC 61400 series international standards as American National Standards (ANS).

- **The Offshore Wind Safety Subcommittee** will develop new ANS which are needed to enable regulation of the ambitious offshore wind plan.

Experts on each committee will be responsible to give thorough consideration to each subject brought before their Subcommittee for action, to vote on approval or disapproval of each proposal, to contribute his/her expertise in the preparation of standards, and to abide by the applicable rules of ANSI and ARESCA. Such duties may be carried out by attendance at meetings when possible (attendance at meetings is encouraged but not required), by correspondence, and by telephone, teleconference, or other electronic means.

If you wish to nominate a candidate for either or both Subcommittees, please submit your nomination by Friday, October 1, 2021 to George Kelly, the ARESCA Secretary via email (secretary@aresca.us). Self-nominations are welcome. Interested candidates (if they are not already members of the TC88 US TAG) shall furnish the following documentation:

- A biographical statement setting forth the candidates’ relevant qualifications;
- A statement from the candidate’s employer that the organization will support the candidate in connection with their service on the ARESCA Subcommittee(s)

The ARESCA Secretary and SCB will work with the Subcommittee Chairs to consider all potential candidates for the positions identified and to make the appropriate recommendations. Please contact the ARESCA Secretary if you have any questions regarding the nomination process.
Approval of Reaccreditation – ASD
USTMA - U.S. Tire Manufacturers Association
Effective August 24, 2021
The reaccreditation of USTMA - U.S. Tire Manufacturers Association has been approved at the direction of ANSI’s Executive Standards Council, under its recently revised operating procedures for documenting consensus on USTMA-sponsored American National Standards, effective **August 24, 2021**. For additional information, please contact: Jesse Levine, U.S. Tire Manufacturers Association (USTMA) | 1400 K Street, NW, Suite 900, Washington, DC 20005 | (202) 682-4866, JLevine@ustires.org

Public Review of Revised ASD Operating Procedures
AMCA - Air Movement and Control Association
Comment Deadline: August 29, 2021
The AMCA - Air Movement and Control Association, an ANSI Member and Accredited Standards Developer, has submitted revisions to its currently accredited operating procedures for documenting consensus on AMCA-sponsored American National Standards, under which it was last reaccredited in 2018. As the revisions appear to be substantive in nature, the reaccreditation process is initiated. To obtain a copy of the revised procedures or to offer comments, please contact: Joseph Brooks, Air Movement and Control Association (AMCA); 30 West University Drive, Arlington Heights, IL 60004-1893; (847) 394-0150; jbrooks@amca.org

Click here to view/download a copy of the revisions during the public review period.

Please submit any public comments on the revised procedures to AMCA by **August 30, 2021**, with a copy to the ExSC Recording Secretary in ANSI’s New York Office (jthompso@ANSI.org).
Meeting Notices (Standards Developers)

ANSI Accredited Standards Developer
CSA - CSA America Standards Inc.

WebEx Meetings
CSA Group will hold a meeting by WebEx for the Natural Gas Transportation Technical Committee on **Friday, October 1, 2021 from 11 AM to 1 PM EDT**. For more information on the meeting and the agenda, contact Julie Cairns at julie. cairns@csagroup.org

CSA Group will hold a joint meeting by WebEx for the Technical Committees, Gas Appliances and Related Accessories JB101 and Performance & Installation of Gas Burning Appliances & Related Accessories Z21/83, on **Thursday, December 2, 2021 from 9 AM to 5 PM EST**. For more information on the meeting and the agenda, contact Jennifer Hess at jennifer. hess@csagroup.org
American National Standards (ANS) Process

Please visit ANSI’s website (www.ansi.org) for resources that will help you to understand, administer and participate in the American National Standards (ANS) process. Documents posted at these links are updated periodically as new documents and guidance are developed, whenever ANS-related procedures are revised, and routinely with respect to lists of proposed and approved ANS. The main ANS-related link is www.ansi.org/asd and here are some direct links as well as highlights of information that is available:

Where to find Procedures, Guidance, Interpretations and More...

Please visit ANSI’s website (www.ansi.org)

- ANSI Standards Action (weekly public review announcements of proposed ANS and standards developer accreditation applications, listing of recently approved ANS, and proposed revisions to ANS-related procedures): www.ansi.org/standardsaction
- ANSI Procedures, ExSC Interpretations and Guidance (including a slide deck on how to participate in the ANS process and the BSR-9 form): www.ansi.org/asd
- Lists of ANSI-Accredited Standards Developers (ASDs), Proposed ANS and Approved ANS: www.ansi.org/asd
- American National Standards Key Steps: www.ansi.org/anskeysteps
- American National Standards Value: www.ansi.org/ansvalue
- Information about standards Incorporated by Reference (IBR): https://ibr.ansi.org/
- ANSI - Education and Training: www.standardslearn.org

If you have a question about the ANS process and cannot find the answer, please email us at: psa@ansi.org. Please also visit Standards Boost Business at www.standardsboostbusiness.org for resources about why standards matter, testimonials, case studies, FAQs and more.

If you are interested in purchasing an American National Standard, please visit https://webstore.ansi.org
American National Standards Under Continuous Maintenance

The ANSI Essential Requirements: Due Process Requirements for American National Standards provides two options for the maintenance of American National Standards (ANS): periodic maintenance (see clause 4.7.1) and continuous maintenance (see clause 4.7.2). Continuous maintenance is defined as follows:

The standard shall be maintained by an accredited standards developer. A documented program for periodic publication of revisions shall be established by the standards developer. Processing of these revisions shall be in accordance with these procedures. The published standard shall include a clear statement of the intent to consider requests for change and information on the submittal of such requests. Procedures shall be established for timely, documented consensus action on each request for change and no portion of the standard shall be excluded from the revision process. In the event that no revisions are issued for a period of four years, action to reaffirm or withdraw the standard shall be taken in accordance with the procedures contained in the ANSI Essential Requirements.

The Executive Standards Council (ExSC) has determined that for standards maintained under the Continuous Maintenance option, separate PINS announcements are not required. The following ANSI Accredited Standards Developers have formally registered standards under the Continuous Maintenance option.

- AAMI (Association for the Advancement of Medical Instrumentation)
- AARST (American Association of Radon Scientists and Technologists)
- AGA (American Gas Association)
- AGSC (Auto Glass Safety Council)
- ASC X9 (Accredited Standards Committee X9, Incorporated)
- ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.)
- ASME (American Society of Mechanical Engineers)
- ASTM (ASTM International)
- GBI (Green Building Initiative)
- HL7 (Health Level Seven)
- IES (Illuminating Engineering Society)
- ITI (InterNational Committee for Information Technology Standards)
- MHI (Material Handling Industry)
- NAHBRC (NAHB Research Center, Inc.)
- NBBPVI (National Board of Boiler and Pressure Vessel Inspectors)
- NCPDP (National Council for Prescription Drug Programs)
- NEMA (National Electrical Manufacturers Association)
- NISO (National Information Standards Organization)
- NSF (NSF International)
- PRCA (Professional Ropes Course Association)
- RESNET (Residential Energy Services Network, Inc.)
- SAE (SAE International)
- TCNA (Tile Council of North America)
- TIA (Telecommunications Industry Association)
- UL (Underwriters Laboratories)

To obtain additional information with regard to these standards, including contact information at the ANSI Accredited Standards Developer, please visit ANSI Online at wwwansi.org/asd, select “American National Standards Maintained Under Continuous Maintenance.” Questions? psa@ansi.org.
The addresses listed in this section are to be used in conjunction with standards listed in PINS, Call for Comment, Call for Members and Final Actions. This section is a list of developers who have submitted standards for this issue of Standards Action – it is not intended to be a list of all ANSI-Accredited Standards Developers. Please send all address corrections to the PSA Department at psa@ansi.org.

<table>
<thead>
<tr>
<th>ANSI-Accredited Standards Developers (ASD) Contacts</th>
</tr>
</thead>
</table>
| **AAMI**
Association for the Advancement of Medical Instrumentation
901 N. Glebe Road, Suite 300
Arlington, VA 22203
www.aami.org
Darren Robertson
drobertson@aami.org |
| **ASHRAE**
American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.
180 Technology Parkway
Peachtree Corners, GA 30092
www.ashrae.org
Carmen King
ciking@ashrae.org|
| **ASME**
American Society of Mechanical Engineers
Two Park Avenue, M/S 6-2B
New York, NY 10016
www.asme.org
Terrell Henry
ansibox@asme.org |
| **ASQ**
American Society for Quality
600 N Plankinton Avenue
Milwaukee, WI 53203
www.asq.org
Julie Sharp
standards@asq.org |
| **ASTM**
ASTM International
100 Barr Harbor Drive
West Conshohocken, PA 19428
www.astm.org
Laura Klineburger
accreditation@astm.org |
| **AWI**
Architectural Woodwork Institute
46179 Westlake Drive, Suite 120
Potomac Falls, VA 20165
www.awinet.org
Cheryl Dermyre
cdermyre@awinet.org |
| **AWS**
American Welding Society
8669 NW 36th Street, Suite 130
Miami, FL 33166
www.aws.org |
| **AISI**
American Iron and Steel Institute
3425 Brighton Court
Bethlehem, PA 18020
www.steel.org
Jay Larson
jiarson@steel.org |
| **ALI (ASC A14)**
American Ladder Institute
330 N. Wabash Avenue, Suite 2000
Chicago, IL 60611
www.americanladderinstitute.org
Pam O’Brien
info@americanladderinstitute.org |
| **AWWA**
American Water Works Association
6666 W. Quincy Avenue
Denver, CO 80235
www.awwa.org
Paul Olson
polson@awwa.org |
| **B11**
B11 Standards, Inc.
P.O. Box 690905
Houston, TX 77269
https://www.b11standards.org/
Chris Felinski
cfelinski@b11standards.org |
| **BIFMA**
Business and Institutional Furniture Manufacturers Association
678 Front Avenue NW
Grand Rapids, MI 49504
www.bifma.org
Steven Kooy
skooy@bifma.org |
| **CSA**
CSA America Standards Inc.
8501 E. Pleasant Valley Road
Cleveland, OH 44131
www.csagroup.org
David Zimmerman
ansi.contact@csagroup.org |
| **CTA**
Consumer Technology Association
1919 South Eads Street
Arlington, VA 22202
www.cta.tech
Veronica Lancaster
vlancaster@cta.tech |
ANSI-Accredited Standards Developers Contact Information

EOS/ESD
ESD Association, Inc.
7900 Turin Road, Building 3
Rome, NY 13440
www.esda.org
Jennifer Kirk
jkirk@esda.org

HI
Hydraulic Institute
6 Campus Drive, Suite 104
Parsippany, NJ 07054
www.pumps.org
Edgar Suarez
esuarez@pumps.org

HSI
Healthcare Standards Institute
10231 Kotzebue Street
San Antonio, TX 78217
www.hsi.health/
Veronica Muzquiz Edwards
hboisjoly@ingenesis.com

ITI (INCITS)
InterNational Committee for Information Technology Standards
700 K Street NW, Suite 600
Washington, DC 20001
www.incits.org
Deborah Spittle
comments@standards.incits.org

NAAMM
National Association of Architectural Metal Manufacturers
123 College Place, #1101
Norfolk, VA 23510
www.naamm.org
Vernon (Wes) Lewis
wlewis7@cox.net

NEMA (ASC C8)
National Electrical Manufacturers Association
1300 North 17th Street, Suite 900
Arlington, VA 22209
www.nema.org
Khaled Masri
Khaled.Masri@nema.org

NSF
NSF International
789 N. Dixboro Road
Ann Arbor, MI 48105
www.nsf.org
Andrea Burr
aburr@nsf.org
Monica Leslie
mleslie@nsf.org

RESNET
Residential Energy Services Network, Inc.
4867 Patina Court
Oceanside, CA 92057
www.resnet.us.com
Richard Dixon
rick.dixon@resnet.us

TAPPI
Technical Association of the Pulp and Paper Industry
15 Technology Parkway South, Suite 115
Peachtree Corners, GA 30092
www.tappi.org
William Millians
standards@tappi.org

UL
Underwriters Laboratories
333 Pfingsten Road
Northbrook, IL 60062
https://ul.org/
Doreen Stocker
Doreen.Stocker@ul.org

UL
Underwriters Laboratories
12 Laboratory Drive, P.O. Box 13995
Research Triangle Park, NC 27709
https://ul.org/
Alan McGrath
alan.t.mcgrath@ul.org
Elizabeth Northcott
Elizabeth.Northcott@ul.org
Megan Monsen
megan.monsen@ul.org

UL
Underwriters Laboratories
47173 Benicia Street
Fremont, CA 94538
https://ul.org/
Linda Phinney
Linda.L.Phinney@ul.org
Marcia Kawate
Marcia.M.Kawate@ul.org

UL
Underwriters Laboratories
12 Laboratory Drive
Research Triangle Park, NC 27709
https://ul.org/
Anne Marie Jacobs
annemarie.jacobs@ul.org

Nicolette Weeks
Nicolette.A.Weeks@ul.org
ISO & IEC Draft International Standards

This section lists proposed standards that the International Organization for Standardization (ISO) and the International Electrotechnical Commission (IEC) are considering for approval. The proposals have received substantial support within the technical committees or subcommittees that developed them and are now being circulated to ISO and IEC members for comment and vote. Standards Action readers interested in reviewing and commenting on these documents should order copies from ANSI.

COMMENTS
Comments regarding ISO documents should be sent to ANSI’s ISO Team (isot@ansi.org); comments on ISO documents must be submitted electronically in the approved ISO template and as a Word document as other formats will not be accepted. Those regarding IEC documents should be sent to Tony Zertuche, General Secretary, USNC/IEC, at ANSI’s New York offices (tzturche@ansi.org). The final date for offering comments is listed after each draft.

ORDERING INSTRUCTIONS
ISO and IEC Drafts can be made available by contacting ANSI’s Customer Service department. Please e-mail your request for an ISO or IEC Draft to Customer Service at sales@ansi.org. When making your request, please provide the date of the Standards Action issue in which the draft document you are requesting appears.

ISO Standards

Additive manufacturing (TC 261)
ISO/ASTM FDIS 52900, Additive manufacturing - General principles - Fundamentals and vocabulary - 11/12/2021, $93.00

Ageing societies (TC 314)
ISO/FDIS 25551, Ageing societies - General requirements and guidelines for career-inclusive organizations - 11/12/2021, $82.00

Agricultural food products (TC 34)
ISO/DIS 16577, Molecular biomarker analysis - Vocabulary for molecular biomarker analytical methods in agriculture and food production - 11/12/2021, $125.00

Brand evaluation (TC 289)
ISO/DIS 20671-2.2, Brand evaluation - Part 2: Implementation and reporting - 10/7/2021, $77.00

Clinical laboratory testing and in vitro diagnostic test systems (TC 212)
ISO/DIS 15189, Medical laboratories - Requirements for quality and competence - 11/12/2021, $125.00

Document imaging applications (TC 171)
ISO/DIS 4669, Document management - Information classification, marking and handling - 11/12/2021, $107.00

ISO/DIS 22550, Document management - AFP interchange for PDF - 11/12/2021, $98.00

Documents and data elements in administration, commerce and industry (TC 154)
ISO/DIS 9735-10, Electronic data interchange for administration, commerce and transport (EDIFACT) - Application level syntax rules (Syntax version number: 4, Syntax release number: 2) - Part 10: Syntax service directories - 11/12/2021, $146.00

Fine ceramics (TC 206)
ISO/FDIS 5712, Fine ceramics (advanced ceramics, advanced technical ceramics) - Method for measuring the power generation characteristics of piezoelectric resonant device for stand-alone power source - 11/7/2021, $67.00

Fluid power systems (TC 131)
ISO/FDIS 23840, Water hydraulics - Water-hydraulic pumps - Methods of testing and representing basic steady-state performance - 11/12/2021, $62.00

Foundry machinery (TC 306)
ISO/DIS 23472-5, Foundry machinery - Vocabulary - Part 5: Cupola furnaces and pouring devices and ladles - 11/12/2021, $67.00

Furniture (TC 136)
ISO/FDIS 23769, Furniture - Mattresses - Test methods for the determination of functional characteristics - 11/12/2021, $67.00

Gas cylinders (TC 58)
ISO/FDIS 9809-4, Gas cylinders - Design, construction and testing of refillable seamless steel gas cylinders and tubes - Part 4: Stainless steel cylinders with an Rm value of less than 1 100 MPa - 11/12/2021, $125.00

Health Informatics (TC 215)
ISO 11615/DAmd1, Health informatics - Identification of medicinal products - Data elements and structures for the unique identification and exchange of regulated medicinal product information - Amendment 1 - 11/7/2021, $29.00

Internal combustion engines (TC 70)
ISO/DIS 7967-11, Reciprocating internal combustion engines - Vocabulary of components and systems - Part 11: Fuel systems - 11/12/2021, $82.00
Machine tools (TC 39)
ISO/DIS 10791-2, Test conditions for machining centres - Part 2: Geometric tests for machines with vertical spindle (vertical Z-axis) - 11/12/2021, $165.00

Nuclear energy (TC 85)
ISO/ASTM DIS 51539, Guidance for use of radiation-sensitive indicators - 11/12/2021, $33.00

Occupational health and safety management systems (TC 283)
ISO/DIS 45002, Occupational health and safety management systems - General guidelines for the implementation of ISO 45001:2018 - 11/5/2021, $146.00

Paints and varnishes (TC 35)
ISO/DIS 11127-6, Preparation of steel substrates before application of paints and related products - Test methods for non-metallic blast-cleaning abrasives - Part 6: Determination of water-soluble contaminants by conductivity measurement - 11/13/2021, $33.00

Paper, board and pulps (TC 6)
ISO/FDIS 7213, Pulps - Sampling for testing - 11/12/2021, $33.00

Personal safety - Protective clothing and equipment (TC 94)
ISO/FDIS 23407, Protective gloves against thermal risks (heat and/or fire) - 11/12/2021, $77.00
ISO/DIS 16976-1, Respiratory protective devices - Human factors - Part 1: Metabolic rates and respiratory flow rates - 11/12/2021, $77.00

Photography (TC 42)
ISO/FDIS 18947-1, Imaging materials and prints - Abrasion resistance - Part 1: General rub testing methods - 11/12/2021, $77.00

Plain bearings (TC 123)
ISO/DIS 7905-4.2, Plain bearings - Bearing fatigue - Part 4: Tests on half-bearings of a metallic multilayer bearing material - 10/11/2021, $53.00

Pulleys and belts (including veebelts) (TC 41)
ISO/DIS 13050, Synchronous belt drives - Metric pitch, curvilinear profile systems G, H, R and S, belts and pulleys - 11/12/2021, $125.00

Road vehicles (TC 22)

Ships and marine technology (TC 8)
ISO/ASTM DIS 23314-2, Ships and marine technology - Ballast water management systems (BWMS) - Part 2: Risk assessment and risk reduction of BWMS using electrolytic methods - 11/12/2021, $93.00
ISO/DIS 23678-1, Service personnel for the maintenance, thorough examination, operational testing, overhaul and repair of lifeboats (including free-fall lifeboats) and rescue boats (including fast rescue boats), launching appliances and release gear - Part 1: General requirements for training providers - 11/12/2021, $93.00
ISO/DIS 23678-2, Service personnel for the maintenance, thorough examination, operational testing, overhaul and repair of lifeboats (including free-fall lifeboats) and rescue boats (including fast rescue boats), launching appliances and release gear - Part 2: Service personnel initial training - 11/12/2021, $88.00
ISO/DIS 23678-3, Service personnel for the maintenance, thorough examination, operational testing, overhaul and repair of lifeboats (including free-fall lifeboats) and rescue boats (including fast rescue boats), launching appliances and release gear - Part 3: Level 1 technical training - 11/12/2021, $112.00
ISO/DIS 23678-4, Service personnel for the maintenance, thorough examination, operational testing, overhaul and repair of lifeboats (including free-fall lifeboats) and rescue boats (including fast rescue boats), launching appliances and release gear - Part 4: Level 2 in-field competence - 11/12/2021, $125.00

Solid biofuels (TC 238)
ISO/DIS 18134-1, Solid biofuels - Determination of moisture content - Oven dry method - Part 1: Total moisture - Reference method - 11/8/2021, $40.00

Sterilization of health care products (TC 198)
ISO/DIS 13004, Sterilization of health care products - Radiation - Substantiation of selected sterilization dose: Method VDmaxSD - 11/12/2021, $125.00

Sustainable development in communities (TC 268)
ISO/DIS 37108, Sustainable cities and communities - Business districts - Guidance for practical local implementation of ISO 37101 - 11/12/2021, $134.00

Textiles (TC 38)
ISO/FDIS 6330, Textiles - Domestic washing and drying procedures for textile testing - 11/12/2021, $107.00
ISO/DIS 24040, Textiles - Determination of certain benzotriazole compounds - 11/12/2021, $58.00
ISO & IEC Draft International Standards

Tourism and related services (TC 228)
ISO/DIS 24063, Recreational diving services - Requirements for rebreather diver training - No-decompression diving - 11/12/2021, $67.00
ISO/DIS 24642, Recreational diving services - Requirements for rebreather diver training - Decompression diving to 45 m - 11/12/2021, $77.00

Traditional Chinese medicine (TC 249)
ISO/FDIS 18666, Traditional Chinese medicine - General requirements of moxibustion devices - 11/12/2021, $58.00

Transport information and control systems (TC 204)
ISO/FDIS 20529-2, Intelligent transport systems - Framework for Green ITS (G-ITS) standards - Part 2: Integrated mobile service applications - 11/12/2021, $134.00

Vacuum technology (TC 112)
ISO/DIS 24477, Vacuum technology - Vacuum gauges - Specifications, calibration and measurement uncertainties for spinning rotor gauges - 11/6/2021, $58.00

Water quality (TC 147)
ISO/FDIS 8466-1, Water quality - Calibration and evaluation of analytical methods - Part 1: Linear calibration function - 11/12/2021, $112.00

ISO/IEC JTC 1, Information Technology

ISO/IEC 23090-8/DAmd2, Information technology - Coded representation of immersive media - Part 8: Network based media processing - Amendment 2: MPE capabilities, split-rendering support, and other enhancements - 11/6/2021, $125.00
ISO/IEC DIS 20071-5, Information technology - User interface component accessibility - Part 5: Accessible user interface for accessibility settings on information devices - 11/6/2021, $98.00
ISO/IEC DIS 23008-3, Information technology - High efficiency coding and media delivery in heterogeneous environments - Part 3: 3D audio - 11/12/2021, $311.00
ISO/IEC DIS 29138-3, Information technology - User interface accessibility - Part 3: Guidance on user needs mapping - 11/7/2021, $93.00
ISO/IEC DIS 29192-8, Information security - Lightweight cryptography - Part 8: Authenticated encryption - 11/12/2021, $71.00
ISO/IEC DIS 21000-23, Information technology - Multimedia framework (MPEG-21) - Part 23: Smart Contracts for Media - 11/7/2021, $134.00

IEC Standards

3/1525/DPAS, IEC PAS 63406 ED1: Draft proposal for a PAS on Intelligent Information Request and Delivery Specification (iiRDS) - A Process Model for Information Architecture, 10/15/2021
45A/1400/CD, IEC 63272 ED1: Nuclear facilities - Electrical power systems - AC interruptible power supply systems, 11/12/2021
61/6365/FDIS, IEC 60335-2-49 ED5: Household and similar electrical appliances - Safety - Part 2-49: Particular requirements for commercial electric appliances for keeping food and crockery warm, 10/01/2021
90/484/FDIS, IEC 61788-22-2 ED1: Normal state resistance and critical current measurement - High-Tc Josephson junction, 10/01/2021
94/535/CD, IEC 62246-4 ED1: Reed switches - Part 4: Application in conjunction with Magnetic Actuator used for Magnetic Sensing Devices, 10/15/2021
104/912/DTR, IEC TR 62131-8 ED1: Environmental conditions - Vibration and shock of electrotechnical equipment - Part 8: Transportation by Ship, 10/15/2021
105/859/CDV, IEC 62282-4-101 ED1: Fuel cell technologies - Part 4-101: Fuel cell power systems for propulsion other than road vehicles and auxiliary power units (APU) - Fuel cell power systems for electrically powered industrial trucks - Safety, 11/12/2021
124/152/CDV, IEC 63203-801-2 ED1: Wearable electronic devices and technologies - Part 801-2: Smart Body Area Network (SmartBAN) - Low Complexity Medium Access Control (MAC) for SmartBAN, 11/12/2021
JTC1-SC41/245/NP, PNW JTC1-SC41-245 ED1: Internet of Things (IoT) - Functional requirements to figure out the status of self-quarantine through Internet of Things data interfaces, 11/12/2021

Audio, video and multimedia systems and equipment (TC 100)
100/3615/CDV, IEC 63245-2 ED1: Spatial wireless power transfer based on multiple magnetic resonances (SWPT-MMR) - Part 2: Reference model (TA 15), 11/12/2021

Electric cables (TC 20)
20/1970/FDIS, IEC 63294 ED1: Test methods for electric cables with rated voltages up to and including 450/750 V, 10/01/2021
Electric traction equipment (TC 9)
9/2736/CVD, IEC 63076/AMD1 ED1: Amendment 1 - Railway applications - Rolling stock - Electrical equipment in trolley buses - Safety requirements and current collection systems, 11/12/2021

Electrical equipment in medical practice (TC 62)
62C/816/CD, IEC 63321 ED1: Medical electrical equipment - Functional performance characteristics for X-ray-based image-guided radiotherapy equipment, 11/12/2021

Electrical installations of ships and of mobile and fixed offshore units (TC 18)
18/1734/FDIS, IEC 60092-503 ED3: Electrical installations in ships - Part 503: Special features - AC supply systems with voltages in the range of above 1 kV up to and including 36 kV, 10/01/2021

Environmental conditions, classification and methods of test (TC 104)
104/909/CD, IEC 60068-2-17 ED5: Basic environmental testing procedures - Part 2-17: Tests - Test Q: Sealing, 11/12/2021
104/910/CD, IEC 60068-3-4 ED2: Environmental testing - Part 3-4: Supporting documentation and guidance - Damp heat tests, 11/12/2021
104/911/CD, IEC 60068-3-1 ED3: Environmental testing - Part 3-1: Supporting documentation and guidance - Cold and dry heat tests, 11/12/2021

Fibre optics (TC 86)
86B/4491/CVD, IEC 61300-2-18 ED3: Fibre optic interconnecting devices and passive components - Basic test and measurement procedures - Part 2-18: Tests - Dry heat, 11/12/2021

Flat Panel Display Devices (TC 110)
110/1348/CD, IEC 62629-52-1 ED1: 3D display devices - Part 52-1: Fundamental measurement methods of aerial display - Optical, 10/15/2021

Fluids for electrotechnical applications (TC 10)
10/1149/CDV, IEC 60867 ED3: Insulating liquids - Specifications for unused liquids based on synthetic aromatic hydrocarbons, 11/12/2021

Lamps and related equipment (TC 34)
34D/1622/CD, IEC 62722-1 ED2: Luminaire performance - Part 1: General requirements, 11/12/2021

Maritime navigation and radiocommunication equipment and systems (TC 80)
80/1005/CDV, IEC 63173-2 ED1: Maritime navigation and radiocommunication equipment and systems - Data interface - Part 2: Secure communication between ship and shore (SECOM), 11/12/2021

Nuclear instrumentation (TC 45)
45A/1399/CD, IEC/IEEE 63332-387 ED1: Nuclear facilities - Electrical power systems - Part 387: Diesel generator units applied as standby power sources, 11/12/2021
45A/1401/CD, IEC 63374 ED1: Nuclear power plants - Instrumentation systems important to safety - Characteristic and test methods of nuclear reactor reactivity meter, 11/12/2021

Power electronics (TC 22)
22F/651/CD, IEC TR 62001-2 ED2: High-voltage direct current (HVDC) systems - Guidance to the specification and design evaluation of AC filters - Part 2: Harmonic performance aspects, 10/15/2021
22F/652/CD, IEC TR 62001-3 ED2: High-voltage direct current (HVDC) systems - Guidance to the specification and design evaluation of AC filters - Part 3: Modelling aspects, 10/15/2021

Power system control and associated communications (TC 57)
57/2404/CD, IEC 62351-3 ED2: Power systems management and associated information exchange - Data and communications security - Part 3: Communication network and system security - Profiles including TCP/IP, 11/12/2021

Rotating machinery (TC 2)
2/2064(F)/FDIS, IEC 60034-9 ED5: Rotating electrical machines - Part 9: Noise limits, 09/10/2021
2/2067/DTS, IEC TS 60034-25 ED4: Rotating electrical machines - Part 25: AC electrical machines used in power drive systems - Application guide, 11/12/2021

Safety of household and similar electrical appliances (TC 61)
61/6362/FDIS, IEC 60335-2-44 ED4: Household and similar electrical appliances - Safety - Part 2-44: Particular requirements for ironers, 10/01/2021
61/6363/FDIS, IEC 60335-2-47 ED5: Household and similar electrical appliances - Safety - Part 2-47: Particular requirements for commercial electric boiling pans, 10/01/2021
61/6364/FDIS, IEC 60335-2-48 ED5: Household and similar electrical appliances - Safety - Part 2-48: Particular requirements for commercial electric grills and toasters, 10/01/2021

Semiconductor devices (TC 47)
47/2724/FDIS, IEC 62830-8 ED1: Semiconductor devices - Semiconductor devices for energy harvesting and generation - Part 8: Test and evaluation methods of flexible and stretchable supercapacitors for use in low power electronics, 10/01/2021
47E/757/CVD, IEC 60747-16-7 ED1: Semiconductor devices - Part 16 -7: Microwave integrated circuits - Attenuators, 11/12/2021
47E/758/CVD, IEC 60747-16-8 ED1: Semiconductor devices - Part 16 -8: Microwave integrated circuits - Limiters, 11/12/2021
Solar photovoltaic energy systems (TC 82)
82/1940/CD, IEC TS 63265 ED1: Reliability practices for the operation of photovoltaic power systems, 11/12/2021

Surface mounting technology (TC 91)
91/1750/CD, IEC TR 60068-3-12 ED3: Environmental testing - Part 3-12: Supporting documentation and guidance - Method to evaluate a possible lead-free solder reflow temperature profile, 11/12/2021

Switchgear and controlgear (TC 17)
17/1106(F)/FDIS, IEC 62271-1: Amendment 1 - High-voltage switchgear and controlgear - Part 1: Common specifications for alternating current switchgear and controlgear, 09/17/2021

Wearable electronic devices and technologies (TC 124)
124/151/CDV, IEC 63203-801-1 ED1: Wearable electronic devices and technologies - Part 801-1: Smart Body Area Network (SmartBAN) - Enhanced Ultra-Low Power Physical Layer, 11/12/2021
Newly Published ISO & IEC Standards

Listed here are new and revised standards recently approved and promulgated by ISO - the International Organization for Standardization – and IEC – the International Electrotechnical Commission. Most are available at the ANSI Electronic Standards Store (ESS) at www.ansi.org. All paper copies are available from Standards resellers (http://webstore.ansi.org/faq.aspx#resellers).

ISO Standards

Acoustics (TC 43)
ISO 21955:2021, Acoustics - Experimental method for transposition of dynamic forces generated by an active component from a test bench to a receiving structure, $225.00

Agricultural food products (TC 34)
ISO 6888-1:2021, Microbiology of the food chain - Horizontal method for the enumeration of coagulase-positive staphylococci (Staphylococcus aureus and other species) - Part 1: Method using Baird-Parker agar medium, $149.00
ISO 6888-2:2021, Microbiology of the food chain - Horizontal method for the enumeration of coagulase-positive staphylococci (Staphylococcus aureus and other species) - Part 2: Method using rabbit plasma fibrinogen agar medium, $111.00

Air quality (TC 146)
ISO 16000-6:2021, Indoor air - Part 6: Determination of organic compounds (VOC, VOC, SVOC) in indoor and test chamber air by active sampling on sorbent tubes, thermal desorption and gas chromatography using MS or MS FID, $200.00

Ceramic tile (TC 189)
ISO 17721-1:2021, Quantitative determination of antibacterial activity of ceramic tile surfaces - Test methods - Part 1: Ceramic tile surfaces with incorporated antibacterial agents, $73.00
ISO 17721-2:2021, Quantitative determination of antibacterial activity of ceramic tile surfaces - Test methods - Part 2: Ceramic tile surfaces with incorporated photocatalytic antibacterial agents, $73.00

Cosmetics (TC 217)
ISO 21392:2021, Cosmetics - Analytical methods - Measurement of traces of heavy metals in cosmetic finished products using ICP/MS technique, $175.00

Dentistry (TC 106)
ISO 24234:2021, Dentistry - Dental amalgam, $175.00

Document imaging applications (TC 171)
ISO 16684-3:2021, Graphic technology - Extensible metadata platform (XMP) specification - Part 3: JSON-LD serialization of XMP, $111.00

Light metals and their alloys (TC 79)
ISO 7668:2021, Anodizing of aluminium and its alloys - Measurement of specular reflectance and specular gloss of anodic oxidation coatings at angles of 20°, 45°, 60° or 85°, $73.00

Mechanical vibration and shock (TC 108)
ISO 10819/Amd2:2021, Mechanical vibration and shock - Hand-arm vibration - Measurement and evaluation of the vibration transmissibility of gloves at the palm of the hand - Amendment 2, $20.00

Personal safety - Protective clothing and equipment (TC 94)
ISO 16900-6:2021, Respiratory protective devices - Methods of test and test equipment - Part 6: Mechanical resistance/strength of components and connections, $175.00

Pigments, dyestuffs and extenders (TC 256)
ISO 1247-1:2021, Aluminium pigments for paints - Part 1: General aluminium pigments, $149.00
ISO 1247-2:2021, Aluminium pigments for paints - Part 2: Vacuum metallized aluminium pigments, $48.00

Rolling bearings (TC 4)
ISO 3031:2021, Rolling bearings - Thrust needle roller and cage assemblies, thrust washers - Boundary dimensions, geometrical product specifications (GPS) and tolerance values, $73.00

Round steel link chains, chain slings, components and accessories (TC 111)
ISO 4779:2021, Chain components for lifting purposes - Forged eye hook with point and latch - Grade 4, stainless steel, solution annealed, $111.00

Small tools (TC 29)
ISO 11901-3:2021, Tools for pressing - Gas springs - Part 3: Gas spring with increased spring force and compact built height, $111.00
ISO 11901-4:2021, Tools for pressing - Gas springs - Part 4: Gas springs with increased spring force and same built height, $73.00

Sustainable development in communities (TC 268)
ISO 37169:2021, Smart community infrastructures - Smart transportation by run-through train/bus operation in/between cities, $111.00
ISO 37180:2021, Smart community infrastructures - Guidance on smart transportation with QR code identification and authentication in transportation and its related or additional services, $73.00

Terminology (principles and coordination) (TC 37)
ISO 24617-11:2021, Language resource management - Semantic annotation framework (SemAF) - Part 11: Measurable quantitative information (MQI), $149.00

Tourism and related services (TC 228)
ISO 18513:2021, Tourism services - Hotels and other types of tourism accommodation - Vocabulary, $48.00

Traditional Chinese medicine (TC 249)
ISO 23723:2021, Traditional Chinese medicine - General requirements for herbal raw material and materia medica, $250.00

ISO Technical Reports
Sustainable finance (TC 322)
ISO/TR 32220:2021, Sustainable finance - Basic concepts and key initiatives, $175.00

Technical systems and aids for disabled or handicapped persons (TC 173)
ISO/TR 20342-7:2021, Assistive products for tissue integrity when lying down - Part 7: Foam properties, characteristics and performance, $73.00

Transport information and control systems (TC 204)
ISO/TR 4286:2021, Intelligent transport systems - Use cases for sharing of probe data, $149.00

ISO Technical Specifications
Glass in building (TC 160)
ISO/TS 21480:2021, Glass in building - General technical requirements of building integrated photovoltaic modules recycling, $111.00

ISO/IEC JTC 1, Information Technology
ISO/IEC 21794-2/Amd1:2021, Information technology - Plenoptic image coding system (JPEG Pleno) - Part 2: Light field coding - Amendment 1: Profiles and levels for JPEG Pleno light field coding system, $20.00
ISO/IEC 30147:2021, Information technology - Internet of things - Methodology for trustworthiness of IoT system/service, $133.00

IEC Standards
Power electronics (TC 22)
IEC 60700-2 Amd.1 Ed. 1.0 b:2021, Amendment 1 - Thyristor valves for high voltage direct current (HVDC) power transmission - Part 2: Terminology, $25.00
IEC 60700-2 Ed. 1.1 b:2021, Thyristor valves for high voltage direct current (HVDC) power transmission - Part 2: Terminology, $266.00

Superconductivity (TC 90)
IEC 61788-23 Ed. 2.0 b:2021, Superconductivity - Part 23: Residual resistance ratio measurement - Residual resistance ratio of cavity-grade Nb superconductors, $221.00
S+ IEC 61788-23 Ed. 2.0 en:2021 (Redline version), Superconductivity - Part 23: Residual resistance ratio measurement - Residual resistance ratio of cavity-grade Nb superconductors, $288.00
Call for U.S. TAG Administrator

ISO/TC 82 – Mining and ISO/TC 82/SC 7 – Mine Closure and Reclamation Management

ANSI has been informed that CSA Group, the ANSI-accredited U.S. TAG Administrator for ISO/TC 82 – Mining and ISO/TC 82/SC 7 – Mine closure and reclamation management, wishes to relinquish their role as U.S. TAG Administrator.

ISO/TC 82 operates under the following scope:

Standardization of:
- specifications relating to specialized mining machinery and equipment used in opencast mines (e.g. conveyors, high wall miners, rock drill rigs and continuous surface miners) and all underground mining machinery and equipment for the extraction of solid mineral substances [e.g. road headers, continuous miners, rock drill rigs, raise boring machines, high wall miners, LHDs, mining auger boring machines, RMDs (rapid mine development systems)]
- recommended practice in the presentation of plans and drawings used in mine surveying
- methods of calculation of mineral reserves
- mine reclamation management
- design of structures for mining industry.
- special refuge/rescue chambers
- shaft boring machines.

Excluded:
- foundation machines [e.g. piling, diaphragm walling, earth boring, jetting, grouting, drill rigs for soil and rock mixture (ISO/TC 195)]
- aggregate processing machines (e.g. screening, crushing)
- equipment and protective systems to be used in explosive atmospheres (IEC/TC 31)
- hand-held rock drills (ISO/TC 118)
- earth-moving machinery (by ISO/TC 127)
- geotechnics (ISO/TC 182)
- tunnel boring machines (TBMs) and associated machines and equipment (ISO/TC 195).

ISO/TC 82/SC 7 operates under the following scope:

Standardization of mine reclamation management to minimize mine impacts that occur during the lifecycle of resource development, such as during exploration, extraction, suspension of operation, mine closure, reclamation, and follow-up management. Mine closure planning shall be re-established at every stage for sustainable resource development and risk management. However, it is expected that safety and health issues related to workplace activity will be excluded from this context. Mine closure planning shall be re-established at every stage for sustainable resource development and risk management.

Organizations interested in serving as the U.S. TAG Administrator or participating on a U.S. TAG should contact ANSI’s ISO Team (isot@ansi.org).
US Participation in International Standards Development Activities

ANSI Accredited U.S. TAG to ISO

Change to Date of Next Scheduled Meeting

U.S. TAG to ISO TC 299, Robotics

ANSI-Accredited Standards Committee: U.S. TAG to ISO TC 299, Robotics

Meeting Format & Location: Remote via GoToMeeting

Purpose: Monthly standing meeting to discuss U.S. positions on ballots, and preparations for U.S. participation in meetings, of the ISO TC 299, Robotics, and its Working Groups (WGs).

Standing Day/Date/Time: 3rd Wednesday of each month (unless a holiday or similar); 2:30 – 4:00 PM (ET).

UPDATE/EXCEPTION: September 2021 Monthly Meeting will be held on the 2nd Wednesday, not the 3rd Wednesday: Wed., September 8, 2:30 – 4:00 PM (ET)

Sponsorship: This meeting is sponsored by A3, the Association for Advancing Automation.

For More Information: Contact Carole Franklin, cfranklin@automate.org
Registration of Organization Names in the United States

The Procedures for Registration of Organization Names in the United States of America (document ISSB 989) require that alphanumeric organization names be subject to a 90-day Public Review period prior to registration. For further information, please contact the Registration Coordinator at (212) 642-4975.

When organization names are submitted to ANSI for registration, they will be listed here alphanumerically. Alphanumeric names appearing for the first time are printed in bold type. Names with confidential contact information, as requested by the organization, list only public review dates.

Public Review

FiRa

Public Review: June 25 through September 27, 2021

NOTE: Challenged alphanumeric names are underlined. The Procedures for Registration provide for a challenge process, which follows in brief. For complete details, see Section 6.4 of the Procedures.

A challenge is initiated when a letter from an interested entity is received by the Registration Coordinator. The letter shall identify the alphanumeric organization name being challenged and state the rationale supporting the challenge. A challenge fee shall accompany the letter. After receipt of the challenge, the alphanumeric organization name shall be marked as challenged in the Public Review list. The Registration Coordinator shall take no further action to register the challenged name until the challenge is resolved among the disputing parties.
Proposed Foreign Government Regulations

Call for Comment

U.S. manufacturers, exporters, regulatory agencies and standards developing organizations may be interested in proposed foreign technical regulations notified by Member countries of the World Trade Organization (WTO). In accordance with the WTO Agreement on Technical Barriers to Trade (TBT Agreement), Members are required to notify proposed technical regulations that may significantly affect trade to the WTO Secretariat in Geneva, Switzerland. In turn, the Secretariat issues and makes available these notifications. The purpose of the notification requirement is to provide global trading partners with an opportunity to review and comment on the regulations before they become final.

The USA Inquiry Point for the WTO TBT Agreement is located at the National Institute of Standards and Technology (NIST) in the Standards Coordination Office (SCO). The Inquiry Point distributes the notified proposed foreign technical regulations (notifications) and makes the associated full-texts available to U.S. stakeholders via its online service, Notify U.S. Interested U.S. parties can register with Notify U.S. to receive e-mail alerts when notifications are added from countries and industry sectors of interest to them. To register for Notify U.S., please visit: http://www.nist.gov/notifyus/.

The USA WTO TBT Inquiry Point is the official channel for distributing U.S. comments to the network of WTO TBT Enquiry Points around the world. U.S. business contacts interested in commenting on the notifications are asked to review the comment guidance available on Notify U.S. at: https://tsapps.nist.gov/notifyus/data/guidance/guidance.cfm prior to submitting comments.

For further information about the USA TBT Inquiry Point, please visit: https://www.nist.gov/standardsgov/what-we-do/trade-regulatory-programs/usa-wto-tbt-inquiry-point Contact the USA TBT Inquiry Point at (301) 975-2918; F: (301) 926-1559; E: usatbtep@nist.gov or notifyus@nist.gov.
BSR/ASHRAE Addendum b to
ANSI/ASHRAE Standard 41.10-2020

Public Review Draft

Proposed Addendum b to
Standard 41.10-2020, Standard
Methods for Refrigerant Mass Flow
Rate Measurements Using
Flowmeters

First Public Review (August 2021)
(Draft shows Proposed Changes to Current Standard)

This draft has been recommended for public review by the responsible project committee. To submit a comment on this proposed standard, go to the ASHRAE website at www.ashrae.org/standards-research--technology/public-review-drafts and access the online comment database. The draft is subject to modification until it is approved for publication by the Board of Directors and ANSI. Until this time, the current edition of the standard (as modified by any published addenda on the ASHRAE website) remains in effect. The current edition of any standard may be purchased from the ASHRAE Online Store at www.ashrae.org/bookstore or by calling 404-636-8400 or 1-800-727-4723 (for orders in the U.S. or Canada).

This standard is under continuous maintenance. To propose a change to the current standard, use the change submittal form available on the ASHRAE website, www.ashrae.org.

The appearance of any technical data or editorial material in this public review document does not constitute endorsement, warranty, or guaranty by ASHRAE of any product, service, process, procedure, or design, and ASHRAE expressly disclaims such.

© 2021 ASHRAE. This draft is covered under ASHRAE copyright. Permission to reproduce or redistribute all or any part of this document must be obtained from the ASHRAE Manager of Standards, 1791 Tullie Circle, NE, Atlanta, GA 30329. Phone: 404-636-8400, Ext. 1125. Fax: 404-321-5478. E-mail: standards.section@ashrae.org.

ASHRAE, 180 Technology Parkway, Peachtree Corners GA 30092
This addendum makes proposed changes to the current standard. These changes are indicated in the text by underlining (for additions) and strikethrough (for deletions).

Section 3, Definitions: Add the new definition below for clarification.

steady-state criteria: the criteria that establish negligible change of refrigerant mass flow rate with time.

Section 5.1, Test Plan: Revise as shown below to make it easier for Method of Test (MOT) and Method of Rating (MOR) standards to adopt this standard by reference.

5.1 Test Plan. A test plan shall specify the refrigerant flow rate measurement system accuracy and the test points to be performed. The test plan shall be one of the following documents:

a. A document provided by the person or the organization that authorized the tests and calculations to be performed.
c. A rating standard.
d. A regulation or code.
e. Any combination of items a. through d.

The test plan shall specify:

a. The refrigerant mass flow rate measurement system accuracy.
b. The values to be determined and recorded that are selected from this list: refrigerant mass flow rate measurement and refrigerant mass flow rate measurement uncertainty.
c. Any combination of test points and targeted set points to be performed together with operating tolerances.
Section 5.2, Values to Be Determined and Reported: Revise as shown below to make it easier for MOT/MOR standards to adopt this standard by reference.

5.2 Values to be Determined and Reported

The test values to be determined and reported shall be as shown in Table 5-1 if specified in the test plan in Section 5.1. Use the units of measure in Table 5-1 unless otherwise specified in the test plan in Section 5.1.

TABLE 5-1 Measurement Values and Units of Measure

<table>
<thead>
<tr>
<th>Quantity</th>
<th>SI</th>
<th>I-P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refrigerant mass flow rate and uncertainty in the refrigerant mass flow rate measurement</td>
<td>kilogram per second (kg/s)</td>
<td>pound (avoirdupois) per hour (lbm/h)</td>
</tr>
<tr>
<td>Density and uncertainty in density measurement</td>
<td>kilograms per cubic meter (kg/m³)</td>
<td>pound (avoirdupois) per cubic foot (lbm/ft³)</td>
</tr>
</tbody>
</table>

Section 5.4, Uncertainty: Revise as shown below to make it easier for MOT/MOR standards to adopt this standard by reference.

5.4 Uncertainty. The uncertainty in each refrigerant flow measurement shall be estimated as described in Section 408 for each test point unless otherwise specified in the test plan. Alternatively, if specified in the test plan, the worst-case uncertainty for all test points shall be estimated and reported for each test point.

Section 5.8, Steady-State Test Criteria for Compressors that do not have Pulse-Width Modulation: Revise as shown below to define the steady-state criteria requirements under laboratory and field test conditions.

5.8 Steady-State Test Criteria for Refrigerant Mass Flow Rate Measurements for Compressors that do not Incorporate Pulse-Width Modulation. Refrigerant mass flow rate test data shall be recorded at steady-state conditions unless otherwise specified in the test plan in Section 5.1. If the test plan requires refrigerant mass flow rate test data points to be recorded at steady-state test conditions and provides the operating condition tolerance but does not specify the steady-state criteria, then determine that steady-state test conditions have been achieved using one of the following methods:

a. Apply the steady-state criteria in Section 5.8.1 if the test plan provides test points for refrigerant mass flow rate measurement.

b. Apply the steady-state criteria in Section 5.8.2 if the test plan provides targeted set points for refrigerant mass flow rate measurement.
5.8.1 Steady-State Test Criteria Under Laboratory Test Conditions. If the test plan requires refrigerant mass flow rate test data points to be recorded at steady-state test conditions and provides the operating condition tolerance but does not specify the steady-state criteria, then determine that steady-state test conditions have been achieved using one of the following methods:

a. Apply the steady-state criteria in Section 5.8.3 if the test plan provides test points for refrigerant mass flow rate measurement.
b. Apply the steady-state criteria in Section 5.8.4 if the test plan provides targeted set points for refrigerant mass flow rate measurement.

5.8.2 Steady-State Test Criteria Under Field Test Conditions. If the test plan requires refrigerant mass flow rate test data points to be recorded at steady-state test conditions and provides the operating condition tolerance but does not specify the steady-state criteria, the methods in Section 5.8.1 are optional.

Informative Note: The steady-state methods in Section 5.8.1 are likely to be impractical under field test conditions. Under these circumstances, the user may want to select another method to determine the conditions for field test data to be recorded.

Section 5.5, Revise subsection header numbers and Equation 5-16 as shown below.

5.8.1 5.8.3 Steady-State Refrigerant Mass Flow Rate Criteria for Test Points

5.8.2 5.8.4 Steady-State Refrigerant Mass Flow Rate Criteria for Targeted Set Points

\[b\Delta t \leq 0.50 \dot{m}_L \text{ kg/s (lbm/h)} \] (5-16)

\[|b\Delta t| \leq 0.50 \dot{m}_L \text{ kg/s (lbm/h)} \] (5-16)

Section 9.1, Uncertainty Estimate: Revise as shown below to make it easier for MOT/MOR standards to adopt this standard by reference.

9.1 Uncertainty Estimate. An estimate of the refrigerant mass flow rate measurement system uncertainty performed in accordance with ASME PTC 19.1\(^{11}\) shall accompany each refrigerant flow measurement if specified in the test plan in Section 5.1.

Informative Note: Informative Annexes B and C contain examples of uncertainty calculations.

Section 10.6, Test Results: Revise as shown below to make it easier for MOT/MOR standards to adopt this standard by reference.

10.6 Test Results if Specified in the Test Plan in Section 5.1

a. Refrigerant mass flow rate, kg/s (lbm/h).
b. Uncertainty in refrigerant mass flow rate unless otherwise required by the test plan in Section 5.1, kg/s (lbm/h).

c. Lubricant circulation rate through the flowmeter if required in Section 5.5, percent.
Modify Section 1 as follows:

1. **Scope.** This standard is applicable to Dwelling Units and Sleeping Units in Residential or Commercial Buildings, except hotels and motels. Energy Ratings determined in accordance with this Standard are for individual Dwelling Units or Sleeping Units only. This Standard does not provide procedures for determining Energy Ratings for whole buildings containing more than one unit.

This standard identifies the metrics, tolerances, procedures, calculations and the required documentation to: (1) calculate the standard energy use of Dwelling Units and Sleeping Units, (2) determine the Energy Rating Index of Dwelling Units and Sleeping Units, (3) determine the CO\textsubscript{2} Index of Dwelling Units and Sleeping Units, (4) define the minimum rated features of Dwelling Units and Sleeping Units, (5) calculate the retrofit savings for existing Dwelling Units and Sleeping Units, (6) calculate the cost effectiveness of energy saving improvements to Dwelling Units and Sleeping Units and (7) label the certified energy performance of Dwelling Units and Sleeping Units.

Modify Section 5 as follows:

5.1.2.2.1. **Pollution Emissions.** Pollution emissions for all homes shall be calculated in accordance with Sections 5.1.2.2.1.1 and 5.1.2.2.1.2.

5.1.2.2.1.1. For electricity use, data for the sub-region annual total output emission rates published by Environmental Protection Agency’s 2012-2019 eGrid database2 for electricity generation shall be used to calculate emissions,3 except \textit{CO\textsubscript{2}} emissions, which shall be calculated using the Cambium database4,5 for the most recent year’s Mid-case, average hourly \textit{CO\textsubscript{2}} generation rate (\textit{co2_rate_avg_load_enduse}; kg\textit{CO\textsubscript{2}} per MWh\textsubscript{enduse}) for the local ZIP Code.

5.1.2.2.1.2. For fossil fuel use, pollution emissions shall be calculated using the emission factors given in Table 5.1.2(1).

1 (Normative Note) The terms “Dwelling Unit” and “Sleeping Unit” are interchangeable with the term “home” throughout this Standard, except where specifically noted.

2 (Informative Reference) http://www.epa.gov/cleanenergy/energy-resources/egrid/index.html

3 (Informative Note) RESNET will compile and publish annual total output pollution emission rate data for NOx, \textit{SO\textsubscript{2}} and \textit{CO\textsubscript{2}} in accordance with the provisions of this section that can be used by Approved Software Rating Tools for the calculation of emissions.

4 https://cambium.nrel.gov/

Table 5.1.2(1) **National Average** Emission Factors for Household Combustion Fuels

<table>
<thead>
<tr>
<th>Fuel Type</th>
<th>Units</th>
<th>MBtu per Unit</th>
<th>CO₂ lb/MBtu</th>
<th>NOₓ lb/MBtu</th>
<th>SO₂ lb/MBtu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Gas</td>
<td>Therm</td>
<td>0.1000</td>
<td>117.6</td>
<td>93.0 0.922</td>
<td>0.00060</td>
</tr>
<tr>
<td>Fuel Oil #2</td>
<td>Gallon</td>
<td>0.1385</td>
<td>159.4161</td>
<td>142.801300</td>
<td>0.506600.0015</td>
</tr>
<tr>
<td>Liquid Petroleum Gas (LPG)</td>
<td>Gallon</td>
<td>0.0915</td>
<td>136.46</td>
<td>153.401421</td>
<td>0.016300.002</td>
</tr>
</tbody>
</table>

5.3. **Labeling.** Energy Rating labels shall, at a minimum, contain the information specified by Sections 5.3.1 through 5.3.7.

5.3.1. Real property physical address of the home, including city and state or territory.

5.3.2. Energy Rating Index of the home.

5.3.3. **CO₂ Index for the home, calculated in accordance with Section 6.**

5.3.4. Projected annual site energy use of the home by fuel type.

5.3.5. Projected annual energy cost of the home, calculated in accordance with energy price rate provisions of Section Error! Reference source not found.

5.3.6. Name and address of the Approved Rating Provider.

5.3.7. Date of the Energy Rating.

Add the following new section and renumber following sections accordingly:

6. **CO₂ Rating Index.** The CO₂ Index shall be calculated for the Rated Home in accordance with equation 6-1 using the provisions of Sections 6.1 through 6.4

\[
\text{CO₂ Index} = \frac{\text{ACO₂}}{\text{ARCO₂}} \times 100
\]

(Equation 6-1)

where:

- ACO₂ = Annual hourly CO₂ emissions from the Rated Home
- ARCO₂ = Annual hourly CO₂ emissions from the CO₂ Index Reference Home

6.1. The CO₂ emission factors for household combustion fuel use shall be those given in Table 5.1.2(1).

7 (Informative Note) The projected energy cost shown on the label might not reflect the projected energy costs to be paid by the occupant as metering configurations can result in certain energy costs and end-uses being paid by the building owner.
6.2. The CO₂ emission factors for electricity use shall be the levelized CO₂ emission factors calculated using the Cambium database\(^8,9\) for the Low Renewable Energy Cost Scenario for the Long-Run Marginal enduse CO₂ generation rate \((\text{co2_lmer_enduse}: \text{kgCO}_2\text{ per MWh}_{\text{enduse}})\) for the local ZIP Code using equation 6-2 with a starting year of 2025.\(^{10}\)

\[
\text{LRMER}_{\text{levelized}} = \frac{\sum_{t=0}^{n-1} \text{LRMER}_t}{\sum_{t=0}^{n-1} (1+d)^t} \quad \text{(Equation 6-2)}
\]

where:
\[
\text{LRMER}_t = \text{long-run marginal emission rate for year } t
\]
\[
d = \text{real social discount rate} = 0.03
\]
\[
n = \text{evaluation period in years} = 25
\]

6.3. The CO₂ emission factors shall be applied to the hourly Purchased Energy by fuel type for both the Rated Home and the CO₂ Index Reference Home.

6.4. The CO₂ Index Reference Home shall be identical to the Energy Rating Reference Home except that it shall use electricity for all energy end uses.

\(^8\) https://cambium.nrel.gov/

\(^{10}\) (Informative note) National Renewable Energy Laboratory (NREL) provides a spreadsheet tool for the calculation of levelized CO₂ emission rates. The NREL spreadsheet tool uses the input parameters specified by this section as inputs to the spreadsheet tool.
BSR/UL 343, Standard for Safety for Pumps for Oil-Burning Appliances

1. Addition of Biodiesel (B6-B20) Requirements for Pumps for Oil-Burning Appliances

PROPOSAL

SA2 Construction – Mechanical, General

Replace clauses 7.3 and 7.4 in UL 343 with the following:

7.3 Non-metallic materials

7.3.1 The following materials shall not be used to construct parts in contact with the fuel:

a) Polysulfide rubber;

b) Ethylene propylene diene monomer (EPDM) rubber;

c) Methyl-Methacrylate;

d) Polyvinyl Chloride (PVC);

e) Polyurethane as elastomer.
BSR/UL 710, Exhaust Hoods for Commercial Cooking Equipment

1. Vibration and Insulation test for Exhaust Canopy used in mobile food preparation vehicle

PROPOSAL

6.10 The final assembly of the exhaust hood shall be designed such that electrical parts remain secured when subjected to the vibration and humidity caused by normal operation while inside a mobile food preparation vehicle. Electrical parts and enclosures shall also remain secured and shall not be freed from their terminals or connections due to the vibration caused by normal operation. Compliance with the above is determined by the Vibration Test of Exhaust Hood, Section 47A.

47A Vibration Test of Exhaust Hood

47A.1 A sample of the complete hood assembly shall not emit flame or molten metal or result in a risk of fire, electric shock, or injury to persons when subjected to the tests specified in 47A.2 – 47A.5.

47A.2 The sample shall be mounted in a means or method to the vibration fixture using equipment as specified from exhaust hood manufacturer in the installation and operation manual. After the unit is subjected to the vibration test described in 47A.3:

a) The exhaust hood shall comply with the requirements in 47A.1;

b) There shall be no loosening of parts; and

c) The exhaust hood shall operate normally.

47A.3 The vibration test shall consist of vibration for 1 hour at a frequency of 10 to 55 Hz and back to 10 Hz, with a linear sweep having a sweep time of 2 min per sweep cycle. The amplitude shall be 0.040 +0.004, −0 inch (1.0 +0.1,−0 mm) p-p displacement limit in a vertical plane.

47A.4 After this test, the sample shall be subjected to testing at the rated voltage or highest labeled voltage range. The tests shall be followed by a 1 hour observation time prior to concluding the test and temperatures are to be monitored in accordance with 34.1 (maximum temperature rises).

47A.5 At the conclusion of the observation period, exhaust hood samples that contain hazardous operating voltages shall be subjected to a Dielectric Voltage Withstand Test, Section 46, and an Insulation Resistance Test, Section 47B.

47B Insulation Resistance Test
47B.1 This test is intended to determine that insulation of the exhaust hood provides adequate isolation of hazardous voltage circuits from accessible conductive parts of the exhaust hood.

47B.2 An exhaust hood with accessible parts shall be subjected to an insulation resistance test between the positive terminal and accessible dead metal parts of an exhaust hood.

47B.3 When a material other than metal is used for the enclosure or part of the enclosure, the leakage current is to be measured using metal foil having an area of 3.9 in by 7.9 in (10 by 20 cm) in contact with the surface. When the surface has an area less than 3.9 in by 7.9 in (10 by 20 cm), the metal foil is to be the same size as the surface. The metal foil is not to remain in place long enough to affect the temperature of the product.

47B.4 The insulation resistance shall be measured after a 60-second application with a high resistance voltmeter using a 500 V dc potential applied for at least 1 min to the locations under test.

47B.5 A sample of an exhaust hood shall be heated to a temperature just above 93°F (34°C) to reduce the likelihood of condensation of moisture during conditioning. The heated sample is then to be placed in the humidity chamber and conditioned for 48 h in air having a relative humidity of 88 ±2 percent and a temperature of 90 ±4°F (32 ±2°C).

47B.6 The sample, either in or immediately after (within 1 minute) removal from the humidity chamber, should be energized and tested as described in 46.1.

47B.7 The measured insulation resistance between the positive terminals and accessible parts of the exhaust hood shall be at least 50,000 Ω.

51.1 The following information shall be permanently marked on each exhaust hood where it is visible after installation:

a) The manufacturer’s or private labeler’s name and catalog designation of the product.

b) The voltage rating, frequency, and total current in amperes of the product. When the product includes more than one circuit to be supplied by individual external supply circuits, the current of each circuit shall be indicated. The current rating shall be shown as "overall rating – 12 amperes or less" when the input of any style of the model operating on 115 – 230 volts, single phase, is not more than 12 amperes. This information shall appear on the wiring diagram provided with the electrical enclosure.

c) The minimum and maximum space between the front lower edge of the hood and the cooking surface.
d) The minimum exhaust air flow, as determined in the Cooking Smoke and Flare-Up Test, Section 35.

e) The maximum supply air flow (when supply air is provided and directed into the hood), as determined in the Cooking Smoke and Flare-Up Test, Section 35.

f) The minimum overhangs or maximum setbacks between the exhaust hood side and front panels and the cooking surface.

g) The maximum appliance duty used for the Cooking Smoke and Flare-Up Test, Section 35, shall be marked with the following or equivalent statement: "Suitable for use with up to ________ duty cooking appliances (light, medium, heavy or extra heavy)."

h) Exhaust hoods tested for use over a specific type of cooking appliance and/or product as described in 32.10 shall be marked for use over that specific type of appliance only and/or with the specific product only.

i) Exhaust hoods provided with damper assemblies (exhaust or supply dampers, or both) employing replacement parts such as fusible links, shall be marked to indicate the specific ratings of replacement part.

j) Exhaust hoods with and without exhaust dampers employing filters that shall be replaceable, shall be marked to indicate the specific type of grease filter to be used.

k) Exhaust hoods with a minimum distance between the grease removal device and the cooking surface less than 18 inches (0.46 m) shall be marked denoting the specific grease removal device(s) allowed.

l) Exhaust hoods intended for use adjacent to combustible construction with clearances of less than 18 inches (0.46 m) from combustible surfaces shall be marked to indicate the clearance to combustible construction. Marking shall include any required installation considerations and/or accessories.

m) Exhaust hoods with integral ventilators shall be marked with maximum external static pressure for which it was tested (see 35.3).

n) The sample, either in or immediately after (within 1 minute) removal from the humidity chamber, should be energized and tested as described in 46.1.
BSR/UL 1046, Grease Filters for Exhaust Ducts

1. Addition of Drop Test to UL 1046

PROPOSAL

7.2 Multi-stage grease filters or grease filter systems consisting of two or more discrete components shall be evaluated as follows:

a) When installed as intended, the grease filter system shall be subjected to the Grease Loading Test, Section 8, and the Flame Exposure Test, Section 9, and the Drop Test, Section 9A; and

b) Each stage shall be subjected individually to the Grease Loading Test, Section 8, and the Flame Exposure Test, Section 9, and the Drop Test, Section 9A, if it can be installed without the adjacent stage(s) attached.

9A Drop Test

9A.1 Two filter samples are to be subjected to the Drop Test. Filters selected for this test shall be new, unless the manufacturer elects to use filters subjected to the Grease Loading Test, Section 8 and the Flame Exposure Test, Section 9.

9A.2 Each test sample is to be dropped a total of 3 times through a distance of 39.4 inches (1 m) to strike a concrete surface in a perpendicular orientation, landing once each on the filter face, the side of the filter frame and the corner of the filter frame. The drop height is to be measured from the lowest point of the filter to the concrete surface.

9A.3 Filters shall remain intact, square and serviceable. Filters shall not be damaged to an extent that it cannot be easily inserted into or removed from the hood.