This section solicits public comments on proposed draft new American National Standards, including the national adoption of ISO and IEC standards as American National Standards, and on proposals to revise, reaffirm or withdraw approval of existing American National Standards. A draft standard is listed in this section under the ANSI-accredited standards developer (ASD) that sponsors it and from whom a copy may be obtained. Comments in connection with a draft American National Standard must be submitted in writing to the ASD no later than the last day of the comment period specified herein. Such comments shall be specific to the section(s) of the standard under review and include sufficient detail so as to enable the reader to understand the commenter's position, concerns and suggested alternative language, if appropriate. Please note that the ANSI Executive Standards Council (ExSc) has determined that an ASD has the right to require that interested parties submit public review comments electronically, in accordance with the developer’s procedures.

Ordering Instructions for “Call-for-Comment” Listings
1. Order from the organization indicated for the specific proposal.
2. Use the full identification in your order, including the BSR prefix; for example, Electric Fuses BSR/SAE J554.
3. Include remittance with all orders.
4. BSR proposals will not be available after the deadline of call for comment.

Comments should be addressed to the organization indicated, with a copy to the Board of Standards Review, American National Standards Institute, 25 West 43rd Street, New York, NY 10036. Fax: 212-840-2298; e-mail: psa@ansi.org

* Standard for consumer products
Comment Deadline: July 12, 2020

NSF (NSF International)
789 N. Dixboro Road, Ann Arbor, MI 48105-9723 ph: (734) 418-6660 www.nsf.org

Revision
This Standard establishes minimum physical, performance, and health effects requirements for plastic piping system components and related materials. These criteria were established for the protection of public health and the environment.
[Click here to view these changes in full](#)
Send comments (with optional copy to psa@ansi.org) to: jsnider@nsf.org

Revision
BSR/NSF/CAN 60-202x (i92r1), Drinking Water Treatment Chemicals - Health Effects (revision of ANSI/NSF/CAN 60-2019)
This Standard establishes minimum health effects requirements for the chemicals, the chemical contaminants, and the impurities that are directly added to drinking water from drinking water treatment chemicals. This Standard does not establish performance or taste and odor requirements for drinking water treatment chemicals.
[Click here to view these changes in full](#)
Send comments (with optional copy to psa@ansi.org) to: mleslie@nsf.org

UL (Underwriters Laboratories)
333 Pfingsten Road, Northbrook, IL 60062 ph: (847) 664-1292 https://ul.org/

Revision
BSR/UL 498-202x, Standard for Safety for Attachment Plugs and Receptacles (revision of ANSI/UL 498-2020)
This proposal for UL 498 covers: (1) Changes in requirements for connectors with latching mechanisms; (2) New requirements for high ambient temperature for 15 and 20 A straight blade receptacles.
[Click here to view these changes in full](#)
Send comments (with optional copy to psa@ansi.org) to: Follow the instructions in the following website to enter comments into the CSDS Work Area: https://csds.ul.com/Home/ProposalsDefault.aspx

Revision
(1) Topic – Revisions to the Standard to address changes needed to accommodate the use of an overmold or overlay material to close small openings in boxes for air-seal applications.
[Click here to view these changes in full](#)
Send comments (with optional copy to psa@ansi.org) to: Follow the instructions in the following website to enter comments into the CSDS Work Area: https://csds.ul.com/Home/ProposalsDefault.aspx

Revision
Proposed new stability test revisions to address the long-term performance of low-temperature eutectic solder, typically used in the construction of most mechanical heat detectors.
[Click here to view these changes in full](#)
Send comments (with optional copy to psa@ansi.org) to: Follow the instructions in the following website to enter comments into the CSDS Work Area: https://csds.ul.com/Home/ProposalsDefault.aspx
Comment Deadline: July 12, 2020

UL (Underwriters Laboratories)
12 Laboratory Drive, Research Triangle Park, NC 27709-3995 ph: (919) 549-0956 https://ul.org/

Revision
BSR/UL 753-202x, Standard for Safety for Alarm Accessories for Automatic Water-Supply Control Valves for Fire-Protection Service (revision of ANSI/UL 753-2013 (R2018))
(1) Correction to Figure 34.1.
Click here to view these changes in full
Send comments (with optional copy to psa@ansi.org) to: Follow the instructions in the following website to enter comments into the CSDS Work Area: https://csds.ul.com/Home/ProposalsDefault.aspx

UL (Underwriters Laboratories)
12 Laboratory Drive, Research Triangle Park, NC 27709-3995 ph: (919) 549-0956 https://ul.org/

Revision
(1) Electronic fuel-managed engines.
Click here to view these changes in full
Send comments (with optional copy to psa@ansi.org) to: Follow the instructions in the following website to enter comments into the CSDS Work Area: https://csds.ul.com/Home/ProposalsDefault.aspx

UL (Underwriters Laboratories)
333 Pfingsten Road, Northbrook, IL 60062-2096 ph: (847) 664-3416 https://ul.org/

Revision
BSR/UL 1369-202x, Standard for Safety for Aboveground Piping for Flammable and Combustible Liquids (revision of ANSI/UL 1369 -2018a)
The following is being recirculated: (1A) Revisions to the Fire test.
Click here to view these changes in full
Send comments (with optional copy to psa@ansi.org) to: Follow the instructions in the following website to enter comments into the CSDS Work Area: https://csds.ul.com/Home/ProposalsDefault.aspx

UL (Underwriters Laboratories)
12 Laboratory Drive, Research Triangle Park, NC 27709-3995 ph: (919) 549-1851 https://ul.org/

Revision
BSR/UL 121201-202x, Standard for Safety for Nonincendive Electrical Equipment for Use in Class I and II, Division 2 and Class III, Divisions 1 and 2 Hazardous (Classified) Locations (revision of ANSI/UL 121201-2019)
This proposal for UL 121201 covers: (1) Revisions to opening of sealed devices; (2) Revisions to consideration of normal operating conditions; (3) Revisions to the application of general industrial/ordinary locations requirements; (4) Revisions to Li ion batteries used in Division 2 portable equipment; (5) Revisions to the sealed device requirements; (6) Revisions to the Drop test for portable equipment; and (7) Revisions to correct reference in Clauses 5.1.2 and 5.3.1.
Click here to view these changes in full
Send comments (with optional copy to psa@ansi.org) to: Follow the instructions in the following website to enter comments into the CSDS Work Area: https://csds.ul.com/Home/ProposalsDefault.aspx
Comment Deadline: July 27, 2020

AAFS (American Academy of Forensic Sciences)
410 North 21st Street, Colorado Springs, CO 80904 ph: (719) 453-1036 www.aafs.org

New Standard
BSR/ASB Std 026-202x, Canine Detection of Humans: An Aged Trail Using Pre-Scented Canines (new standard)
This document provides the requirements for training, certification and documentation pertaining to pre-scented canine-aged track/trail search. Pre-scented canine aged trail searches use a canine team (canine and handler) to search for and follow aged trails of a specific person’s (target) scent over different surface types. An aged track/trail is a human scent pathway that has been present for some period of time, typically expressed with a time frame associated with the track/trail (e.g., a 24-hour or older track/trail).
Single copy price: Free
Obtain an electronic copy from: This is a public comment period for a recirculation. Updated document, redline version, and comments can be viewed on the AAFS Standards Board website at: http://www.asbstandardsboard.org/notice-of-standard-development-and-coordination/.
Order from: Document will be provided electronically on AAFS Standards Board website (www.asbstandardsboard.org) free of charge
Send comments (with optional copy to psa@ansi.org) to: asb@aafs.org

AGMA (American Gear Manufacturers Association)
1001 N Fairfax Street, 5th Floor, Alexandria, VA 22314-1587 ph: (703) 684-0211 www.agma.org

Reaffirmation
BSR/AGMA 6014-B-2015 (R202x), Gear Power Rating for Cylindrical Shell and Trunnion Supported Equipment (reaffirmation of ANSI/AGMA 6014-B-2015)
This standard provides a method to determine the power rating of gear sets with spur and helical conventional pinions and spur self-aligning pinions for cylindrical grinding mills, kilns, coolers, and dryers.
Single copy price: $156.00
Obtain an electronic copy from: tech@AGMA.org
Order from: tech@AGMA.org
Send comments (with optional copy to psa@ansi.org) to: aboutaleb@AGMA.org

AGMA (American Gear Manufacturers Association)
1001 N Fairfax Street, 5th Floor, Alexandria, VA 22314-1587 ph: (703) 684-0211 www.agma.org

Reaffirmation
This standard provides a method to determine the power rating of gear sets with spur and helical conventional pinions and spur self-aligning pinions for cylindrical grinding mills, kilns, coolers, and dryers.
Single copy price: $125.00
Obtain an electronic copy from: tech@AGMA.org
Order from: tech@AGMA.org
Send comments (with optional copy to psa@ansi.org) to: aboutaleb@AGMA.org
Comment Deadline: July 27, 2020

AGMA (American Gear Manufacturers Association)
1001 N Fairfax Street, 5th Floor, Alexandria, VA 22314-1587 ph: (703) 684-0211 www.agma.org

Reaffirmation
BSR/AGMA 9112-B-2015 (R202x), Bores and Keyways for Flexible Couplings (Metric Series) (reaffirmation of ANSI/AGMA 9112-B-2015)
This standard presents metric dimensions, tolerances, sizes, and fits for straight bores, tapered bores, and keys and keyways for unmounted industrial flexible couplings.
Single copy price: $62.00
Obtain an electronic copy from: tech@agma.org
Order from: tech@agma.org
Send comments (with optional copy to psa@ansi.org) to: aboutaleb@agma.org

ASTM (ASTM International)
100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 ph: (610) 832-9744 www.astm.org

New Standard
BSR/ASTM WK57370-202x, Test Method for Seam Measurement Procedure for Baseballs and Softballs (new standard)
https://www.astm.org/ANSI_SA
Single copy price: Free
Obtain an electronic copy from: lklineburger@astm.org
Order from: Laura Klineburger, (610) 832-9744, accreditation@astm.org
Send comments (with optional copy to psa@ansi.org) to: Same

ASTM (ASTM International)
100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 ph: (610) 832-9744 www.astm.org

New Standard
BSR/ASTM WK59635-202x, Test Method for Determining Flammability of Exterior Wall Assemblies for Mass Timber Multi-story Structures (new standard)
https://www.astm.org/ANSI_SA
Single copy price: Free
Obtain an electronic copy from: lklineburger@astm.org
Order from: Laura Klineburger, (610) 832-9744, accreditation@astm.org
Send comments (with optional copy to psa@ansi.org) to: Same

ASTM (ASTM International)
100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 ph: (610) 832-9744 www.astm.org

New Standard
BSR/ASTM WK63718-202x, Test Method for Determination of Fatty Acid Methyl Esters (FAME) in Aviation Turbine Fuel using Mid-Infrared Laser Spectroscopy (new standard)
https://www.astm.org/ANSI_SA
Single copy price: Free
Obtain an electronic copy from: lklineburger@astm.org
Order from: Laura Klineburger, (610) 832-9744, accreditation@astm.org
Send comments (with optional copy to psa@ansi.org) to: Same
Comment Deadline: July 27, 2020

ASTM (ASTM International)
100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 ph: (610) 832-9744 www.astm.org

New Standard
BSR/ASTM WK68390-202x, Test Method for Determining the Water Holding Capacity of Equine Surfaces (new standard)
https://www.astm.org/ANSI_SA
Single copy price: Free
Obtain an electronic copy from: lklineburger@astm.org
Order from: Laura Klineburger, (610) 832-9744, accreditation@astm.org
Send comments (with optional copy to psa@ansi.org) to: Same

ASTM (ASTM International)
100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 ph: (610) 832-9744 www.astm.org

New Standard
BSR/ASTM WK71122-202x, Test Method for Permeability of Equine Surfaces (new standard)
https://www.astm.org/ANSI_SA
Single copy price: Free
Obtain an electronic copy from: lklineburger@astm.org
Order from: Laura Klineburger, (610) 832-9744, accreditation@astm.org
Send comments (with optional copy to psa@ansi.org) to: Same

ASTM (ASTM International)
100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 ph: (610) 832-9744 www.astm.org

Reaffirmation
https://www.astm.org/ANSI_SA
Single copy price: Free
Obtain an electronic copy from: lklineburger@astm.org
Order from: Laura Klineburger, (610) 832-9744, accreditation@astm.org
Send comments (with optional copy to psa@ansi.org) to: Same

ASTM (ASTM International)
100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 ph: (610) 832-9744 www.astm.org

Reaffirmation
https://www.astm.org/ANSI_SA
Single copy price: Free
Obtain an electronic copy from: lklineburger@astm.org
Order from: Laura Klineburger, (610) 832-9744, accreditation@astm.org
Send comments (with optional copy to psa@ansi.org) to: Same
Comment Deadline: July 27, 2020

ASTM (ASTM International)
100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 ph: (610) 832-9744 www.astm.org

Reaffirmation
BSR/ASTM E2819-2011 (R202x), Practice for Single- and Multi-Level Continuous Sampling of a Stream of Product by Attributes
Indexed by AQL (reaffirmation of ANSI/ASTM E2819-2011 (R2015))
https://www.astm.org/ANSI_SA
Single copy price: Free
Obtain an electronic copy from: lklineburger@astm.org
Order from: Laura Klineburger, (610) 832-9744, accreditation@astm.org
Send comments (with optional copy to psa@ansi.org) to: Same

ASTM (ASTM International)
100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 ph: (610) 832-9744 www.astm.org

Reaffirmation
https://www.astm.org/ANSI_SA
Single copy price: Free
Obtain an electronic copy from: lklineburger@astm.org
Order from: Laura Klineburger, (610) 832-9744, accreditation@astm.org
Send comments (with optional copy to psa@ansi.org) to: Same

ASTM (ASTM International)
100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 ph: (610) 832-9744 www.astm.org

Reaffirmation
BSR/ASTM F1785-2008 (R202x), Test Method for Performance of Steam Kettles (reaffirmation of ANSI/ASTM F1785-2008 (R2015))
https://www.astm.org/ANSI_SA
Single copy price: Free
Obtain an electronic copy from: lklineburger@astm.org
Order from: Laura Klineburger, (610) 832-9744, accreditation@astm.org
Send comments (with optional copy to psa@ansi.org) to: Same

ASTM (ASTM International)
100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 ph: (610) 832-9744 www.astm.org

Reaffirmation
BSR/ASTM F1787-2008 (R202x), Test Method for Performance of Rotisserie Ovens (reaffirmation of ANSI/ASTM F1787-2008 (R2015))
https://www.astm.org/ANSI_SA
Single copy price: Free
Obtain an electronic copy from: lklineburger@astm.org
Order from: Laura Klineburger, (610) 832-9744, accreditation@astm.org
Send comments (with optional copy to psa@ansi.org) to: Same
Comment Deadline: July 27, 2020

ASTM (ASTM International)
100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 ph: (610) 832-9744 www.astm.org

Reaffirmation
https://www.astm.org/ANSI_SA
Single copy price: Free
Obtain an electronic copy from: lklineburger@astm.org
Order from: Laura Klineburger, (610) 832-9744, accreditation@astm.org
Send comments (with optional copy to psa@ansi.org) to: Same

ASTM (ASTM International)
100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 ph: (610) 832-9744 www.astm.org

Reaffirmation
BSR/ASTM F2237-2008 (R202x), Test Method for Performance of Upright Overfired Broilers (reaffirmation of ANSI/ASTM F2237-2008 (R2015))
https://www.astm.org/ANSI_SA
Single copy price: Free
Obtain an electronic copy from: lklineburger@astm.org
Order from: Laura Klineburger, (610) 832-9744, accreditation@astm.org
Send comments (with optional copy to psa@ansi.org) to: Same

ASTM (ASTM International)
100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 ph: (610) 832-9744 www.astm.org

Reaffirmation
BSR/ASTM F2398-2011 (R202x), Test Method for Measuring Moment of Inertia and Center of Percussion of a Baseball or Softball Bat (reaffirmation of ANSI/ASTM F2398-2011 (R2015))
https://www.astm.org/ANSI_SA
Single copy price: Free
Obtain an electronic copy from: lklineburger@astm.org
Order from: Laura Klineburger, (610) 832-9744, accreditation@astm.org
Send comments (with optional copy to psa@ansi.org) to: Same

ASTM (ASTM International)
100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 ph: (610) 832-9744 www.astm.org

Reaffirmation
BSR/ASTM F2875-2010 (R202x), Guide for Laboratory Requirements Necessary to Test Commercial Cooking and Warming Appliances to ASTM Test Methods (reaffirmation of ANSI/ASTM F2875-2010 (R2015))
https://www.astm.org/ANSI_SA
Single copy price: Free
Obtain an electronic copy from: lklineburger@astm.org
Order from: Laura Klineburger, (610) 832-9744, accreditation@astm.org
Send comments (with optional copy to psa@ansi.org) to: Same
Comment Deadline: July 27, 2020

ASTM (ASTM International)
100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 ph: (610) 832-9744 www.astm.org

Revision
https://www.astm.org/ANSI_SA
Single copy price: Free
Obtain an electronic copy from: lklineburger@astm.org
Order from: Laura Klineburger, (610) 832-9744, accreditation@astm.org
Send comments (with optional copy to psa@ansi.org) to: Same

ASTM (ASTM International)
100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 ph: (610) 832-9744 www.astm.org

Revision
https://www.astm.org/ANSI_SA
Single copy price: Free
Obtain an electronic copy from: lklineburger@astm.org
Order from: Laura Klineburger, (610) 832-9744, accreditation@astm.org
Send comments (with optional copy to psa@ansi.org) to: Same

ASTM (ASTM International)
100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 ph: (610) 832-9744 www.astm.org

Revision
https://www.astm.org/ANSI_SA
Single copy price: Free
Obtain an electronic copy from: lklineburger@astm.org
Order from: Laura Klineburger, (610) 832-9744, accreditation@astm.org
Send comments (with optional copy to psa@ansi.org) to: Same

ASTM (ASTM International)
100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 ph: (610) 832-9744 www.astm.org

Revision
https://www.astm.org/ANSI_SA
Single copy price: Free
Obtain an electronic copy from: lklineburger@astm.org
Order from: Laura Klineburger, (610) 832-9744, accreditation@astm.org
Send comments (with optional copy to psa@ansi.org) to: Same
Comment Deadline: July 27, 2020

ASTM (ASTM International)
100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 ph: (610) 832-9744 www.astm.org

Revision
https://www.astm.org/ANSI_SA

Single copy price: Free
Obtain an electronic copy from: lklineburger@astm.org
Order from: Laura Klineburger, (610) 832-9744, accreditation@astm.org
Send comments (with optional copy to psa@ansi.org) to: Same

ASTM (ASTM International)
100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 ph: (610) 832-9744 www.astm.org

Revision
https://www.astm.org/ANSI_SA

Single copy price: Free
Obtain an electronic copy from: lklineburger@astm.org
Order from: Laura Klineburger, (610) 832-9744, accreditation@astm.org
Send comments (with optional copy to psa@ansi.org) to: Same

ASTM (ASTM International)
100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 ph: (610) 832-9744 www.astm.org

Revision
https://www.astm.org/ANSI_SA

Single copy price: Free
Obtain an electronic copy from: lklineburger@astm.org
Order from: Laura Klineburger, (610) 832-9744, accreditation@astm.org
Send comments (with optional copy to psa@ansi.org) to: Same

ASTM (ASTM International)
100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 ph: (610) 832-9744 www.astm.org

Revision
https://www.astm.org/ANSI_SA

Single copy price: Free
Obtain an electronic copy from: lklineburger@astm.org
Order from: Laura Klineburger, (610) 832-9744, accreditation@astm.org
Send comments (with optional copy to psa@ansi.org) to: Same
Comment Deadline: July 27, 2020

ASTM (ASTM International)
100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 ph: (610) 832-9744 www.astm.org

Revision
https://www.astm.org/ANSI_SA
Single copy price: Free
Obtain an electronic copy from: lklineburger@astm.org
Order from: Laura Klineburger, (610) 832-9744, accreditation@astm.org
Send comments (with optional copy to psa@ansi.org) to: Same

ASTM (ASTM International)
100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 ph: (610) 832-9744 www.astm.org

Revision
BSR/ASTM E800-202x, Guide for Measurement of Gases Present or Generated during Fires (revision of ANSI/ASTM E800-2014)
https://www.astm.org/ANSI_SA
Single copy price: Free
Obtain an electronic copy from: lklineburger@astm.org
Order from: Laura Klineburger, (610) 832-9744, accreditation@astm.org
Send comments (with optional copy to psa@ansi.org) to: Same

ASTM (ASTM International)
100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 ph: (610) 832-9744 www.astm.org

Revision
https://www.astm.org/ANSI_SA
Single copy price: Free
Obtain an electronic copy from: lklineburger@astm.org
Order from: Laura Klineburger, (610) 832-9744, accreditation@astm.org
Send comments (with optional copy to psa@ansi.org) to: Same

ASTM (ASTM International)
100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 ph: (610) 832-9744 www.astm.org

Revision
https://www.astm.org/ANSI_SA
Single copy price: Free
Obtain an electronic copy from: lklineburger@astm.org
Order from: Laura Klineburger, (610) 832-9744, accreditation@astm.org
Send comments (with optional copy to psa@ansi.org) to: Same
Comment Deadline: July 27, 2020

ASTM (ASTM International)
100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 ph: (610) 832-9744 www.astm.org

Revision

https://www.astm.org/ANSI_SA
Single copy price: Free
Obtain an electronic copy from: lklineburger@astm.org
Order from: Laura Klineburger, (610) 832-9744, accreditation@astm.org
Send comments (with optional copy to psa@ansi.org) to: Same

ASTM (ASTM International)
100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 ph: (610) 832-9744 www.astm.org

Revision

https://www.astm.org/ANSI_SA
Single copy price: Free
Obtain an electronic copy from: lklineburger@astm.org
Order from: Laura Klineburger, (610) 832-9744, accreditation@astm.org
Send comments (with optional copy to psa@ansi.org) to: Same

ASTM (ASTM International)
100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 ph: (610) 832-9744 www.astm.org

Revision

https://www.astm.org/ANSI_SA
Single copy price: Free
Obtain an electronic copy from: lklineburger@astm.org
Order from: Laura Klineburger, (610) 832-9744, accreditation@astm.org
Send comments (with optional copy to psa@ansi.org) to: Same

ASTM (ASTM International)
100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 ph: (610) 832-9744 www.astm.org

Revision

https://www.astm.org/ANSI_SA
Single copy price: Free
Obtain an electronic copy from: lklineburger@astm.org
Order from: Laura Klineburger, (610) 832-9744, accreditation@astm.org
Send comments (with optional copy to psa@ansi.org) to: Same
Comment Deadline: July 27, 2020

ASTM (ASTM International)
100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 ph: (610) 832-9744 www.astm.org

Revision
https://www.astm.org/ANSI_SA
Single copy price: Free
Obtain an electronic copy from: lklineburger@astm.org
Order from: Laura Klineburger, (610) 832-9744, accreditation@astm.org
Send comments (with optional copy to psa@ansi.org) to: Same

ASTM (ASTM International)
100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 ph: (610) 832-9744 www.astm.org

Revision
https://www.astm.org/ANSI_SA
Single copy price: Free
Obtain an electronic copy from: lklineburger@astm.org
Order from: Laura Klineburger, (610) 832-9744, accreditation@astm.org
Send comments (with optional copy to psa@ansi.org) to: Same

ASTM (ASTM International)
100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 ph: (610) 832-9744 www.astm.org

Revision
https://www.astm.org/ANSI_SA
Single copy price: Free
Obtain an electronic copy from: lklineburger@astm.org
Order from: Laura Klineburger, (610) 832-9744, accreditation@astm.org
Send comments (with optional copy to psa@ansi.org) to: Same

ASTM (ASTM International)
100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 ph: (610) 832-9744 www.astm.org

Revision
BSR/ASTM F2845-202x, Test Method for Measuring the Dynamic Stiffness (DS) and Cylindrical Coefficient of Restitution (CCOR) of Baseballs and Softballs (revision of ANSI/ASTM F2845-2014)
https://www.astm.org/ANSI_SA
Single copy price: Free
Obtain an electronic copy from: lklineburger@astm.org
Order from: Laura Klineburger, (610) 832-9744, accreditation@astm.org
Send comments (with optional copy to psa@ansi.org) to: Same
Comment Deadline: July 27, 2020

ASTM (ASTM International)
100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 ph: (610) 832-9744 www.astm.org

Revision
https://www.astm.org/ANSI_SA
Single copy price: Free
Obtain an electronic copy from: lklineburger@astm.org
Order from: Laura Klineburger, (610) 832-9744, accreditation@astm.org
Send comments (with optional copy to psa@ansi.org) to: Same

ASTM (ASTM International)
100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 ph: (610) 832-9744 www.astm.org

Revision
https://www.astm.org/ANSI_SA
Single copy price: Free
Obtain an electronic copy from: lklineburger@astm.org
Order from: Laura Klineburger, (610) 832-9744, accreditation@astm.org
Send comments (with optional copy to psa@ansi.org) to: Same

ASTM (ASTM International)
100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 ph: (610) 832-9744 www.astm.org

Revision
BSR/ASTM F3353-202x, Guide for Shipboard Use of Lithium-Ion (Li-ion) Batteries (revision of ANSI/ASTM F3353-2019)
https://www.astm.org/ANSI_SA
Single copy price: Free
Obtain an electronic copy from: lklineburger@astm.org
Order from: Laura Klineburger, (610) 832-9744, accreditation@astm.org
Send comments (with optional copy to psa@ansi.org) to: Same

ASTM (ASTM International)
100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 ph: (610) 832-9744 www.astm.org

Revision
https://www.astm.org/ANSI_SA
Single copy price: Free
Obtain an electronic copy from: lklineburger@astm.org
Order from: Laura Klineburger, (610) 832-9744, accreditation@astm.org
Send comments (with optional copy to psa@ansi.org) to: Same
Comment Deadline: July 27, 2020

AWS (American Welding Society)
8669 NW 36th Street, Suite #130, Miami, FL 33166-6672 ph: (800) 443-9353 www.aws.org

New Standard
This training guide provides technical information necessary to train personnel in the safe and effective use of industrial welding robots and welding robot systems. This guide includes a summary of the requisite education resources required for training and the emphasis will be placed on training individuals need in accordance with the principles of the AWS D16.4M/D16.4 Certified Robot Arc Welder (CRAW) program. The training guide is designed for use by all robot arc welding personnel and it is not intended to be used exclusively in support of the CRAW program.
Single copy price: $48.00
Obtain an electronic copy from: jrosario@aws.org
Order from: Jennifer Rosario, (800) 443-9353, jrosario@aws.org
Send comments (with optional copy to psa@ansi.org) to: adavis@aws.org

AWWA (American Water Works Association)
6666 W. Quincy Ave., Denver, CO 80235 ph: (303) 347-6178 www.awwa.org

Reaffirmation
BSR/AWWA G430-2014 (R202x), Security Practices for Operations and Management (reaffirmation of ANSI/AWWA G430-2014)
This standard covers the minimum requirements for a protective security program for a water, wastewater, or reuse utility.
Single copy price: Free
Obtain an electronic copy from: ETSsupport@awwa.org
Order from: AWWA, Attn: Vicki David
Send comments (with optional copy to psa@ansi.org) to: AWWA, Attn: Paul J. Olson

AWWA (American Water Works Association)
6666 W. Quincy Ave., Denver, CO 80235 ph: (303) 347-6178 www.awwa.org

Revision
This standard describes online chlorine analyzer operation and maintenance (O&M) when the online chlorine analyzer is used for monitoring in the treatment of potable water, reclaimed water, or wastewater.
Single copy price: Free
Obtain an electronic copy from: ETSsupport@awwa.org
Order from: AWWA, Attn: Vicki David
Send comments (with optional copy to psa@ansi.org) to: AWWA, Attn: Paul J. Olson

CSA (CSA America Standards Inc.)
8501 E. Pleasant Valley Road, Cleveland, OH 44131 ph: (216) 524-4990 www.csagroup.org

Revision
BSR/CSA Z21.47/CSA 2.3-202x, Gas-fired central furnaces (same as CSA 2.3) (revision and redesignation of ANSI Z21.47-2016)
Details test and examination criteria for automatically operating gas-fired central furnaces for use with nat., mfd. and mixed gases, LP gases and LP gas air mixtures. Central furnaces are designed to supply heated air through ducts to building spaces remote from or adjacent to the appliance location. Central furnaces are intended for installation in residential, commercial and industrial structures including Direct Vent, Recreational Vehicle, Outdoor and Manufactured (Mobile) Home.
Single copy price: Free
Obtain an electronic copy from: david.zimmerman@csagroup.org
Order from: David Zimmerman, (216) 524-4990, ansi.contact@csagroup.org
Send comments (with optional copy to psa@ansi.org) to: Same
Stabilized Maintenance

CTA-109-D specifies Intermediate Frequencies (IFs) to be used in Standard Broadcast (AM), FM, and TV broadcast receivers. In CTA -109-D, the term Intermediate Frequency (IF) refers to the dominant interference-rejecting and passband-shaping circuits in receiver front-ends.

Single copy price: Free

Order from: standards@cta.tech

Send comments (with optional copy to psa@ansi.org) to: Same

New Standard

BSR/ESD SP17.1-202x, ESD Association Draft Standard Practice for the Protection of Electrostatic Discharge Susceptible Items - Process Assessment Techniques (new standard)

This document applies to activities that manufacture, process, assemble, install, package, label, service, test, inspect, transport, or otherwise handle electrical or electronic parts, assemblies, and equipment susceptible to damage by electrostatic discharges. This document does not apply to electrically initiated explosive items, flammable liquids, or powders. The document does not address program management, compliance verification, troubleshooting, or program manager/coordinator certification. In this version of the document, risks due to electromagnetic sources that produce AC fields are not considered.

Single copy price: $105.00 (List)/$75.00 (EOS/ESD Members) [Hard Cover]; $130.00 (List)/100 Member.00

Order from: Christina Earl, (315) 339-6937, cearl@esda.org

Send comments (with optional copy to psa@ansi.org) to: Same

Revision

The intent of the project is to update the conformance methodology used to profile message definitions and to separate (divorce) the conformance chapter (currently Chapter 2B) from the 'main' HL7 v2 standard. - Provide an independent (separate) HL7 v2 Conformance Methodology standard. - Update the conformance constructs and profiling mechanisms used for implementation guide creation - Update the profile schema that supports the XML computable representation for implementation guides and message profiles - Deprecate by means of an errata the Conformance chapter/section from all prior V2 versions. (our expectation is that the content of conformance testing of existing IGs will not change, but going forward any new specification will use this updated conformance methodology). To be clear, the proposal is an updated method of how to specify conformance for new IGs. - Identify opportunities to encourage adoption by external implementation guide developers (e.g., IHE) to use the same conformance definitions and constructs.

Single copy price: Free to members and non-members.00

Order from: Karen Van Hentenryck, (313) 550-2073, Karenvan@HL7.org

Send comments (with optional copy to psa@ansi.org) to: Same
Comment Deadline: July 27, 2020

IAPMO (ASSE Chapter) (ASSE International Chapter of IAPMO)

18927 Hickory Creek Drive, Suite 220, Mokena, IL 60448 ph: (708) 995-3017 www.asse-plumbing.org

Revision

BSR/ASSE 1035-202x, Performance Requirements for Laboratory Faucet Backflow Preventers (revision of ANSI/ASSE 1035-2008)

This standard applies only to those devices classified as backflow preventers that are designed for installation on laboratory faucets on the discharge side of the last shut-off valve. These devices are not for use under constant pressure conditions. These devices consist of two independently acting check valves, force loaded or biased to a normally closed position, and between the check valves a means for automatically venting to atmosphere, force loaded or biased to normally open position.

Single copy price: Free

Obtain an electronic copy from chris@asse-plumbing.org

Send comments (with optional copy to psa@ansi.org) to chris@asse-plumbing.org

NEMA (ASC C8) (National Electrical Manufacturers Association)

1300 North 17th Street, Rosslyn, VA 22209 ph: (703) 841-3278 www.nema.org

Reaffirmation

This standard is intended to provide a reliable surface transfer impedance test method for coaxial cables and shielded multiconductor cables over the frequency range from DC to 100 MHz.

Single copy price: $70.00

Obtain an electronic copy from: KHALED.MASRI@NEMA.ORG

Order from: Khaled Masri, (703) 841-3278, Khaled.Masri@nema.org

Send comments (with optional copy to psa@ansi.org) to: Same

NSF (NSF International)

789 N. Dixboro Road, Ann Arbor, MI 48105-9723 ph: (734) 418-6660 www.nsf.org

Revision

BSR/NSF 14-202x (i108r1), Plastics Piping System Components and Related Materials (revision of ANSI/NSF 14-2019)

This Standard establishes minimum physical, performance, and health effects requirements for plastic piping system components and related materials. These criteria were established for the protection of public health and the environment.

Single copy price: Free

Send comments (with optional copy to psa@ansi.org) to: jsnider@nsf.org

PMI (Project Management Institute)

14 Campus Blvd, Newtown Square, PA 19073-3299 ph: (313) 404-3507 www.pmi.org

Revision

The Standard for Project Management is the global standard for the project management profession and identifies and describes the subset of the project management body of knowledge that is recognized as good practice on all projects, which includes the entire value delivery landscape. This revision will incorporate continuous improvement and address needed modifications.

Single copy price: Free

Obtain an electronic copy from: lorna.scheel@pmi.org

Send comments (with optional copy to psa@ansi.org) to: lorna.scheel@pmi.org
Comment Deadline: July 27, 2020

UL (Underwriters Laboratories)
12 Laboratory Drive, Research Triangle Park, NC 27709-3995 ph: (919) 549-1053 https://ul.org/

Reaffirmation

Single copy price: Free
Order from: http://www.shopulstandards.com
Send comments (with optional copy to psa@ansi.org) to: Follow the instructions in the following website to enter comments into the CSDS Work Area: https://csds.ul.com/Home/ProposalsDefault.aspx

UL (Underwriters Laboratories)
12 Laboratory Drive, Research Triangle Park, NC 27709-3995 ph: (919) 549-1053 https://ul.org/

Reaffirmation
BSR/UL 5-2016 (R202x), Standard for Surface Metal Raceways and Fittings (reaffirmation of ANSI/UL 5-2016)

Single copy price: Free
Order from: http://www.shopulstandards.com
Send comments (with optional copy to psa@ansi.org) to: Follow the instructions in the following website to enter comments into the CSDS Work Area: https://csds.ul.com/Home/ProposalsDefault.aspx

UL (Underwriters Laboratories)
12 Laboratory Drive, Research Triangle Park, NC 27709-3995 ph: (919) 549-1053 https://ul.org/

Reaffirmation
BSR/UL 5C-2016 (R202x), Standard for Surface Raceways and Fittings for Use with Data, Signal, and Control Circuits (reaffirmation of ANSI/UL 5C-2016)

Single copy price: Free
Order from: http://www.shopulstandards.com
Send comments (with optional copy to psa@ansi.org) to: Follow the instructions in the following website to enter comments into the CSDS Work Area: https://csds.ul.com/Home/ProposalsDefault.aspx

UL (Underwriters Laboratories)
12 Laboratory Drive, Research Triangle Park, NC 27709-3995 ph: (919) 549-1053 https://ul.org/

Reaffirmation
BSR/UL 209-2016 (R202x), Standard for Cellular Metal Floor Raceways and Fittings (reaffirmation of ANSI/UL 209-2016)

Single copy price: Free
Order from: http://www.shopulstandards.com
Send comments (with optional copy to psa@ansi.org) to: Follow the instructions in the following website to enter comments into the CSDS Work Area: https://csds.ul.com/Home/ProposalsDefault.aspx
Comment Deadline: July 27, 2020

UL (Underwriters Laboratories)
12 Laboratory Drive, Research Triangle Park, NC 27709-3995 ph: (919) 549-1392 https://ul.org/

Reaffirmation

BSR/UL 248-8-2011 (R202x), Standard for Safety for Low-Voltage Fuses - Part 8: Class J Fuses (reaffirmation of ANSI/UL 248-8-2011 (R2015))

This proposal for UL 248-8 covers: Reaffirmation and continuance of the third edition of the Standard for Low-Voltage Fuses - Part 8: Class J Fuses, UL 248-8, as an American National Standard.

Single copy price: Free
Order from: http://www.shopulstandards.com
Send comments (with optional copy to psa@ansi.org) to: Follow the instructions in the following website to enter comments into the CSDS Work Area: https://csds.ul.com/Home/ProposalsDefault.aspx

UL (Underwriters Laboratories)
12 Laboratory Drive, Research Triangle Park, NC 27709-3995 ph: (919) 549-1392 https://ul.org/

Reaffirmation

This proposal for UL 248-10 covers: Reaffirmation and continuance of the third edition of the Standard for Low-Voltage Fuses - Part 10: Class L Fuses, UL 248-10, as an American National Standard.

Single copy price: Free
Order from: http://www.shopulstandards.com
Send comments (with optional copy to psa@ansi.org) to: Follow the instructions in the following website to enter comments into the CSDS Work Area: https://csds.ul.com/Home/ProposalsDefault.aspx

UL (Underwriters Laboratories)
12 Laboratory Drive, Research Triangle Park, NC 27709-3995 ph: (919) 549-1392 https://ul.org/

Reaffirmation

Single copy price: Free
Order from: http://www.shopulstandards.com
Send comments (with optional copy to psa@ansi.org) to: Follow the instructions in the following website to enter comments into the CSDS Work Area: https://csds.ul.com/Home/ProposalsDefault.aspx

UL (Underwriters Laboratories)
333 Pfingsten Road, Northbrook, IL 60062 ph: (847) 664-3198 https://ul.org/

Reaffirmation

BSR/UL 2040-2015 (R202x), Standard for Safety for Folding Rollaway Tables (reaffirmation of ANSI/UL 2040-2015)

(1) Reaffirmation and Continuance of the second edition of the Standard for Folding Rollaway Tables, UL 2040, as an American National Standard

Single copy price: Free
Order from: http://www.shopulstandards.com
Send comments (with optional copy to psa@ansi.org) to: Follow the instructions in the following website to enter comments into the CSDS Work Area: https://csds.ul.com/Home/ProposalsDefault.aspx
Comment Deadline: July 27, 2020

UL (Underwriters Laboratories)
12 Laboratory Drive, Research Triangle Park, NC 27709-3995 ph: (919) 549-1097 https://ul.org/

Revision
This proposal for UL 1838 covers: (1) Terminology - live parts; (2) Power supply cords and attachment plugs; (3) Overload, burnout, and endurance test consolidation and simplification; (4) Polymeric enclosure conduit connection test; (5) Fuse replacement markings; (6) Installation instructions; (7) Polymeric material requirements for class 2 devices; (8) Unit low-voltage cable; (9) Tungsten-halogen lamp containment barriers; and (10) Water barriers for pond/decorative fountain luminaires.
Single copy price: Free
Order from: http://www.shopulstandards.com
Send comments (with optional copy to psa@ansi.org) to: Follow the instructions in the following website to enter comments into the CSDS Work Area: https://csds.ul.com/Home/ProposalsDefault.aspx

UL (Underwriters Laboratories)
12 Laboratory Drive, Research Triangle Park, NC 27709-3995 ph: (919) 549-1097 https://ul.org/

Revision
This proposal for UL 2416 covers: (1) Modified definition of Enclosure; (2) Updated references for spacings; (3) Refinement of effectively grounded marking requirement; (4) Revision of Functional Earthing (Grounding) marking; (5) Clarification on reference to UL 62368-1 for Indoor Locations; (6) Additional UL 62368-1 alternative for Outdoor Enclosures; (7) Clarification on condensation and drain holes; (8) Editorial revision of ITE (Computer) Room application requirement; (9) Refinement of Openings in Vertical Surfaces Requirements to promote consistent application; (10) Clarification on treatment of pryout holes; (11) Clarification on allowed application of Bottom Opening requirements to promote consistent application; (12) Clarification on Overcurrent Protection; (13) Clarification on application of Temperature Test; (14) Clarification on Installation Markings; (15) Clarification on Installation Instructions; and (16) Miscellaneous Updates to UL 2416 to address areas needing further refinement.
Single copy price: Free
Order from: http://www.shopulstandards.com
Send comments (with optional copy to psa@ansi.org) to: Follow the instructions in the following website to enter comments into the CSDS Work Area: https://csds.ul.com/Home/ProposalsDefault.aspx

Comment Deadline: August 11, 2020

ASME (American Society of Mechanical Engineers)
Two Park Avenue, M/S 6-2B, New York, NY 10016-5990 ph: (212) 591-8489 www.asme.org

Revision
Reaffirmations and withdrawals available electronically may be accessed at: webstore.ansi.org
This Standard is intended to establish a common system to assist in identification of hazardous materials conveyed in piping systems and their hazards when released in the environment.
Single copy price: Free
Obtain an electronic copy from: http://cstools.asme.org/publicreview
Order from: https://cstools.asme.org/csconnect/PublicReviewPage.cfm
Send comments (with optional copy to psa@ansi.org) to: Riad Mohamed, (212) 591-8460, MohamedR@asme.org
Comment Deadline: August 11, 2020

CGA (Compressed Gas Association)
14501 George Carter Way, Suite 103, Chantilly, VA 20151 ph: (703) 788-2716 www.cganet.com

Revision
Reaffirmations and withdrawals available electronically may be accessed at: webstore.ansi.org
This standard contains minimum requirements for locating/siting, selecting equipment, installing, starting up, maintaining, and removing bulk hydrogen supply systems. Two types of bulk hydrogen supply systems are covered in this standard: liquid and gaseous. This standard covers the entire process including site selection, regulatory compliance, equipment selection, equipment transportation and setting, equipment installation, system startup, operation, and system removal. This standard also briefly discusses health hazards and safety considerations. Typical flow diagrams are also included.
Single copy price: Free
Obtain an electronic copy from: tdeary@cganet.com
Order from: Thomas Deary, (703) 788-2716, tdeary@cganet.com
Send comments (with optional copy to psa@ansi.org) to: Same

UL (Underwriters Laboratories)
12 Laboratory Drive, Research Triangle Park, NC 27709-3995 ph: (919) 549-1053 https://ul.org/

Reaffirmation
Reaffirmations and withdrawals available electronically may be accessed at: webstore.ansi.org
BSR/UL 884-2016 (R202x), Standard for Underfloor Raceways and Fittings (reaffirmation of ANSI/UL 884-2016)
(1) Reaffirmation and continuance of the 13th edition of the Standard for Cellular Metal Floor Raceways and Fittings, UL 884, as an American National Standard.
Single copy price: Free
Order from: http://www.shopulstandards.com
Send comments (with optional copy to psa@ansi.org) to: Follow the instructions in the following website to enter comments into the CSDS Work Area: https://csds.ul.com/Home/ProposalsDefault.aspx

Notice of Withdrawal: ANS at least 10 years past approval date
The following American National Standards have not been revised or reaffirmed within ten years from the date of their approval as American National Standards and accordingly are withdrawn:

UL (Underwriters Laboratories)
47173 Benicia Street, Fremont, CA 94538 ph: (510) 319-4271 https://ul.org/
ANSI/UL 1585-2006, Standard for Safety for Class 2 and Class 3 Transformers

X12 (X12 Incorporated)
24654 N. Lake Pleasant Pkwy., Peoria, AZ 85383 ph: (425) 562-2245 www.x12.org

X12 (X12 Incorporated)
24654 N. Lake Pleasant Pkwy., Peoria, AZ 85383 ph: (425) 562-2245 www.x12.org
Notice of Withdrawn ANS by an ANSI-Accredited Standards Developer

In accordance with clause 4.2.1.3.2 Withdrawal by ANSI-Accredited Standards Developer of the ANSI Essential Requirements, the following American National Standards have been withdrawn as an ANS.

AAMI (Association for the Advancement of Medical Instrumentation)

901 N. Glebe Road, Suite 300, Arlington, VA 22203 ph: (703) 253-8274 www.aami.org

ANSI/AAMI/ISO 14708-5-2010 (R2015), Implants for surgery - Active implantable medical devices - Part 5: Circulatory support devices

Questions may be directed to: Cliff Bernier, (703) 253-8263, cbernier@aami.org

API (American Petroleum Institute)

200 Massachusetts Avenue NW, Washington, DC 20001 ph: (202) 682-8286 www.api.org

ANSI/API RP 10F/ISO 10427-3-2010 (R2015), Recommended Practice for Performance Testing of Cementing Float Equipment

Questions may be directed to: Jacqueline Roueche, (202) 682-8286, RouecheJ@api.org

Correction

Duplicate Call-for-Comment

BSR/ABMA 11-2014 (R202x)

A duplicate Call for Comment notice for BSR/ABMA 11-2014 (R202x), Load Ratings and Fatigue Life for Ball Bearings, was mistakenly listed in the May 29, 2020 Standards Action.

The initial Call for Comment Deadline of May 22, 2020 stands as the official closing date.
Call for Members (ANS Consensus Bodies)

Directly and materially affected parties who are interested in participating as a member of an ANS consensus body for the standards listed below are requested to contact the sponsoring standards developer directly and in a timely manner.

AGMA (American Gear Manufacturers Association)

Contact: Amir Aboutaleb
1001 N Fairfax Street, 5th Floor
Alexandria, VA 22314-1587
p: (703) 684-0211
e: tech@agma.org

BSR/AGMA 6014-B-2015 (R202x), Gear Power Rating for Cylindrical Shell and Trunnion Supported Equipment (reaffirmation of ANSI/AGMA 6014-B-2015)

BSR/AGMA 9112-B-2015 (R202x), Bores and Keyways for Flexible Couplings (Metric Series) (reaffirmation of ANSI/AGMA 9112-B-2015)

ASME (American Society of Mechanical Engineers)

Contact: Terrell Henry
Two Park Avenue, M/S 6-2B
New York, NY 10016-5990
p: (212) 591-8489
e: ansibox@asme.org

BSR/ASME B16.53-202x, High Pressure Connections (new standard)

AWEA (American Wind Energy Association)

Contact: Michele Mihelic
1501 M Street, NW, Suite 1000
Washington, DC 20005
p: (202) 383-2500
e: standards@awea.org

BSR/AWEA 101-1-202x, AWEA Small Wind Turbine Standard (new standard)

BSR/AWEA RP 1001-2-202x, Recommended Practice for Offshore Safety Training and Medical Requirements (new standard)

CTA (Consumer Technology Association)

Contact: Veronica Lancaster
1919 South Eads Street
Arlington, VA 22202
p: (703) 907-7697
e: vlancaster@cta.tech

BSR/CTA 2068.1-202x, Definitions and Characteristics of Consumer Technologies for Monitoring Physical and Psychosocial Stress - Heart Rate and Related Measures (new standard)

BSR/CTA 2068.2-202x, Definitions and Characteristics of Consumer Technologies for Monitoring Physical and Psychosocial Stress - Respiration (new standard)

BSR/CTA 2068.3-202x, Definitions and Characteristics of Consumer Technologies for Monitoring Physical and Psychosocial Stress - Skin Conductance (new standard)

EOS/ESD (ESD Association, Inc.)

Contact: Christina Earl
7900 Turin Rd., Bldg. 3
Rome, NY 13440
p: (315) 339-6937
e: cearl@esda.org

BSR/ESD SP17.1-202x, ESD Association Draft Standard Practice for the Protection of Electrostatic Discharge Susceptible Items - Process Assessment Techniques (new standard)
Call for Members (ANS Consensus Bodies)

Directly and materially affected parties who are interested in participating as a member of an ANS consensus body for the standards listed below are requested to contact the sponsoring standards developer directly and in a timely manner.

NEMA (ASC C8) (National Electrical Manufacturers Association)

Contact: Khaled Masri
1300 North 17th Street
Rosslyn, VA 22209
p: (703) 841-3278
e: Khaled.Masri@nema.org

BSR/NEMA WC 61-1992 (R202x), Transfer Impedance Testing
(reaffirmation of ANSI/NEMA WC 61-1992 (R2015))

NISO (National Information Standards Organization)

Contact: Nettie Lagace
3600 Clipper Mill Road, Suite 302
Baltimore, MD 21211
p: (301) 654-2512
e: nlagace@niso.org

BSR/NISO/LBC Z39.78-202x, Library Binding (revision of
ANSI/NISO/LBC Z39.78-2000 (R2018))

NSF (NSF International)

Contact: Jason Snider
789 N. Dixboro Road
Ann Arbor, MI 48105-9723
p: (734) 418-6660
e: jsnider@nsf.org

BSR/NSF 14-202x (i107r3), Plastics Piping System Components
and Related Materials (revision of ANSI/NSF 14-2019)

BSR/NSF 14-202x (i108r1), Plastics Piping System Components
and Related Materials (revision of ANSI/NSF 14-2019)

Contact: Monica Leslie
789 N. Dixboro Road
Ann Arbor, MI 48105-9723
p: (734) 827-5643
e: mleslie@nsf.org

BSR/NSF/CAN 60-202x (i92r1), Drinking Water Treatment
Chemicals - Health Effects (revision of ANSI/NSF/CAN 60
-2019)

UL (Underwriters Laboratories)

Contact: Paul Lloret
47173 Benicia Street
Fremont, CA 94538
p: (510) 319-4269
e: Paul.E.Lloret@ul.org

BSR/UL 521-202x, Standard for Safety for Heat Detectors for
Fire Protective Signaling Systems (revision of ANSI/UL 521
-2019)
Call for Members (ANS Consensus Bodies)

Call for Members

AAMI (Association for the Advancement of Medical Instrumentation)

U.S. Adoption of AAMI/IEC 60601-1-16-2018

AAMI (www.aami.org) is actively seeking participation in the following standards development work and in the interest categories specified:

US adoption of AAMI/IEC 60601-2-16-2018, Medical electrical equipment - Part 2-16: Particular requirements for basic safety and essential performance of haemodialysis, haemodiafiltration and haemofiltration equipment. Specifies the minimum safety requirements for HAEMODIALYSIS EQUIPMENT. This HAEMODIALYSIS EQUIPMENT is intended for use either by medical staff or for use by the PATIENT or other trained personnel under medical supervision. Includes all ME EQUIPMENT that is intended to deliver a HAEMODIALYSIS, HAEMODIAFILTRATION and HAEMOFILTRATION treatment to a PATIENT, independent of the treatment duration and location. If applicable, applies to the relevant parts of ME EQUIPMENT intended for other extracorporeal blood purification treatments. Contact: Cliff Bernier, (703) 253-8263, cbernier@aami.org.

U.S. Adoption of AAMI/IEC 60601-2-39-2018

AAMI (www.aami.org) is actively seeking participation in the following standards development work and in the interest categories specified:

US adoption of AAMI/IEC 60601-2-39:2018, Medical electrical equipment - Part 2-39: Particular requirements for basic safety and essential performance of peritoneal dialysis equipment. Applies to the basic safety and essential performance of peritoneal dialysis ME equipment. Applies to PD equipment intended for use either by medical staff or under the supervision of medical experts, including PD equipment operated by the patient, regardless of whether the PD equipment is used in a hospital or domestic environment. Contact: Cliff Bernier, (703) 253-8263, cbernier@aami.org.
Call for Members (ANS Consensus Bodies)

Call for Committee Members

ASC O1 – Safety Requirements for Woodworking Machinery

Are you interested in contributing to the development and maintenance of valuable industry safety standards? The ASC O1 is currently looking for members in the following categories:

- General Interest
- Government
- Producer
- User

If you are interested in joining the ASC O1, contact WMMA Associate Director Jennifer Miller at jennifer@wmma.org.
Final Actions on American National Standards

The standards actions listed below have been approved by the ANSI Board of Standards Review (BSR) or by an ANSI-Audited Designator, as applicable.

AGMA (American Gear Manufacturers Association)

Reaffirmation

Revision

API (American Petroleum Institute)

Supplement

ASA (ASC S3) (Acoustical Society of America)

Reaffirmation

ANSI ASA S3.52-2016 (R2020), Measurements of the Threshold of Hearing and Signal Detectability in a Sound Field (reaffirmation of ANSI ASA S3.52-2016): 6/5/2020

ANSI ASA S3.7-2016 (R2020), Method for Measurement and Calibration of Earphones (reaffirmation of ANSI ASA S3.7-2016): 6/5/2020

ANSI/ASA S3.4-2007 (R2020), Procedure for the Computation of Loudness of Steady Sounds (reaffirmation of ANSI/ASA S3.4-2007 (R2017)): 6/5/2020

ANSI/ASA S3.5-1997 (R2020), Methods for Calculation of the Speech Intelligibility Index (reaffirmation of ANSI/ASA S3.5-1997 (R2017)): 6/5/2020

ASABE (American Society of Agricultural and Biological Engineers)

Revision

ASME (American Society of Mechanical Engineers)

Revision

ASTM (ASTM International)

New Standard

ATIS (Alliance for Telecommunications Industry Solutions)

Stabilized Maintenance

ANSI/ATIS 1000111-2005 (S2020), Signaling System No. 7 (SS7) - Signaling Connection Control Part (SCCP) (stabilized maintenance of ANSI/ATIS 1000111-2005 (R2015)): 6/8/2020

ANSI/ATIS 1000636-1999 (S2020), B-ISDN Signaling ATM Adaptation Layer (SAAL) - Overview Description (stabilized maintenance of ANSI/ATIS 1000636-1999 (R2010)): 6/8/2020

ANSI/ATIS 1000637-1999 (S2020), B-ISDN ATM Adaptation Layer - Service Specific Coordination Function for Support of Signaling at the User-to-Network Interface (SSCF at the UNI) (stabilized maintenance of ANSI/ATIS 1000637-1999 (R2015)): 6/8/2020

ANSI/ATIS 1000661-2000 (S2020), Signaling System Number 7 (SS7) - Release to Pivot (RTP) (stabilized maintenance of ANSI/ATIS 1000661-2000 (R2015)): 6/8/2020

ESTA (Entertainment Services and Technology Association)

Revision

ANSI E1.4-3-2020, Entertainment Technology - Manually Operated Hoist Rigging Systems (revision and partition of ANSI E1.4-2014): 6/2/2020

IAPMO (ASSE Chapter) (ASSE International Chapter of IAPMO)

Revision

NEMA (ASC C82) (National Electrical Manufacturers Association)

Revision

NEMA (ASC W1) (National Electrical Manufacturers Association)

Reaffirmation

NSF (NSF International)

Revision

SCTE (Society of Cable Telecommunications Engineers)

Revision

UL (Underwriters Laboratories)

New Standard

Reaffirmation

Revision

Project Initiation Notification System (PINS)

ANSI Procedures require notification of ANSI by ANSI-accredited standards developers (ASD) of the initiation and scope of activities expected to result in new or revised American National Standards (ANS). Early notification of activity intended to reaffirm or withdraw an ANS and in some instances a PINS related to a national adoption is optional. The mechanism by which such notification is given is referred to as the PINS process. For additional information, see clause 2.4 of the ANSI Essential Requirements: Due Process Requirements for American National Standards.

Following is a list of proposed actions and new ANS that have been received recently from ASDs. Please also review the section in Standards Action entitled “American National Standards Maintained Under Continuous Maintenance” for additional or comparable information with regard to standards maintained under the continuous maintenance option. Use the following Public Document Library url to access PDF & EXCEL reports of approved & proposed ANS: List of Approved and Proposed ANS

Directly and materially affected interests wishing to receive more information or to submit comments are requested to contact the standards developer directly within 30 days of the publication of this announcement.

AAFS (American Academy of Forensic Sciences)

Contact: Teresa Ambrosius, (719) 453-1036, tambrosius@aafs.org
410 North 21st Street, Colorado Springs, CO 80904 www.aafs.org

New Standard

BSR/ASB Std 152-202x, Standard for Minimum Content Requirements of Forensic Toxicology Procedures (new standard)

Stakeholders: The forensic toxicology community, law enforcement, attorneys, medicolegal death investigation community, and courts.

Project Need: The requirements of this document will standardize toxicology methods and ensure all pertinent information is contained or referenced within the method to enable staff to perform quality work. While an immediate benefit should be gained by individual laboratories, farther reaching gains should be seen in the toxicology community as methods are published in peer-reviewed journals. The non-standardized presentation of information in these publications can be difficult for readers to grasp all pertinent aspects of the method.

This document provides requirements for the minimum content of technical and analytical procedures in forensic toxicology. This standard applies to laboratories performing forensic toxicological analysis in the following sub-disciplines: postmortem forensic toxicology; human performance toxicology (e.g., drug-facilitated crimes and driving-under-the-influence of alcohol or drugs); non-regulated employment drug testing, court-ordered toxicology (e.g., probation and parole, drug courts, child services, breath alcohol); and general forensic toxicology (non-lethal poisonings or intoxications).
New Standard

BSR/ANS 3.15-202x, Risk-Informing Critical Digital Assets (CDAs) for Nuclear Power Plant Systems (new standard)

Stakeholders: Nuclear power plant owners/operators, reactor vendors, nuclear instrumentation and control system/platform vendors, nuclear regulatory authorities, national/international nuclear energy agencies/laboratories.

Project Need: The current deterministic guidance for designating digital assets as critical digital assets (CDAs) yields thousands of CDAs to protect. All assets are treated the same when assessed for designation as a CDA. The risk-informed, performance-based methods described in this standard are intended to reduce the current burden plus strengthen the focus on reducing public health and safety risk from cyberthreats. This is expected to be a two-stage process with the initial issue of the standard addressing the selection process.

This document provides a risk-informed, performance-based process for assessing the safety significance of plant digital assets. This risk-informed, performance-based process is in lieu of the deterministic methods currently in use. This document applies to both new and operating plants.

Revision

BSR/APA PRR 410-202x, Standard for Performance-Rated Engineered Wood Rim Boards (revision of ANSI/APA PRR 410-2016)

Stakeholders: Structural panel and engineered wood product manufacturers, distributors, designers, users, building code regulators, and government agencies.

Project Need: Update the existing standard.

This standard covers the manufacturing, qualification, quality assurance, design, and installation requirements for engineered wood rim board products.

New National Adoption

BSR X9.134-3-202X, Mobile Financial Application Lifecycle Management (national adoption with modifications of ISO 12812 Part 3)

Stakeholders: Card schemes, financial institutions, app developers, card issuers, acquirers, merchants, and others.

Project Need: The standard will consider a number of lifecycle application management concerns including: Users who interact directly with Mobile Devices to initiating transactions using Mobile Financial Services ("MFSs"); Mobile Devices that interact with users and the telecommunications infrastructure; MFSs, developed and managed by MFSPs, that provide online transactions and/or functions to users. X9.134 – Part 3 will adopt and adapt ISO 12812-3.

Part 3 of the suite of standards for mobile banking/payments will include specific requirements applicable to all mobile financial service providers ("MFSPs") detailing the approach to a secure deployment and operation of an MFS application throughout the various phases of its lifecycle (e.g., subscription, installation, usage, and termination) in order to facilitate and promote interoperability, security, and quality of MFS services throughout the U.S.
ASME (American Society of Mechanical Engineers)
Contact: Terrell Henry, (212) 591-8489, ansibox@asme.org
Two Park Avenue, M/S 6-2B, New York, NY 10016-5990 www.asme.org

New Standard
BSR/ASME B16.53-202x, High Pressure Connections (new standard)
Stakeholders: Waterjet industry, powdered metal, oil drilling (offshore/land based), high-pressure pumping, petrochemical production.
Project Need: The increase in manufacturers of this type of equipment around the world has increased significantly. Providing standards for the manufacture of the components will allow for ease in interchanging of components. This Standard covers pressure-temperature ratings, materials, dimensions, tolerances, marking, testing, and methods of designating openings for coned and threaded tubing and fitting connections. Included are requirements for tubing end preparations, female connections, glands, collars, and plugs.

2.1 Ratings and Dimensions
2.1.1 Class 20K Tubing connections for sizes 1/4, 3/8, 9/16, 3/4, 1, and 1½ inch.
2.1.2 Class 40K Tubing connections for size including 9/16 inch and 1 inch.
2.1.3 Class 60K Tubing connections for sizes including 1/4, 5/16, 3/8, and 9/16 inch.
2.1.4 Class 100K Tubing connections for sizes including 1/4, 3/8, and 9/16 inch.
2.1.5 Class 150K Tubing connections for size 5/16 inch.

ASPE (American Society of Plumbing Engineers)
Contact: Gretchen Pienta, (847) 296-0002, gpienta@aspe.org
6400 Shafer Court, Suite 350, Rosemont, IL 60018 www.aspe.org

Revision
Stakeholders: Developers, civil and plumbing engineers, urban planners, local authorities having jurisdiction.
Project Need: This standard is needed to harvest rainfall for nonpotable and potable applications to reduce pollution to watersheds from combined sewer overflows, reduce downstream flooding, and replenish aquifers through collection, treatment, and use technologies.
This standard was developed by a joint effort of the American Rainwater Catchment Systems Association (ARCSA) and the American Society of Plumbing Engineers (ASPE). The purpose of this Standard is to assist engineers, designers, plumbers, builders/developers, landscape and irrigation professionals, state and local government, and end users in implementing a stormwater harvesting system while protecting public health and safety. This Standard is intended to apply to new stormwater harvesting installations, as well as alterations, additions, maintenance, and repairs to existing installations. This Standard applies, for example, to the collection of stormwater from the transportation grid (vehicular parking, driving, or other similar surfaces), elevated parking structures, surface public right-of-ways, and storm drain systems.
ASTM (ASTM International)
Contact: Laura Klineburger, (610) 832-9744, accreditation@astm.org
100 Barr Harbor Drive, West Conshohocken, PA 19428-2959 www.astm.org

Revision
BSR/ASTM E2886-202x, Test Method for Evaluating the Ability of Exterior Vents to Resist the Entry of Embers and Direct Flame Impingement (revision of ANSI/ASTM E2886/E2886M-2014)
Stakeholders: External Fire Exposures industry.
Project Need: This fire-test-response standard prescribes two individual methods to evaluate the ability of a gable end, crawl space (foundation), and other vents that mount on a vertical wall or in the under-eave area to resist the entry through the vent opening of embers and flame. The ability of such vents to completely exclude entry of flames or embers is not evaluated. Roof ridge and off-ridge (field) vents are excluded from this standard.
Acceptance criteria are not provided in this standard.
This test method evaluates the ability of exterior vents that mount vertically or horizontally to resist the entry of embers and flame penetration through the vent.

AWEA (American Wind Energy Association)
Contact: Michele Mihelic, (202) 383-2500, standards@awea.org
1501 M Street, NW, Suite 1000, Washington, DC 20005 www.awea.org

New Standard
BSR/AWEA 101-1-202x, AWEA Small Wind Turbine Standard (new standard)
Stakeholders: Wind energy stakeholders, operators, owners, developers, OEMs, contractors, subcontractors, independent service providers, and all other impacted stakeholders.
Project Need: Provide meaningful criteria upon which to assess the quality of the engineering that has gone into a small wind turbine and to provide consumers with performance data that will help them make informed purchasing decisions and an assurance that a turbine has been certified to a national standard.
The goal of this standard is to provide meaningful criteria upon which to assess the quality of the engineering that has gone into a small wind turbine and to provide consumers with performance data that will help them make informed purchasing decisions and an assurance that a turbine has been certified to a national standard. The standard is intended to be written to ensure the quality of the product can be assessed while imposing only reasonable costs and difficulty on the manufacturer to comply with the standard.
AWEA (American Wind Energy Association)
Contact: Michele Mihelic, (202) 383-2500, standards@awea.org
1501 M Street, NW, Suite 1000, Washington, DC 20005 www.awea.org

New Standard
BSR/AWEA RP 1001-2-202x, Recommended Practice for Offshore Safety Training and Medical Requirements (new standard)

Stakeholders: Wind energy stakeholders, operators, owners, developers, OEMs, contractors, subcontractors, independent service providers, and all other impacted stakeholders.

Project Need: This Recommended Practice document serves the needs of the offshore wind industry to develop, analyze, and communicate the appropriate employer requirements for recognized hazards of persons conducting work offshore. This document is intended to supplement or work in conjunction with a relevant Safety Management System (SMS) as well any employer-specific training and qualifications for a worker to be considered competent, trained, or qualified in the completion of their assigned work. This document is not intended to focus on a specific site or project so hazards specific to a given site or project shall be assessed and managed outside of this document and in accordance with recognized practices and methodologies.

It is the intent of this standard to provide the offshore wind industry with an identified list of minimum and recommended safety training and medical requirements for persons performing work activities on offshore structures and vessels within the United States Outer Continental Shelf.

AWS (American Welding Society)
Contact: Stephen Borrero, (305) 443-9353, sborrero@aws.org
8669 NW 36th Street, Suite 130, Doral, FL 33166 www.aws.org

Revision
BSR/AWS A2.4-202x, Standard Symbols for Welding, Brazing, and Nondestructive Examination (revision of ANSI/AWS A2.4-2020)

Stakeholders: Engineers, students, welders, educators, designers, manufacturers.

Project Need: Joining processes and examination methods cannot take their proper place as fabricating tools unless means are provided for conveying information from a designer to joining and inspection personnel. The symbols in AWS A2.4 are intended to be used to facilitate communication among the design, fabrication, and inspection personnel through drawings.

This standard establishes a method for specifying certain welding, brazing, and nondestructive examination information by means of symbols, including the examination method, frequency, and extent. Detailed information and examples are provided for the construction and interpretation of these symbols.
AWS (American Welding Society)
Contact: Stephen Borrero, (305) 443-9353, sborrero@aws.org
8669 NW 36th Street, Suite 130, Doral, FL 33166 www.aws.org

Revision
Stakeholders: Engineers, students, welders, program managers, government agencies, civil engineers, automotive industry, aerospace industry, marine and shipbuilding industry, plastics industry, structural industry, higher education instructors.
Project Need: Establishing standard terms and definitions to aid in the communication of welding information is paramount for professionals in the welding industry.
This standard is a glossary of the technical terms used in the welding industry. Its purpose is to establish standard terms to aid in the communication of information related to welding and allied processes. Since it is intended to be a comprehensive compilation of welding terminology, nonstandard terms used in the welding industry are also included. All terms are either standard or nonstandard. They are arranged in word-by-word alphabetical sequence.

CTA (Consumer Technology Association)
Contact: Veronica Lancaster, (703) 907-7697, vlancaster@cta.tech
1919 South Eads Street, Arlington, VA 22202 www.cta.tech

New Standard
BSR/CTA 2068.1-202x, Definitions and Characteristics of Consumer Technologies for Monitoring Physical and Psychosocial Stress - Heart Rate and Related Measures (new standard)
Stakeholders: Consumers, manufacturers, and retailers.
Project Need: To defines and creates performance criteria for consumer stress monitoring technologies that use HRV in the measurement and application of stress metrics.
This standard defines and creates performance criteria for consumer stress monitoring technologies that use heart rate and related measures in the measurement and application of stress metrics.

CTA (Consumer Technology Association)
Contact: Veronica Lancaster, (703) 907-7697, vlancaster@cta.tech
1919 South Eads Street, Arlington, VA 22202 www.cta.tech

New Standard
BSR/CTA 2068.2-202x, Definitions and Characteristics of Consumer Technologies for Monitoring Physical and Psychosocial Stress - Respiration (new standard)
Stakeholders: Consumers, manufacturers, and retailers.
Project Need: To define and create performance criteria for consumer stress monitoring technologies that use Respiration in the measurement and application of stress metrics.
This standard defines and creates performance criteria for consumer stress monitoring technologies that use Respiration in the measurement and application of stress metrics.
CTA (Consumer Technology Association)
Contact: Veronica Lancaster, (703) 907-7697, vlancaster@cta.tech
1919 South Eads Street, Arlington, VA 22202 www.cta.tech

New Standard
BSR/CTA 2068.3-202x, Definitions and Characteristics of Consumer Technologies for Monitoring Physical and Psychosocial Stress - Skin Conductance (new standard)
Stakeholders: Consumers, manufacturers, and retailers.
Project Need: To define and create performance criteria for consumer stress monitoring technologies that use Skin Conductance in the measurement and application of stress metrics.
This standard defines and creates performance criteria for consumer stress monitoring technologies that use Skin Conductance in the measurement and application of stress metrics.

NFPA (National Fire Protection Association)
Contact: Dawn Michele Bellis, (617) 984-7246, dbellis@nfpa.org
One Batterymarch Park, Quincy, MA 02169 www.nfpa.org

New Standard
BSR/NFPA 200-202x, Standard for Hanging and Bracing of Fire Suppression Systems (new standard)
Stakeholders: Manufacturers, users, installers/maintainers, labor, enforcing authorities, insurance, consumers, special experts, and research and testing.
Project Need: Public interest and need.
This standard will develop criteria for the use and installation of components and devices used for the support of fire suppression systems as well as criteria for the protection of fire suppression systems and devices against seismic events.

NFPA (National Fire Protection Association)
Contact: Dawn Michele Bellis, (617) 984-7246, dbellis@nfpa.org
One Batterymarch Park, Quincy, MA 02169 www.nfpa.org

New Standard
BSR/NFPA 401-202x, Recommended Practice for the Prevention of Fires and Uncontrolled Chemical Reactions Associated with the Handling of Hazardous Waste (new standard)
Stakeholders: Manufacturers, users, installers/maintainers, labor, enforcing authorities, insurance, consumers, special experts, and research and testing.
Project Need: Public interest and need.
This standard will develop safeguards against the fire and explosion hazards associated with the treatment, storage, disposal, generation, and transportation of hazardous waste.

NFPA (National Fire Protection Association)
Contact: Dawn Michele Bellis, (617) 984-7246, dbellis@nfpa.org
One Batterymarch Park, Quincy, MA 02169 www.nfpa.org

New Standard
BSR/NFPA 461-202x, Standard for Fire Protection of Spaceport Facilities (new standard)
Stakeholders: Manufacturers, users, installers/maintainers, labor, enforcing authorities, insurance, consumers, special experts, and research and testing.
Project Need: Public interest and need.
This standard will establish guidance on the construction and operation of facilities used to house, maintain, and deploy rockets (solid and liquid), spaceplanes, and other similar vehicles.
NFPA (National Fire Protection Association)
Contact: Dawn Michele Bellis, (617) 984-7246, dbellis@nfpa.org
One Batterymarch Park, Quincy, MA 02169 www.nfpa.org

New Standard

BSR/NFPA 715-202x, Standard for the Installation of Fuel Gases Detection and Warning Equipment (new standard)

Stakeholders: Manufacturers, users, installers/maintainers, labor, enforcing authorities, insurance, consumers, special experts, and research and testing.

Project Need: Public interest and need.

This standard will develop criteria for the installation, performance, maintenance, testing, and use of fuel gases warning equipment for the protection of life, property, and mission continuity as well as addressing selection and operation of fuel gases warning equipment.

NFPA (National Fire Protection Association)
Contact: Dawn Michele Bellis, (617) 984-7246, dbellis@nfpa.org
One Batterymarch Park, Quincy, MA 02169 www.nfpa.org

New Standard

BSR/NFPA 915-202x, Standard for Remote Inspections (new standard)

Stakeholders: Manufacturers, users, installers/maintainers, labor, enforcing authorities, insurance, consumers, special experts, and research and testing.

Project Need: Public interest and need.

This standard will establish protocols and practices for the use of remote inspections of existing buildings, buildings under construction, and building systems for code compliance.

NFPA (National Fire Protection Association)
Contact: Dawn Michele Bellis, (617) 984-7246, dbellis@nfpa.org
One Batterymarch Park, Quincy, MA 02169 www.nfpa.org

New Standard

BSR/NFPA 1022-202x, Standard on Fire Service Analysts Technical Specialists Professional Qualifications (new standard)

Stakeholders: Manufacturers, users, installers/maintainers, labor, enforcing authorities, insurance, consumers, special experts, and research and testing.

Project Need: Public interest and need.

This standard will develop criteria on professional qualifications for personnel who use, manage, review, analyze, support, or evaluate data and related technical systems in public safety agencies.

NFPA (National Fire Protection Association)
Contact: Dawn Michele Bellis, (617) 984-7246, dbellis@nfpa.org
One Batterymarch Park, Quincy, MA 02169 www.nfpa.org

New Standard

BSR/NFPA 1321-202x, Standard for Fire Investigation Units (new standard)

Stakeholders: Manufacturers, users, installers/maintainers, labor, enforcing authorities, insurance, consumers, special experts, and research and testing.

Project Need: Public interest and need.

This standard will establish guidelines for the development and composition of Fire Investigation Units (FIU) but not fire investigation techniques, methodologies, or fire investigator professional qualifications.
NFPA (National Fire Protection Association)
Contact: Dawn Michele Bellis, (617) 984-7246, dbellis@nfpa.org
One Batterymarch Park, Quincy, MA 02169 www.nfpa.org

New Standard
BSR/NFPA 1585-202x, Standard on Contamination Control (new standard)
Stakeholders: Manufacturers, users, installers/maintainers, labor, enforcing authorities, insurance, consumers, special experts, and research and testing.
Project Need: Public interest and need.
This standard will consolidate existing contamination control standards for emergency responders (currently in various NFPA standards) into a single source.

NFPA (National Fire Protection Association)
Contact: Dawn Michele Bellis, (617) 984-7246, dbellis@nfpa.org
One Batterymarch Park, Quincy, MA 02169 www.nfpa.org

New Standard
BSR/NFPA 1859-202x, Standard on Selection, Care, and Maintenance of Tactical Operations Video Equipment (new standard)
Stakeholders: Manufacturers, users, installers/maintainers, labor, enforcing authorities, insurance, consumers, special experts, and research and testing.
Project Need: Public interest and need.
This standard will develop guidelines for the selection, care, and maintenance of tactical video equipment and body worn cameras used by emergency services personnel, including law enforcement, military, corrections, and homeland security for surveillance, tactical information, and operational intelligence.

NFPA (National Fire Protection Association)
Contact: Dawn Michele Bellis, (617) 984-7246, dbellis@nfpa.org
One Batterymarch Park, Quincy, MA 02169 www.nfpa.org

New Standard
BSR/NFPA 2800-202x, Standard for Emergency Action Planning (new standard)
Stakeholders: Manufacturers, users, installers/maintainers, labor, enforcing authorities, insurance, consumers, special experts, and research and testing.
Project Need: Public interest and need.
This standard will establish minimum requirements for emergency action plans addressing all-hazard emergencies within occupied structures having an occupant load of greater than 500 but not for qualifications, roles, responsibilities, or emergency action plans within industrial occupancies.
Revision

Stakeholders: Libraries, cover material suppliers, binding companies.

Project Need: A revision to the Binding Standard to establish the minimum performance of cover materials to assure preservation quality for library products and provide product availability to comply with the Standard for material suppliers and binders. Libraries need revision to the Standard so they can purchase binders and suppliers need reliable, reasonable material to comply with the Standard and adhere to contract requirements. Using performance-based requirements, establish minimum specifications for printed-book cover materials to support preservation of collections enabling long-term access to materials.
American National Standards Maintained Under Continuous Maintenance

The ANSI Essential Requirements: Due Process Requirements for American National Standards provides two options for the maintenance of American National Standards (ANS): periodic maintenance (see clause 4.7.1) and continuous maintenance (see clause 4.7.2). Continuous maintenance is defined as follows:

The standard shall be maintained by an accredited standards developer. A documented program for periodic publication of revisions shall be established by the standards developer. Processing of these revisions shall be in accordance with these procedures. The published standard shall include a clear statement of the intent to consider requests for change and information on the submittal of such requests. Procedures shall be established for timely, documented consensus action on each request for change and no portion of the standard shall be excluded from the revision process. In the event that no revisions are issued for a period of four years, action to reaffirm or withdraw the standard shall be taken in accordance with the procedures contained in the ANSI Essential Requirements.

The Executive Standards Council (ExSC) has determined that for standards maintained under the Continuous Maintenance option, separate PINS announcements are not required. The following ANSI Accredited Standards Developers have formally registered standards under the Continuous Maintenance option.

- AAMI (Association for the Advancement of Medical Instrumentation)
- AARST (American Association of Radon Scientists and Technologists)
- AGA (American Gas Association)
- AGSC (Auto Glass Safety Council)
- ASC X9 (Accredited Standards Committee X9, Incorporated)
- ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.)
- ASME (American Society of Mechanical Engineers)
- ASTM (ASTM International)
- GBI (Green Building Initiative)
- HL7 (Health Level Seven)
- IES (Illuminating Engineering Society)
- ITI (InterNational Committee for Information Technology Standards)
- MHI (Material Handling Industry)
- NAHBRC (NAHB Research Center, Inc.)
- NBBPVI (National Board of Boiler and Pressure Vessel Inspectors)
- NCPDP (National Council for Prescription Drug Programs)
- NEMA (National Electrical Manufacturers Association)
- NISO (National Information Standards Organization)
- NSF (NSF International)
- PRCA (Professional Ropes Course Association)
- RESNET (Residential Energy Services Network, Inc.)
- SAE (SAE International)
- TCNA (Tile Council of North America)
- TIA (Telecommunications Industry Association)
- UL (Underwriters Laboratories)

To obtain additional information with regard to these standards, including contact information at the ANSI Accredited Standards Developer, please visit ANSI Online at www.ansi.org/asd, select “American National Standards Maintained Under Continuous Maintenance.” Questions? psa@ansi.org.
ANSI-Accredited Standards Developers Contact Information

The addresses listed in this section are to be used in conjunction with standards listed in PINS, Call for Comment and Final Actions. This section is a list of developers who have submitted standards for this issue of *Standards Action* – it is not intended to be a list of all ANSI-Accredited Standards Developers. Please send all address corrections to Standards Action Editor at standact@ansi.org.

<table>
<thead>
<tr>
<th>ANSI Accredited Standards Developer</th>
<th>Contact Information</th>
</tr>
</thead>
</table>
| AAFS | American Academy of Forensic Sciences
410 North 21st Street
Colorado Springs, CO 80904
Phone: (719) 453-1036
Web: www.aafs.org |
| ASA (ASC S3) | Acoustical Society of America
1305 Walt Whitman Road
Suite 300
Melville, NY 11747
Phone: (516) 576-2341
Web: www.acousticalsociety.org |
| AGMA | American Gear Manufacturers Association
1001 N Fairfax Street
5th Floor
Alexandria, VA 22314-1587
Phone: (703) 684-0211
Web: www.agma.org |
| ANSI | American Nuclear Society
555 North Kensington Avenue
La Grange Park, IL 60526
Phone: (708) 579-8268
Web: www.ans.org |
| APA | APA - The Engineered Wood Association
7011 South 19th Street
Tacoma, WA 98466
Phone: (253) 620-7467
Web: www.apawood.org |
| ASP | American Society of Plumbing Engineers
6400 Shafer Court
Suite 350
Rosemont, IL 60018
Phone: (847) 296-0002
Web: www.aspe.org |
| ASTM | ASTM International
100 Barr Harbor Drive
West Conshohocken, PA 19428-2959
Phone: (610) 832-9744
Web: www.astm.org |
| AWEA | American Wind Energy Association
1501 M Street, NW,
Suite 1000
Washington, DC 20005
Phone: (202) 383-2500
Web: www.awea.org |
| ASME | American Society of Mechanical Engineers
Two Park Avenue
M/S 6-2B
New York, NY 10016-5990
Phone: (212) 591-8489
Web: www.asme.org |
| ATIS | Alliance for Telecommunications Industry Solutions
1200 G Street NW
Suite 500
Washington, DC 20005
Phone: (202) 434-8843
Web: www.atis.org |
| ASTM | American Society of Agricultural and Biological Engineers
2950 Niles Road
Saint Joseph, MI 49085
Phone: (269) 757-1213
Web: https://www.asabe.org/ |
| ASC X9 | Accredited Standards Committee X9, Incorporated
275 West Street
Suite 107
Annapolis, MD 21401
Phone: (410) 267-7707
Web: www.x9.org |
| AWWA | American Water Works Association
6666 W. Quincy Ave.
Denver, CO 80235
Phone: (303) 347-6178
Web: www.awwa.org |
CGA
Compressed Gas Association
14501 George Carter Way
Suite 103
Chantilly, VA 20151
Phone: (703) 788-2716
Web: www.cganet.com

CSA
CSA America Standards Inc.
8501 E. Pleasant Valley Road
Cleveland, OH 44131
Phone: (216) 524-4990
Web: www.csagroup.org

CTA
Consumer Technology Association
1919 South Eads Street
Arlington, VA 22202
Phone: (703) 907-7697
Web: www.cta.tech

EOS/ESD
ESD Association, Inc.
7900 Turin Rd., Bldg. 3
Rome, NY 13440
Phone: (315) 339-6937
Web: www.esda.org

ESTA
Entertainment Services and Technology Association
630 Ninth Avenue
Suite 609
New York, NY 10036-3748
Phone: (212) 244-1505
Web: www.estas.org

HL7
Health Level Seven
3300 Washtenaw Avenue
Suite 227
Ann Arbor, MI 48104
Phone: (313) 550-2073
Web: www.hl7.org

IAPMO (ASSE Chapter)
ASSE International Chapter of IAPMO
18927 Hickory Creek Drive
Suite 220
Mokena, IL 60448
Phone: (708) 995-3017
Web: www.asse-plumbing.org

NEMA (ASC C8)
National Electrical Manufacturers Association
1300 North 17th Street
Rosslyn, VA 22209
Phone: (703) 841-3278
Web: www.nema.org

NEMA (ASC C82)
National Electrical Manufacturers Association
1300 N 17th St
Rosslyn, VA 22209
Phone: (703) 841-3262
Web: www.nema.org

NEMA (ASC W1)
National Electrical Manufacturers Association
1300 North 17th Street
Rosslyn, VA 22209
Phone: (703) 841-3278
Web: www.nema.org

NFPA
National Fire Protection Association
One Batterymarch Park
Quincy, MA 02169
Phone: (617) 984-7246
Web: www.nfpa.org

NISO
National Information Standards Organization
3600 Clipper Mill Road
Suite 302
Baltimore, MD 21211
Phone: (301) 654-2512
Web: www.niso.org

NSF
NSF International
789 N. Dixboro Road
Ann Arbor, MI 48105-9723
Phone: (734) 418-6660
Web: www.nsf.org

PMI (Organization)
Project Management Institute
14 Campus Blvd
Newtown Square, PA 19073-3299
Phone: (313) 404-3507
Web: www.pmi.org

SCCTE
Society of Cable Telecommunications Engineers
140 Philips Rd
Exton, PA 19341
Phone: (800) 542-5040
Web: www.scte.org

UL
Underwriters Laboratories
333 Pfingsten Road
Northbrook, IL 60062
Phone: (847) 664-3198
Web: https://ul.org/
ISO & IEC Draft International Standards

This section lists proposed standards that the International Organization for Standardization (ISO) and the International Electrotechnical Commission (IEC) are considering for approval. The proposals have received substantial support within the technical committees or subcommittees that developed them and are now being circulated to ISO and IEC members for comment and vote. Standards Action readers interested in reviewing and commenting on these documents should order copies from ANSI.

Comments
Comments regarding ISO documents should be sent to ANSI’s ISO Team (isot@ansi.org); comments on ISO documents must be submitted electronically in the approved ISO template and as a Word document as other formats will not be accepted.

Ordering Instructions
ISO and IEC Drafts can be made available by contacting ANSI’s Customer Service department. Please e-mail your request for an ISO or IEC Draft to Customer Service at sales@ansi.org. When making your request, please provide the date of the Standards Action issue in which the draft document you are requesting appears.

ISO Standards

ACOUSTICS (TC 43)
ISO/DIS 10052, Acoustics - Field measurements of airborne and impact sound insulation and of service equipment sound - Survey method - 8/22/2020, $102.00

AIRCRAFT AND SPACE VEHICLES (TC 20)
ISO/DIS 22181, Aerospace fluid systems and components - Variable displacement hydraulic motors - General specifications - 8/21/2020, $107.00

BIOGAS (TC 255)
ISO/DIS 24252, Biogas systems - Non-household and non-gasification - 8/27/2020, $125.00

BUILDING CONSTRUCTION (TC 59)
ISO/DIS 6707-4, Buildings and civil engineering works - Vocabulary - Part 4: Facility management terms - 8/21/2020, $88.00

CORROSION OF METALS AND ALLOYS (TC 156)
ISO/DIS 7539-9, Corrosion of metals and alloys - Stress corrosion testing - Part 9: Preparation and use of pre-cracked specimens for tests under rising load or rising displacement - 8/21/2020, $98.00

ESSENTIAL OILS (TC 54)
ISO/DIS 9235, Aromatic natural raw materials - Vocabulary - 8/22/2020, $53.00

FIRE SAFETY (TC 92)
ISO/DIS 21925-2, Fire resistance tests - Fire dampers for air distribution systems - Part 2: Intumescent dampers - 8/21/2020, $112.00

GRAPHIC TECHNOLOGY (TC 130)
ISO/DIS 12647-8, Graphic technology - Process control for the production of half-tone colour separations, proof and production prints - Part 8: Validation print processes working directly from digital data - 8/22/2020, $82.00

INTERNAL COMBUSTION ENGINES (TC 70)
ISO/DIS 4548-6, Methods of test for full-flow lubricating oil filters for internal combustion engines - Part 6: Static burst pressure test - 8/21/2020, $40.00

LABORATORY GLASSWARE AND RELATED APPARATUS (TC 48)
ISO/DIS 8655-1, Piston-operated volumetric apparatus - Part 1: Terminology, general requirements and user recommendations - 8/22/2020, $62.00
ISO/DIS 8655-2, Piston-operated volumetric apparatus - Part 2: Pipettes - 8/22/2020, $67.00
ISO/DIS 8655-3, Piston-operated volumetric apparatus - Part 3: Burettes - 8/22/2020, $40.00
ISO/DIS 8655-4, Piston-operated volumetric apparatus - Part 4: Dilutors - 8/22/2020, $46.00
ISO/DIS 8655-5, Piston-operated volumetric apparatus - Part 5: Dispensers - 8/22/2020, $46.00
ISO/DIS 8655-6, Piston-operated volumetric apparatus - Part 6: Gravimetric reference measurement procedure for the determination of volume - 8/22/2020, $71.00
ISO/DIS 8655-7, Piston-operated volumetric apparatus - Part 7: Alternative measurement procedures for the determination of volume - 8/22/2020, $119.00
ISO/DIS 8655-8, Piston-operated volumetric apparatus - Part 8: Photometric reference measurement procedure for the determination of volume - 8/22/2020, $77.00
ISO/DIS 8655-9, Piston-operated volumetric apparatus - Part 9: Manually operated precision laboratory syringes - 8/22/2020, $46.00

PLASTICS (TC 61)
ISO/DIS 1043-4, Plastics - Symbols and abbreviated terms - Part 4: Flame retardants - 8/27/2020, $33.00

SMALL CRAFT (TC 188)
ISO/DIS 12133, Small craft - Carbon monoxide (CO) detection systems and alarms - 8/21/2020, $67.00
ISO/DIS 13590, Small craft - Personal watercraft - Construction and system installation requirements - 8/22/2020, $93.00
TRANSPORT INFORMATION AND CONTROL SYSTEMS (TC 204)

ISO/DIS 21219-1, Intelligent transport systems - Traffic and travel information (TTI) via transport protocol experts group, generation 2 (TPEG2) - Part 1: Introduction, numbering and versions (TPEG2-INV) - 8/21/2020, $53.00
ISO/DIS 21219-9, Intelligent transport systems - Traffic and travel information (TTI) via transport protocol experts group, generation 2 (TPEG2) - Part 9: Service and network information (TPEG2-SNI) - 8/21/2020, $134.00
ISO/DIS 21219-10, Intelligent transport systems - Traffic and travel information (TTI) via transport protocol experts group, generation 2 (TPEG2) - Part 10: Conditional access information (TPEG2-CAI) - 8/21/2020, $46.00
ISO/DIS 21219-14, Intelligent transport systems - Traffic and travel information (TTI) via transport protocol experts group, generation 2 (TPEG2) - Part 14: Parking information (TPEG2-PKI) - 8/21/2020, $125.00
ISO/DIS 21219-15, Intelligent transport systems - Traffic and travel information (TTI) via transport protocol experts group, generation 2 (TPEG2) - Part 15: Traffic event compact (TPEG2-TEC) - 8/21/2020, $155.00
ISO/DIS 21219-16, Intelligent transport systems - Traffic and travel information (TTI) via transport protocol experts group, generation 2 (TPEG2) - Part 16: Fuel price information and availability (TPEG2-FPI) - 8/21/2020, $146.00
ISO/DIS 21219-19, Intelligent transport systems - Traffic and travel information (TTI) via transport protocol experts group, generation 2 (TPEG2) - Part 19: Weather information (TPEG2-WEA) - 8/21/2020, $146.00

ISO/IEC JTC 1, Information Technology

ISO/IEC 19566-5/DAm1, Information technologies - JPEG systems - Part 5: JPEG universal metadata box format (JUMBF) - Amendment 1: Support for embedding mixed code streams - 8/23/2020, $29.00
ISO/IEC DIS 23008-1/DAm1, Information technology - High efficiency coding and media delivery in heterogeneous environments - Part 1: MPEG media transport (MMT) - Amendment 1: Support of FCAST - 8/13/2020, $40.00
ISO/IEC DIS 2382-37, Information technology - Vocabulary - Part 37: Biometrics - 8/21/2020, $102.00

IEC Standards

SMB/7063/QP, DMT membership extensions, 020/7/3
SMBNC/8/DV, Draft IEC Guide 115 Application of uncertainty of measurement to conformity assessment activities in the electrotechnical sector, 2020/8/28
8/1547/NP, PNW TS 8-1547: Guidelines for Network Management - Power Quality Characteristics Modelling, 2020/8/28
22G/422/CD, IEC 61800-3 ED4: Adjustable speed electrical power drive systems - Part 3: EMC requirements and specific test methods for PDS and machine tools with embedded PDS, 2020/8/28
45A/1322(F)/CDV, IEC/IEEE 63113 ED1: Nuclear facilities - Instrumentation important to safety - Spent fuel pool instrumentation, 020/8/7
47/2631(F)/FDIS, IEC 60749-41 ED1: Semiconductor devices - Mechanical and climatic test methods - Part 41: Standard reliability testing methods of non-volatile memory devices, 2020/6/26
48B/2814(F)/FDIS, IEC 61076-2-114 ED2: Connectors for electrical and electronic equipment - Product requirements - Part 2-114: Circular connectors - Detail specification for connectors with M8 screw-locking with power contacts and signal contacts for data transmission up to 100 MHz, 2020/6/26
65/812/DTR, IEC TR 63319 ED1: A meta-modelling analysis approach to smart manufacturing reference models, 2020/7/31
65/813/DPAS, IEC PAS 63325 ED1: Lifecycle requirements for Functional Safety and Security for IACS, 2020/7/31
65C/1032/CD, IEC 61158-6-X ED5: Industrial communication networks - Fieldbus specifications - Part 6-X: Application layer protocol specification - Type X elements, 2020/7/31
65C/1031/CD, IEC 61158-5-X ED5: Industrial communication networks - Fieldbus specifications - Part 5-X: Application layer service definition - Type X elements, 2020/7/31
65C/1028/CD, IEC 61158-2 ED7: Industrial communication networks - Fieldbus specifications - Part 2: Physical layer specification and service definition, 2020/7/31
Newly Published ISO & IEC Standards

Listed here are new and revised standards recently approved and promulgated by ISO - the International Organization for Standardization – and IEC – the International Electrotechnical Commission. Most are available at the ANSI Electronic Standards Store (ESS) at www.ansi.org. All paper copies are available from Standards resellers (http://webstore.ansi.org/faq.aspx#resellers).

ISO Standards

ISO/IEC JTC 1 Technical Reports

ISO/IEC TR 23187:2020, Information technology - Cloud computing - Interacting with cloud service partners (CSNs), $162.00

AGRICULTURAL FOOD PRODUCTS (TC 34)
ISO 20982:2020, Priests (caper) (Capparis spp.) - Specification and test methods, $45.00
ISO 20984:2020, Cornelian cherry - Specification and test methods, $45.00

BUILDING CONSTRUCTION (TC 59)
ISO 21678:2020, Sustainability in buildings and civil engineering works - Indicators and benchmarks - Principles, requirements and guidelines, $103.00
ISO 23658:2020, Buildings and civil engineering works - Sealants - Testing of adhesion properties using a bead peel test, $68.00

CAST IRON AND PIG IRON (TC 25)
ISO 17804:2020, Founding - Ausferritic spheroidal graphite cast irons - Classification, $162.00

FIRE SAFETY (TC 92)
ISO 1182:2020, Reaction to fire tests for products - Non-combustibility test, $162.00

GAS CYLINDERS (TC 58)
ISO 16148/Amd1:2020, Gas cylinders - Refillable seamless steel gas cylinders and tubes - Acoustic emission examination (AT) and follow-up ultrasonic examination (UT) for periodic inspection and testing - Amendment 1, $19.00

INDUSTRIAL TRUCKS (TC 110)
ISO 5053-1:2020, Industrial trucks - Vocabulary - Part 1: Types of industrial trucks, $45.00

NICKEL AND NICKEL ALLOYS (TC 155)
ISO 6501:2020, Ferronickel - Specification and delivery requirements, $45.00

PLAIN BEARINGS (TC 123)
ISO 2795:2020, Plain bearings - Sintered bushes - Dimensions and tolerances, $68.00

PLASTICS (TC 61)
ISO 19879:2020, Plastics - Determination of aerobic biodegradation of non-floating plastic materials in a seawater/sediment interface - Method by analysis of evolved carbon dioxide, $68.00

ROAD VEHICLES (TC 22)
ISO 19724:2020, Gasoline engines with direct injection - Cleanliness assessment of fuel injection equipment, $68.00

TEXTILES (TC 38)
ISO 106-B06:2020, Textiles - Tests for colour fastness - Part B06: Colour fastness and ageing to artificial light at high temperatures: Xenon arc fading lamp test, $103.00
ISO 1833-1:2020, Textiles - Quantitative chemical analysis - Part 1: General principles of testing, $103.00
ISO 1833-2:2020, Textiles - Quantitative chemical analysis - Part 2: Ternary fibre mixtures, $103.00
ISO 20418-3:2020, Textiles - Qualitative and quantitative proteomic analysis of some animal hair fibres - Part 3: Peptide detection using LC-MS without protein reduction, $138.00

THERMAL INSULATION (TC 163)
ISO 9229:2020, Thermal insulation - Vocabulary, $45.00

TRACTORS AND MACHINERY FOR AGRICULTURE AND FORESTRY (TC 23)
ISO 6533:2020, Forestry machinery - Portable chain-saw front handguard - Dimensions and clearances, $68.00

TRADITIONAL CHINESE MEDICINE (TC 249)
ISO 22236:2020, Traditional Chinese medicine - Thread-embedding acupuncture needle for single use, $68.00

ISO/IEC JTC 1, Information Technology

ISO/IEC 29184:2020, Information technology - Online privacy notices and consent, $138.00
ISO/IEC 60559:2020, Information technology - Microprocessor Systems - Floating-Point arithmetic, $209.00
ISO/IEC 19757-3:2020, Information technology - Document Schema Definition Languages (DSDL) - Part 3: Rule-based validation using Schematron, $185.00
IEC Standards

ELECTROMECHANICAL COMPONENTS AND MECHANICAL STRUCTURES FOR ELECTRONIC EQUIPMENTS (TC 48)

IEC 61969-3 Ed. 3.0 b:2020, Mechanical structures for electrical and electronic equipment - Outdoor enclosures - Part 3: Environmental requirements, tests and safety aspects, $82.00

IEC 60512-9-5 Ed. 2.0 b:2020, Connectors for electrical and electronic equipment - Tests and measurements - Part 9-5: Endurance tests - Test 9e: Current loading, cyclic, $47.00

S+ IEC 61969-3 Ed. 3.0 en:2020 (Redline version), Mechanical structures for electrical and electronic equipment - Outdoor enclosures - Part 3: Environmental requirements, tests and safety aspects, $107.00

S+ IEC 60512-9-5 Ed. 2.0 en:2020 (Redline version), Connectors for electrical and electronic equipment - Tests and measurements - Part 9-5: Endurance tests - Test 9e: Current loading, cyclic, $61.00

SAFETY OF HOUSEHOLD AND SIMILAR ELECTRICAL APPLIANCES (TC 61)

IEC 60335-2-35 Amd.2 Ed. 5.0 b:2020, Amendment 2 - Household and similar electrical appliances - Safety - Part 2-35: Particular requirements for instantaneous water heaters, $12.00

IEC 60335-2-35 Ed. 5.2 b:2020, Household and similar electrical appliances - Safety - Part 2-35: Particular requirements for instantaneous water heaters, $235.00

IEC 60335-2-81 Amd.2 Ed. 3.0 b:2020, Amendment 2 - Household and similar electrical appliances - Safety - Part 2-81: Particular requirements for foot warmers and heating mats, $12.00

IEC 60335-2-81 Ed. 3.2 en:2020, Household and similar electrical appliances - Safety - Part 2-81: Particular requirements for foot warmers and heating mats, $235.00

IEC 60335-2-82 Amd.1 Ed. 3.0 b:2020, Amendment 1 - Household and similar electrical appliances - Safety - Part 2-82: Particular requirements for amusement machines and personal service machines, $12.00

IEC 60335-2-82 Ed. 3.1 b:2020, Household and similar electrical appliances - Safety - Part 2-82: Particular requirements for amusement machines and personal service machines, $176.00

WINDING WIRES (TC 55)

IEC 60317-0-6 Ed. 2.0 b:2020, Specifications for particular types of winding wires - Part 0-6: General requirements - Glass-fibre wound resin or varnish impregnated, bare or enamelled round copper wire, $117.00
Registration of Organization Names in the United States

The Procedures for Registration of Organization Names in the United States of America (document ISSB 989) require that alphanumeric organization names be subject to a 90-day Public Review period prior to registration. For further information, please contact the Registration Coordinator at (212) 642-4975.

The following is a list of alphanumeric organization names that have been submitted to ANSI for registration. Alphanumeric names appearing for the first time are printed in bold type. Names with confidential contact information, as requested by the organization, list only public review dates.

PUBLIC REVIEW

Southern California Edison (SCE)
Public Review Ends: August 28, 2020

NOTE: Challenged alphanumeric names are underlined. The Procedures for Registration provide for a challenge process, which follows in brief. For complete details, see Section 6.4 of the Procedures.

A challenge is initiated when a letter from an interested entity is received by the Registration Coordinator. The letter shall identify the alphanumeric organization name being challenged and state the rationale supporting the challenge. A challenge fee shall accompany the letter. After receipt of the challenge, the alphanumeric organization name shall be marked as challenged in the Public Review list. The Registration Coordinator shall take no further action to register the challenged name until the challenge is resolved among the disputing parties.

Proposed Foreign Government Regulations

Call for Comment

U.S. manufacturers, exporters, regulatory agencies and standards developing organizations may be interested in proposed foreign technical regulations notified by Member countries of the World Trade Organization (WTO). In accordance with the WTO Agreement on Technical Barriers to Trade (TBT Agreement), Members are required to notify proposed technical regulations that may significantly affect trade to the WTO Secretariat in Geneva, Switzerland. In turn, the Secretariat issues and makes available these notifications. The purpose of the notification requirement is to provide global trading partners with an opportunity to review and comment on the regulations before they become final.

The USA Inquiry Point for the WTO TBT Agreement is located at the National Institute of Standards and Technology (NIST) in the Standards Coordination Office (SCO). The Inquiry Point distributes the notified proposed foreign technical regulations (notifications) and makes the associated full-texts available to U.S. stakeholders via its online service, Notify U.S. Interested U.S. parties can register with Notify U.S. to receive e-mail alerts when notifications are added from countries and industry sectors of interest to them.

To register for Notify U.S., please visit http://www.nist.gov/notifyus/.

The USA WTO TBT Inquiry Point is the official channel for distributing U.S. comments to the network of WTO TBT Enquiry Points around the world. U.S. business contacts interested in commenting on the notifications are asked to review the comment guidance available on Notify U.S. at https://tsapps.nist.gov/notifyus/data/guidance/guidance.cfm prior to submitting comments.

For further information about the USA TBT Inquiry Point, please visit https://www.nist.gov/standardsgov/what-we-do/trade-regulatory-programs/usa-wto-tbt-inquiry-point

Contact the USA TBT Inquiry Point at: (301) 975-2918; Fax: (301) 926-1559; E-mail: usatbtep@nist.gov or notifyus@nist.gov.
American National Standards

Call for Members

INCITS Executive Board – ANSI Accredited SDO and US TAG to ISO/IEC JTC 1, Information Technology

The International Committee for Information Technology Standards (INCITS), an ANSI accredited SDO, is the forum of choice for information technology developers, producers and users for the creation and maintenance of formal de jure IT standards. INCITS’ mission is to promote the effective use of Information and Communication Technology through standardization in a way that balances the interests of all stakeholders and increases the global competitiveness of the member organizations.

The INCITS Executive Board serves as the consensus body with oversight of its 40+ Technical Committees. Additionally, the INCITS Executive Board has the international leadership role as the US Technical Advisory Group (TAG) to ISO/IEC JTC 1, Information Technology.

Membership in the INCITS Executive Board is open to all directly and materially affected parties in accordance with INCITS membership rules. To find out more about participating on the INCITS Executive Board, contact Jennifer Garner at jgarner@itic.org or visit http://www.incits.org/participation/membership-info for more information.

Membership in all interest categories is always welcome; however, the INCITS Executive Board seeks to broaden its membership base in the following categories:

- Service Providers
- Users
- Standards Development Organizations and Consortia
- Academic Institutions

Society of Cable Telecommunications

ANSI Accredited Standards Developer

SCTE, an ANSI-accredited SDO, is the primary organization for the creation and maintenance of standards for the cable telecommunications industry. SCTE’s standards mission is to develop standards that meet the needs of cable system operators, content providers, network and customer premises equipment manufacturers, and all others who have an interest in the industry through a fair, balanced and transparent process.

SCTE is currently seeking to broaden the membership base of its consensus bodies and is interested in new members in all membership categories to participate in new work in fiber optic networks, advanced advertising, 3D television, and other important topics. Of particular interest is membership from the content (program and advertising) provider and user communities.

Membership in the SCTE Standards Program is open to all directly and materially affected parties as defined in SCTE’s membership rules and operating procedures. More information is available at www.scte.org or by e-mail from standards@scte.org.

ANSI Accredited Standards Developers

Approval of Reaccreditation

Dental Standards Institute (DSI)

ANSI’s Executive Standards Council has approved the reaccreditation of the Dental Standards Institute (DSI), an ANSI Member and Accredited Standards Developer, under its recently revised operating procedures for documenting consensus on DSI-sponsored American National Standards, effective June 11, 2020. For additional information, please contact: Bryan Laskin, DDS, Chair of the Board, President, Treasurer and CEO, Dental Standards Institute, Inc., 109 Bushway Road, Suite 100, Wayzata, MN 55391; phone: 763.290.0004; e-mail: bryan@oparadds.com.

Industrial Truck Standards Development Foundation, Inc. (ITSDF)

The reaccreditation of the Industrial Truck Standards Development Foundation, Inc. (ITSDF), an ANSI member and Accredited Standards Developer (ASD), has been approved at the direction of ANSI’s Executive Standards Council, under its recently revised operating procedures for documenting consensus on ITSDF-sponsored American National Standards, effective June 5, 2020. For additional information, please contact: Mr. Christopher Merther, Secretary/Treasurer, Industrial Truck Standards Development Foundation, Inc., 1750 K Street, NW, Suite 460, Washington, DC 20006; phone: 202.296.9880; e-mail: chris.merther@itsdf.org.

U.S. Technical Advisory Groups

Application for Accreditation

U.S. Technical Advisory Group to ISO TC 327 – Natural Stones

Comment Deadline: July 13, 2020

ANSI, with support from the Natural Stone Institute, has submitted an Application for Accreditation for a new proposed U.S. Technical Advisory Group (TAG) to ISO TC 327, Natural Stones, and a request for approval as TAG Administrator. The proposed TAG intends to operate using the Model Operating Procedures for U.S. Technical Advisory Groups to ANSI for ISO Activities as contained in Annex A of the ANSI International Procedures.

To obtain a copy of the TAG application or to offer comments, please contact: Ms. Kemi Allston, Sr. Program Administrator, ISO Team, American National Standards Institute, 25 West 43rd Street, 4th Floor, New York, NY 10036; phone: 212.642.4899; e-mail: KAllston@ansi.org. Please submit your comments to Ms. Allston by July 13, 2020 (please copy jthompso@ansi.org).
Information Concerning
International Electrotechnical Commission (IEC)

Members Needed

New USNC TAGs to IEC/SC 8C & IEC/PC 128

The US National Committee agrees with the scope for these two new IEC Committees and wishes to register as a Participating Member. A Technical Advisory Group (TAG) Administrator was recently approved for both Committees. If the USNC is to become a P-Member, a TAG will need to be established for each group.

Individuals who are interested in joining the USNC TAG for IEC/SC 8C or IEC/PC 128 are invited to contact Ade Gladstein at agladstein@ansi.org as soon as possible.

Please see the scope for IEC/SC 8C – Network Management below:

Scope
Standardization in the field of network management in interconnected electric power systems with different time horizons including design, planning, market integration, operation and control. SC 8C covers issues such as resilience, reliability, security, stability in transmission-level networks (generally with voltage 100kV or above) and also the impact of distribution level resources on the interconnected power system, e.g. conventional or aggregated Demand Side Resources (DSR) procured from markets.

SC 8C develops normative deliverables/guidelines/technical reports such as:

- Terms and definitions in area of network management,
- Guidelines for network design, planning, operation, control, and market integration
- Contingency criteria, classification, countermeasures, and controller response, as a basis of technical requirements for reliability, adequacy, security, stability and resilience analysis,
- Functional and technical requirements for network operation management systems, stability control systems, etc.
- Technical profiling of reserve products from DSRs for effective market integration.
- Technical requirements of wide-area operation, such as balancing reserve sharing, emergency power wheeling.
Please see the scope for IEC/PC 128 – *Operation of electrical installations* below:

Scope
Standardization in the field of broad (general) principles of operation of electrical installations. These operating instructions are intended to ensure that all operation of and work activity on, with, or near electrical installations can be carried out safely. These are electrical installations operating at voltage levels from and including extra-low voltage up to and including high voltage. These electrical installations are designed for the generation, transmission, conversion, distribution and use of electrical power. Some of these electrical installations are permanent and fixed, such as a distribution installation in a factory or office complex, others are temporary, such as on construction sites and others are mobile or capable of being moved either whilst energised or whilst not energised nor charged.
American National Standards (ANS) – Where to find Procedures, Guidance, Interpretations and More...

Please visit ANSI’s website (www.ansei.org) for resources that will help you to understand, administer and participate in the American National Standards (ANS) process. Documents posted at these links are updated periodically as new documents and guidance are developed, whenever ANS-related procedures are revised, and routinely with respect to lists of proposed and approved ANS. The main ANS-related link is www.ansei.org/asd and here are some direct links as well as highlights of information that is available:

- **ANSI Essential Requirements:** *Due process requirements for American National Standards* (always current edition): www.ansei.org/essentialrequirements
- **ANSI Standards Action:** *Weekly public review announcements of proposed ANS and standards developer accreditation applications, listing of recently approved ANS, and proposed revisions to ANS-related procedures*: www.ansei.org/standardsaction
- **Accreditation information** – for potential developers of American National Standards (ANS): www.ansei.org/sdoaccreditation
- **ANS Procedures, ExSC Interpretations and Guidance** (including a slide deck on how to participate in the ANS process and the BSR-9 form): www.ansei.org/asd
- **Lists of ANSI-Accredited Standards Developers (ASDs), Proposed ANS and Approved ANS:** www.ansei.org/asd
- **American National Standards Key Steps:** www.ansei.org/anskeysteps
- **American National Standards Value:** www.ansei.org/ansvalue
- **Information about standards Incorporated by Reference (IBR):** www.ansei.org/ibr
- **ANSI - Education and Training:** www.standardslearn.org

If you have a question about the ANS process and cannot find the answer quickly, please send an email to psa@ansi.org.

Please also visit Standards Boost Business at www.standardsboostbusiness.org for resources about why standards matter, testimonials, case studies, FAQs and more.

If you are interested in purchasing an American National Standard, please visit https://webstore.ansei.org/
NSF/ANSI Standard for Plastics —

Plastics piping system components and related materials

5 Physical and performance requirements

5.7 Chlorine resistance – Dependent transfer listing Oxidative Equivalency requirements

In order to qualify a pipe made from a material that already has a chlorine resistance classification, the following minimum requirements shall be met for each pipe which is comprised of a different color in the polymer matrix yet made from that classified material and shall be referred to as a Dependent Transfer Listing.

NOTE — This requirement does not apply to changes in color of an external, coextruded polymer layer which is separate and distinct from the pipe polymer matrix.

For a material that already has a chlorine resistance classification (denoted original material), oxidative equivalency is required on pipe or material comprised of a different color from the original material or when the production site differs from that of the original material. When the pipe or material production site differs from that of the original material, a minimum of one color shall be selected from the production site being assessed.

This requirement does not apply to changes in color of an external, coextruded polymer layer which is separate and distinct from the pipe polymer matrix.

Qualified pipe shall meet the minimum requirements of 5.7.1 and 5.7.2.

5.7.1 Solid wall pipe with optional inner or outer polymeric layer

— three data points at one hoop stress level at one of the temperature conditions as for the original data set;

— two data points at a second hoop stress level at least 80 psi lower than the first stress level and at the same temperature conditions as for the first stress level;

— the 95% lower prediction limit (LPL) shall be calculated for the original material data at these temperatures / stress conditions; and

— all five data points (failure times) shall meet or exceed the LPL for that condition.
5.7.2 Pipe with middle polymeric layer

— five data points at one hoop stress level at the highest temperature conditions as for the original data set;

— the 95% LPL shall be calculated for the original material data at these temperatures / stress conditions; and

— all five data points (failure times) shall meet or exceed the LPL for that condition.

NOTE — The hoop stress level shall be chosen so that there are no mixed mode failures. In the occurrence of such failures, the testing shall be repeated at a lower stress that would generate brittle failures.
Not for publication. This document is part of the NSF International standard development process. This draft text is for circulation for review and/or approval by a NSF Standards Committee and has not been published or otherwise officially adopted. All rights reserved. This document may be reproduced for informational purposes only.

[Note – the recommended changes to the standard which include the current text of the relevant section(s) indicate deletions by use of strikeout and additions by gray highlighting. Rationale statements are in italics and only used to add clarity; these statements will NOT be in the finished publication.]

NSF/ANSI/CAN Standard for Drinking Water Treatment Chemicals –

Drinking Water Treatment Chemicals – Health Effects

7 Miscellaneous treatment applications.

The following table is a generic listing of the types of products covered in this section of the standard. This table is not intended to be a complete list of all products used for miscellaneous treatment applications. Inclusion of a product does not indicate either a use endorsement of the product or an automatic acceptance under the provisions of this Standard. Annex I-3, Table I-3.1, includes a cross-reference index of the various chemicals (and the more common synonyms) contained in this table.

<table>
<thead>
<tr>
<th>Chemical type (primary use)</th>
<th>Synonyms</th>
<th>Formula (CAS number)</th>
<th>Molecular weight (g)</th>
<th>Preparation method</th>
<th>Typical use level (mg/L)</th>
<th>Minimum test batteries of chemistry-specific analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>ammonium hexafluorosilicate (fluoridation)</td>
<td>ammonium silico-fluoride, ammonium fluosilicate</td>
<td>(NH₄)₂SiF₆ (16919-19-0)</td>
<td>178.14</td>
<td>Method B, Annex N-1, Section N-1.3.3</td>
<td>1.0³</td>
<td>metals⁴, radionuclides</td>
</tr>
<tr>
<td>citric acid (copper chelator)</td>
<td>citric acid monohydrate</td>
<td>C₆H₈O₇•H₂O (77-92-9)</td>
<td>210</td>
<td>Method A</td>
<td>3.3¹⁰</td>
<td>metals⁴</td>
</tr>
</tbody>
</table>

Table 7.1

Miscellaneous treatment application products – Product identification, and evaluation
<table>
<thead>
<tr>
<th>Compound</th>
<th>Method/Section</th>
<th>PPM</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium fluoride (fluoridation) CaF₂ (7789-75-5)</td>
<td>Method B, Annex N-1, Section N-1.3.2</td>
<td>78.08</td>
<td></td>
</tr>
<tr>
<td>Copper ethanolamine complexes (algicide) Cu(NH₂C₂H₄OH)₄²⁺</td>
<td>Method A, Annex N-1, Section N-1.3.2</td>
<td>variable</td>
<td></td>
</tr>
<tr>
<td>Copper sulfate (algicide) CuSO₄ (7758-98-7)</td>
<td>Method A, Annex N-1, Section N-1.3.2</td>
<td>159.61</td>
<td></td>
</tr>
<tr>
<td>Copper triethanolamine complexes (algicide) Cu(N(C₂H₄OH)₃)²⁺</td>
<td>Method A, Annex N-1, Section N-1.3.2</td>
<td>variable</td>
<td></td>
</tr>
<tr>
<td>Ferrous chloride (chlorite reduction) FeCl₂ (7758-94-3)</td>
<td>Method K, Annex N-1, Section N-1.3.12</td>
<td>126.75</td>
<td></td>
</tr>
<tr>
<td>Fluorosilicic acid (fluoridation) H₂SiF₆ (16961-83-4)</td>
<td>Method B, Annex N-1, Section N-1.3.3</td>
<td>144.11</td>
<td></td>
</tr>
<tr>
<td>Magnesium fluorosilicate (fluoridation) MgSiF₆ (16949-65-8)</td>
<td>Method B, Annex N-1, Section N-1.3.3</td>
<td>166.40</td>
<td></td>
</tr>
<tr>
<td>Magnesium silico-fluoride, magnesium hexafluorosilicate MgSiF₆ (16949-65-8)</td>
<td>Method B, Annex N-1, Section N-1.3.3</td>
<td>166.40</td>
<td></td>
</tr>
<tr>
<td>Magnesium silico-fluoride (fluoridation) MgSiF₆ (16949-65-8)</td>
<td>Method B, Annex N-1, Section N-1.3.3</td>
<td>166.40</td>
<td></td>
</tr>
<tr>
<td>Potassium chloride (softening) KCl (7447-40-7)</td>
<td>Method A, Annex N-1, Section N-1.3.2</td>
<td>74.55</td>
<td></td>
</tr>
<tr>
<td>Magnesium silico-fluoride, magnesium hexafluorosilicate MgSiF₆ (16949-65-8)</td>
<td>Method B, Annex N-1, Section N-1.3.3</td>
<td>166.40</td>
<td></td>
</tr>
<tr>
<td>Magnesium silico-fluoride, magnesium hexafluorosilicate MgSiF₆ (16949-65-8)</td>
<td>Method B, Annex N-1, Section N-1.3.3</td>
<td>166.40</td>
<td></td>
</tr>
<tr>
<td>Magnesium silico-fluoride (fluoridation) MgSiF₆ (16949-65-8)</td>
<td>Method B, Annex N-1, Section N-1.3.3</td>
<td>166.40</td>
<td></td>
</tr>
<tr>
<td>Magnesium silico-fluoride, magnesium hexafluorosilicate MgSiF₆ (16949-65-8)</td>
<td>Method B, Annex N-1, Section N-1.3.3</td>
<td>166.40</td>
<td></td>
</tr>
<tr>
<td>Magnesium silico-fluoride, magnesium hexafluorosilicate MgSiF₆ (16949-65-8)</td>
<td>Method B, Annex N-1, Section N-1.3.3</td>
<td>166.40</td>
<td></td>
</tr>
<tr>
<td>Magnesium silico-fluoride (fluoridation) MgSiF₆ (16949-65-8)</td>
<td>Method B, Annex N-1, Section N-1.3.3</td>
<td>166.40</td>
<td></td>
</tr>
<tr>
<td>Magnesium silico-fluoride, magnesium hexafluorosilicate MgSiF₆ (16949-65-8)</td>
<td>Method B, Annex N-1, Section N-1.3.3</td>
<td>166.40</td>
<td></td>
</tr>
<tr>
<td>Magnesium silico-fluoride, magnesium hexafluorosilicate MgSiF₆ (16949-65-8)</td>
<td>Method B, Annex N-1, Section N-1.3.3</td>
<td>166.40</td>
<td></td>
</tr>
<tr>
<td>Magnesium silico-fluoride, magnesium hexafluorosilicate MgSiF₆ (16949-65-8)</td>
<td>Method B, Annex N-1, Section N-1.3.3</td>
<td>166.40</td>
<td></td>
</tr>
<tr>
<td>Magnesium silico-fluoride, magnesium hexafluorosilicate MgSiF₆ (16949-65-8)</td>
<td>Method B, Annex N-1, Section N-1.3.3</td>
<td>166.40</td>
<td></td>
</tr>
<tr>
<td>Magnesium silico-fluoride, magnesium hexafluorosilicate MgSiF₆ (16949-65-8)</td>
<td>Method B, Annex N-1, Section N-1.3.3</td>
<td>166.40</td>
<td></td>
</tr>
<tr>
<td>Magnesium silico-fluoride, magnesium hexafluorosilicate MgSiF₆ (16949-65-8)</td>
<td>Method B, Annex N-1, Section N-1.3.3</td>
<td>166.40</td>
<td></td>
</tr>
<tr>
<td>Magnesium silico-fluoride, magnesium hexafluorosilicate MgSiF₆ (16949-65-8)</td>
<td>Method B, Annex N-1, Section N-1.3.3</td>
<td>166.40</td>
<td></td>
</tr>
<tr>
<td>Magnesium silico-fluoride, magnesium hexafluorosilicate MgSiF₆ (16949-65-8)</td>
<td>Method B, Annex N-1, Section N-1.3.3</td>
<td>166.40</td>
<td></td>
</tr>
<tr>
<td>Magnesium silico-fluoride, magnesium hexafluorosilicate MgSiF₆ (16949-65-8)</td>
<td>Method B, Annex N-1, Section N-1.3.3</td>
<td>166.40</td>
<td></td>
</tr>
<tr>
<td>Magnesium silico-fluoride, magnesium hexafluorosilicate MgSiF₆ (16949-65-8)</td>
<td>Method B, Annex N-1, Section N-1.3.3</td>
<td>166.40</td>
<td></td>
</tr>
<tr>
<td>Magnesium silico-fluoride, magnesium hexafluorosilicate MgSiF₆ (16949-65-8)</td>
<td>Method B, Annex N-1, Section N-1.3.3</td>
<td>166.40</td>
<td></td>
</tr>
<tr>
<td>Magnesium silico-fluoride, magnesium hexafluorosilicate MgSiF₆ (16949-65-8)</td>
<td>Method B, Annex N-1, Section N-1.3.3</td>
<td>166.40</td>
<td></td>
</tr>
<tr>
<td>Magnesium silico-fluoride, magnesium hexafluorosilicate MgSiF₆ (16949-65-8)</td>
<td>Method B, Annex N-1, Section N-1.3.3</td>
<td>166.40</td>
<td></td>
</tr>
<tr>
<td>Magnesium silico-fluoride, magnesium hexafluorosilicate MgSiF₆ (16949-65-8)</td>
<td>Method B, Annex N-1, Section N-1.3.3</td>
<td>166.40</td>
<td></td>
</tr>
<tr>
<td>Magnesium silico-fluoride, magnesium hexafluorosilicate MgSiF₆ (16949-65-8)</td>
<td>Method B, Annex N-1, Section N-1.3.3</td>
<td>166.40</td>
<td></td>
</tr>
<tr>
<td>Magnesium silico-fluoride, magnesium hexafluorosilicate MgSiF₆ (16949-65-8)</td>
<td>Method B, Annex N-1, Section N-1.3.3</td>
<td>166.40</td>
<td></td>
</tr>
<tr>
<td>Magnesium silico-fluoride, magnesium hexafluorosilicate MgSiF₆ (16949-65-8)</td>
<td>Method B, Annex N-1, Section N-1.3.3</td>
<td>166.40</td>
<td></td>
</tr>
<tr>
<td>Magnesium silico-fluoride, magnesium hexafluorosilicate MgSiF₆ (16949-65-8)</td>
<td>Method B, Annex N-1, Section N-1.3.3</td>
<td>166.40</td>
<td></td>
</tr>
<tr>
<td>Magnesium silico-fluoride, magnesium hexafluorosilicate MgSiF₆ (16949-65-8)</td>
<td>Method B, Annex N-1, Section N-1.3.3</td>
<td>166.40</td>
<td></td>
</tr>
<tr>
<td>Magnesium silico-fluoride, magnesium hexafluorosilicate MgSiF₆ (16949-65-8)</td>
<td>Method B, Annex N-1, Section N-1.3.3</td>
<td>166.40</td>
<td></td>
</tr>
<tr>
<td>Magnesium silico-fluoride, magnesium hexafluorosilicate MgSiF₆ (16949-65-8)</td>
<td>Method B, Annex N-1, Section N-1.3.3</td>
<td>166.40</td>
<td></td>
</tr>
<tr>
<td>Magnesium silico-fluoride, magnesium hexafluorosilicate MgSiF₆ (16949-65-8)</td>
<td>Method B, Annex N-1, Section N-1.3.3</td>
<td>166.40</td>
<td></td>
</tr>
<tr>
<td>Magnesium silico-fluoride, magnesium hexafluorosilicate MgSiF₆ (16949-65-8)</td>
<td>Method B, Annex N-1, Section N-1.3.3</td>
<td>166.40</td>
<td></td>
</tr>
<tr>
<td>Magnesium silico-fluoride, magnesium hexafluorosilicate MgSiF₆ (16949-65-8)</td>
<td>Method B, Annex N-1, Section N-1.3.3</td>
<td>166.40</td>
<td></td>
</tr>
<tr>
<td>Magnesium silico-fluoride, magnesium hexafluorosilicate MgSiF₆ (16949-65-8)</td>
<td>Method B, Annex N-1, Section N-1.3.3</td>
<td>166.40</td>
<td></td>
</tr>
<tr>
<td>Magnesium silico-fluoride, magnesium hexafluorosilicate MgSiF₆ (16949-65-8)</td>
<td>Method B, Annex N-1, Section N-1.3.3</td>
<td>166.40</td>
<td></td>
</tr>
<tr>
<td>Magnesium silico-fluoride, magnesium hexafluorosilicate MgSiF₆ (16949-65-8)</td>
<td>Method B, Annex N-1, Section N-1.3.3</td>
<td>166.40</td>
<td></td>
</tr>
</tbody>
</table>

Not for publication. This document is part of the NSF International standard development process. This draft text is for circulation for review and/or approval by a NSF Standards Committee and has not been published or otherwise officially adopted. All rights reserved. This document may be reproduced for informational purposes only.
<table>
<thead>
<tr>
<th>Chemical Name</th>
<th>Trade Name</th>
<th>CAS Number</th>
<th>Molecular Weight</th>
<th>Method/Section</th>
<th>Metal Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>potassium fluoride (fluoridation)</td>
<td>—</td>
<td>KF (7789-23-3)</td>
<td>58.10</td>
<td>Method B, Annex N-1, Section N-1.3.3</td>
<td>1.0³, metals⁴</td>
</tr>
<tr>
<td>sodium bisulfite (dechlorinator & antioxidant)</td>
<td>sodium acid sulfite</td>
<td>NaHSO₃ (7631-90-5)</td>
<td>104.07</td>
<td>Method A, Annex N-1, Section N-1.3.2</td>
<td>18⁸, metals⁴</td>
</tr>
<tr>
<td>sodium chloride (softening or electrolytic chlorination)</td>
<td>sodium salt</td>
<td>NaCl (7647-14-5)</td>
<td>58.44</td>
<td>Method A, Annex N-1, Section N-1.3.2</td>
<td>800⁸, metals⁴, radionuclides, bromide⁹</td>
</tr>
<tr>
<td>sodium fluoride (fluoridation)</td>
<td>florocid</td>
<td>NaF (7681-49-4)</td>
<td>42.0</td>
<td>Method B, Annex N-1, Section N-1.3.3</td>
<td>1.0³, metals⁴, radionuclides</td>
</tr>
<tr>
<td>sodium metabisulfite (dechlorinator & antioxidant)</td>
<td>sodium pyrosulfite</td>
<td>Na₂S₂O₅ (7681-57-4)</td>
<td>190.13</td>
<td>Method A, Annex N-1, Section N-1.3.2</td>
<td>15, metals⁴</td>
</tr>
<tr>
<td>sodium fluorosilicate (fluoridation)</td>
<td>sodium silicofluoride, sodium fluosilicate</td>
<td>Na₂SiF₆ (16893-85-9)</td>
<td>132.0</td>
<td>Method B, Annex N-1, Section N-1.3.3</td>
<td>1.0³, metals⁴</td>
</tr>
<tr>
<td>sodium sulfite (dechlorinator & antioxidant)</td>
<td>—</td>
<td>Na₂SO₃ (7757-83-7)</td>
<td>126.06</td>
<td>Method A, Annex N-1, Section N-1.3.2</td>
<td>22⁸, metals⁴</td>
</tr>
<tr>
<td>sulfur dioxide (dechlorinator & antioxidant)</td>
<td>sulfurous oxide</td>
<td>SO₂ (7446-09-5)</td>
<td>64.07</td>
<td>Method F, Annex N-1, Section N-1.3.7</td>
<td>10, metals⁴</td>
</tr>
<tr>
<td>tricalcium phosphate (defluoridation)</td>
<td>hydroxyapatite</td>
<td>Ca₅(PO₄)₃OH (12167-4-7)</td>
<td>502</td>
<td>Method B, Annex N-1, Section N-1.3.3</td>
<td>120⁷, metals⁴, radionuclides, fluoride</td>
</tr>
</tbody>
</table>
8 Miscellaneous water supply products

1. The typical use level is an application level that has been used historically in water treatment. The typical use level is not the maximum use level (MUL) for the product, except where specifically stated.

2. Analysis for all chemistry-specific analytes in these minimum test batteries shall be performed each time the product is evaluated. Analysis shall also include formulation-dependent analytes as identified during formulation review. Testing for specific repackages, blends, or dilutions of previously certified products may be waived.

3. Based on mg fluoride ion per L water. Total concentration of fluoride ion in finished water may include fluoride which occurs naturally in the source water. US Centers for Disease Control and Prevention recommends an optimal concentration of 0.7 mg/L fluoride ion in drinking water.

4. Metals = antimony, arsenic, barium, beryllium, cadmium, chromium, copper, lead, mercury, selenium, and thallium

5. Based on mg copper per L water.

6. Based on chlorine level of 12 mg/L prior to treatment.

7. Based on fluoride level of 15 mg/L prior to treatment.

8. Based on treating up to 40 grains of hardness.

10. Based on a weight to weight ratio of 1:1 between copper sulfate pentahydrate and citric acid monohydrate.
<table>
<thead>
<tr>
<th>Product</th>
<th>Product – Specific analyses</th>
<th>Preparation method</th>
</tr>
</thead>
<tbody>
<tr>
<td>antifoamers</td>
<td>formulation dependent</td>
<td>Method I, Annex N-1, Section N-1.3.10</td>
</tr>
<tr>
<td>distribution system rehabilitation materials</td>
<td>formulation dependent</td>
<td>Method G, Annex N-1, Section N-1.3.8</td>
</tr>
<tr>
<td>backfill materials for cathodic protection or electrical installations</td>
<td>formulation dependent</td>
<td>Method H, Annex N-1, Section N-1.3.9</td>
</tr>
<tr>
<td>scale inhibitors</td>
<td>formulation dependent</td>
<td>Method H, Annex N-1, Section N-1.3.9</td>
</tr>
<tr>
<td>acids</td>
<td>formulation dependent</td>
<td>Method D, Annex N-1, Section N-1.3.5</td>
</tr>
<tr>
<td>bases (caustics)</td>
<td>formulation dependent</td>
<td>Method B, Annex N-1, Section N-1.3.3</td>
</tr>
<tr>
<td>disinfectants</td>
<td>formulation dependent</td>
<td>see Section 6</td>
</tr>
<tr>
<td>flocculants</td>
<td>formulation dependent</td>
<td>see Section 4</td>
</tr>
<tr>
<td>frac sand</td>
<td>formulation dependent</td>
<td>Method G, Annex N-1, Section N-1.3.8</td>
</tr>
<tr>
<td>organic acid (citric acid)</td>
<td>regulated metals</td>
<td>Method A, Annex N-1, Section N-1.3.2</td>
</tr>
<tr>
<td>scale removers</td>
<td>formulation dependent</td>
<td>Method H, Annex N-1, Section N-1.3.9</td>
</tr>
<tr>
<td>Separation process cleaners</td>
<td></td>
<td></td>
</tr>
<tr>
<td>organic acid (citric acid)</td>
<td>regulated metals</td>
<td>Method A, Annex N-1, Section N-1.3.2</td>
</tr>
<tr>
<td>Drilling additives</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rationale: Added citric acid to Tables 7.1 and 8.1 per recommendation by DWA Task Group as the appropriate uses with copper-based algicides, for well development/rehabilitation, and as an offline separation process cleaner.
BSR/UL 498, Standard for Safety for Attachment Plugs and Receptacles

1. Changes in requirements for connectors with latching mechanisms

PROPOSAL

92.2 A cord connector with a spring-activated latching mechanism shall be subjected to the tests described in Sections 93 – 96 with the mechanism defeated. If compliance with any of the tests in the sequence is unable to be determined, a new set of devices is to be subjected to the test sequence with the mechanism engaged. The cord connector shall then be subjected to the Latching Mechanism Test, Section 98.

93.1 The contacts of a 1-15R, 5-15R, 5-20R, 6-15R or 6-20R configuration cord connector shall retain an attachment plug so that a force greater than 3 lbf (13 N) is required to withdraw the plug when tested as described in this section.

Exception: A cord connector that has provision for locking the plug in place after the blades have been inserted in the female contacts (such as a rotating collar) is not required to be subjected to this test.

93.2 A cord connector with a spring-activated latching mechanism shall be subjected to this test with its mechanism defeated. See 92.2. Deleted.

94.1.2 A cord connector with a spring-activated latching mechanism shall be subjected to this test with its mechanism defeated. See 92.2. Deleted.

95.2 A cord connector with a spring-activated latching mechanism shall be subjected to this test with its mechanism defeated. See 92.2. Deleted.

96.1.1 After completion of the Overload Tests, Section 94, and the Temperature Test, Section 95, the contacts of a 1-15R, 5-15R, 5-20R, 6-15R or 6-20R configuration cord connector shall retain an attachment plug so that when tested as described in this section:

a) A force greater than 3 lbf (13 N) is required to withdraw the plug, and

b) A force of 15 lbf (67 N) is capable of withdrawing the plug.

Exception: A cord connector that has provision for locking the plug in place after the blades have been inserted in the female contacts (such as a rotating collar) is not required to be subjected to this test.

96.1.2 A cord connector with a spring-activated latching mechanism shall be subjected to this test with its mechanism defeated. See 92.2. Deleted.

98.1.1 A 1-15R, 5-15R, 5-20R, 6-15R, or 6-20R cord connector employing a spring-actuated latching mechanism for locking a mated attachment plug in place after its blades have been inserted into the female contacts shall be subjected to the tests in this section.
Exception: Cord connectors subjected to the tests described in Sections 93–96 with the latching mechanism defeated and found to comply are not required to be subjected to the latching mechanism tests.

98.2 Cycling test

98.2.1 After completion of this test, there shall not be any damage to the cord connector, its latching mechanism, or the attachment plugs. The latching mechanism shall remain capable of functioning as intended. There shall not be any damage, arcing, or dielectric breakdown during application of the test potential. The mating plug shall not pull free from the cord connector outlet during application of the test force.

98.2.2 Each of six previously untested devices is to be tested. A mating attachment plug having rigidly mounted solid blades and standard detent holes is to be inserted and fully seated into the outlet of the device under test. For devices with the 1-15R, 5-15R, 5-20R, 6-15R or 6-20R configurations, the mating plugs shall have the configurations specified in Table 98.1. The latching mechanism is to be activated to lock the plug in place. The locking means is then to be activated to release the plug and the plug is to be withdrawn from the outlet. This sequence is to be repeated for a total of 1000 cycles.

<table>
<thead>
<tr>
<th>Device under test</th>
<th>Mating plug</th>
<th>No. of devices tested</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-15R</td>
<td>1-15P</td>
<td>6</td>
</tr>
<tr>
<td>5-15R</td>
<td>1-15P</td>
<td>6</td>
</tr>
<tr>
<td>5-20R</td>
<td>1-15P</td>
<td>3</td>
</tr>
<tr>
<td>6-15R</td>
<td>1-15P</td>
<td>3</td>
</tr>
<tr>
<td>6-20R</td>
<td>1-15P</td>
<td>3</td>
</tr>
</tbody>
</table>

98.2.3 Each device is then to be subjected to a 50–60 Hz essentially sinusoidal potential equal to twice the rated voltage plus 1000 V applied between live parts of opposite polarity and between live parts and grounding or dead-metal parts. The test voltage is to be increased at a uniform rate and as rapidly as is consistent with its value being correctly indicated by a voltmeter, and maintained at the test potential for 1 minute. A mating attachment plug capable of withstanding a 2500 V potential is then to be inserted into the outlet and the application of the test potential is to be repeated.
98.2.4 A mating attachment plug employing folded blades with standard detent holes is then to be inserted and fully seated in the outlet of each device under test. The latching mechanism is to be actuated to lock the plug in place. A static 30 lbf (133 N) is to be applied to the plug for 1 minute in a direction perpendicular to the plane of the face of the outlet. Deleted

98.3.1 After completion of this test, there shall not be any damage to the cord connectors or the blades of the attachment plugs or other evidence of increased risk of injury or electric shock. The latching means shall remain functional. There shall not be any loosening of the plug blades or displacement between the blades at the attachment plug face, nor compression of the folded blades below the minimum allowable thickness for the configuration. The attachment plug shall be capable of being inserted into a standard mating receptacle. There shall not be any damage, arcing, or dielectric breakdown during application of the test potential. The retention of blades test, Section 96 is to be repeated.

98.3.2 Previously untested devices are to be used. With the device firmly secured in place, a mating attachment plug is to be inserted into the device and the latching mechanism activated to lock the plug in place. The mating plugs are to have the configurations shown in Table 98.2. A pull of 20 lbf (89 N) in a direction perpendicular to the plane of the face of the cord connector and tending to withdraw the plug from the device is then to be applied to the plug and the plug shall be withdrawn by the force. A static 30 lbf (133 N) is to be applied to the plug for 1 minute in a direction perpendicular to the plane of the face of the outlet which tends to remove the plug from the outlet. The force is then to be removed from the plug and the latching mechanism activated to release the plug, and the plug removed from the outlet. This is to be repeated for a total of 50250 cycles. Three devices are to be tested using attachment plugs with rigidly mounted solid blades with standard detent holes. Three devices are to be tested using attachment plugs with folded blades and standard detent holes.

2. New requirements for high ambient temperature for 15 & 20 A straight blade receptacles

PROPOSAL

[Note from the Project Manager: Section 26A would be inserted between 26.2.1 and Section 27, Insulating Materials.]

RECEPTACLES

26A General

26A.1 15 and 20 amp straight blade receptacles are suitable for use in an ambient temperature up to 50°C.
BSR/UL 514C, Standard for Safety for Nonmetallic Outlet Boxes, Flush-Device Boxes, and Covers

1. Topic – Revisions to the Standard to address changes needed to accommodate the use of an overmold or overlay material to close small openings in boxes for air-seal applications

PROPOSAL

BOXES INTENDED FOR USE WITH NONMETALLIC-SHEATHED CABLE OR OPEN WIRING

CONSTRUCTION

19 Materials

19.1 A material used for a box that has not been investigated for the application shall be investigated for combustibility, aging characteristics, temperature stability, resistance to ignition, dielectric strength, and physical strength.

19.2 A material that is employed in a box not intended for the support of a fixture/luminaire, or in a box intended to support a fixture/luminaire weighing 49 lbs (22.2 kg) or less and marked for use in a wall, shall have relative thermal indices of not less than 80°C (176°F) for properties of electrical (RTI Elec) and mechanical strength (RTI Str). See 92.1.9.

19.3 A material that is employed in a box that is marked intended for support of a fixture/luminaire in a ceiling, or a ceiling suspended fan shall have relative thermal indices of not less than 90°C (194°F) for properties of electrical (RTI Elec) and mechanical strength (RTI Str).

19.4 An overmold or overlay material applied to a box described in Sections 19.2 or 19.3 for the purpose of closing openings in air-seal applications, shall have relative thermal indices of not less than 50°C (122°F) for properties of electrical (RTI Elec) and mechanical strength (RTI Str). No openings shall be greater than 0.625 inch (15.90 mm) by 0.844 inch (21.44 mm). Overmold or overlay material does not apply to gaskets used to cover up knockouts or clamps.

19.4.1 The relative thermal index specified in 19.2, 19.3, 19.4, 40.2.1, and 46.1 is to be determined in accordance with the Standard for Polymeric Materials – Long Term Property Evaluations, UL 746B.

34.2 Boxes

34.2.3 To determine whether a box complies with the requirements in 34.2.1, samples of each box are to be tested as described in 34.2.2 having two 30-second applications of the test flame with a 60-second interval between applications. Two knockouts are to be removed from the side of each box that is furthest from the test flame before the flame is applied. The test flame is to be applied vertically to the interior of the box as illustrated in
Figure 34.3 but is to be offset 1/2 inch (12.7 mm) from the center of any molding gate, knockout, cable entry or integral clamp.

Exception: For a box having an internal volume less than 75 cubic inches (1230 cm³), the test flame is to be adjusted to have a yellow flame 3/4 inch (19 mm) high without any blue cone.

92.1.9 A box constructed of a material having a relative thermal index indices for properties of both electrical (RTI Elec) and mechanical strength (RTI Str) greater than the minimum values specified in 19.2 or 19.3, as applicable, may have the following additional markings alternatives. These markings are not required.

a) The box may be marked in excess of 90°C with the maximum temperature rating of the conductor wire for which it is that operates in compliance with and acceptable corresponding to the standard wire temperature rating of the conductor as specified in Section 310-10 310.14 of the National Electrical Code, ANSI/NFPA 70, or

b) The smallest unit shipping carton or the instruction sheet may be marked per item (a).

Copyright © 2020 Underwriters Laboratories Inc.
PROPOSALS

1. Stability Test Revisions

40 Stability Test

40.1 An electronic heat detector shall be subjected to the test specified in (a) – (c). Different detectors may be employed for each test. During conditions (b) and (c), there shall not be false alarms.

a) A detector shall operate for its intended signaling performance after being subjected for 90 days to an ambient temperature of 15 degrees below its maximum installation temperature. Alternately, the detector may be subjected to a shorter time period and higher temperature as determined by the following equation:

\[
\frac{4 \ast D_1}{D_2} = c \exp\left(\frac{-\Theta}{E} \left(\frac{1}{T_2} - \frac{1}{T_1}\right)\right)
\]

in which:

- \(D_1 \) is 90 days,
- \(D_2 \) is the proposed time period in days,
- \(T_1 \) is the temperature in Kelvin when testing for 90 days,
- \(T_2 \) is the temperature in Kelvin when testing for proposed time period in days,
- \(\Theta \) is 0.65 eV and
- \(K \) is \(8.62 \times 10^{-5} \) eV/K.

Two samples are to be placed in a circulating air oven and energized from a source of rated voltage and frequency. Following removal, the energized samples are to be permitted to cool to room temperature for at least 24 hours.

b) Fifty cycles of momentary (approximately 1/2 second) interruption of the detector power supply at a rate of not more than 6 cycles per minute.

c) Three plunges from an ambient humidity of 20 ±5 percent relative humidity to an ambient of 90 ±5 percent relative humidity at 23 ±2°C (73.4 ±3.6°F).

40.6 A heat detector that uses eutectic metal technology shall be subjected to the test specified below:

a) The heat detector shall operate for its intended signaling performance after being subjected for 90 days to an ambient temperature of 93 ±5 percent relative humidity at 8.3°C (15°F) below the heat detector set point. Ten samples mounted in their intended mounting position are to be placed in a circulating air oven and energized for 90 days from a source of rated voltage and frequency. Following removal from the circulating air oven, the samples are to cool to room temperature for at least 24 hours. The samples shall then be subjected to the Operating Temperature Test, section 22, to determine the activation temperature.
2. Oven Test Clarification

19.1 A heat detector that operates in 2 minutes or less when subjected to the time-temperature condition shown by Figure 19.1 is eligible for a 15-foot (4.57-m) installation spacing. Heat detector samples shall be uniform in operation when mounted in the same position. They shall be tested in each of the different positions permitted by the design. Operation is considered uniform if the heat detectors operate within the applicable temperature range indicated in the tabulation under the Operating Temperature Test, Section 22. See Table 22.1. The range of operation need not include the temperature rating of the device; the operating temperature (set-point) is determined by the test in Section 22 (Operating Temperature Test).
BSR/UL 753-202x, Standard for Safety for Alarm Accessories for Automatic Water-Supply Control Valves for Fire-Protection Service

1. Correction to Figure 34.1

(PROPOSED)

Figure 34.1

Intensity of alarm test setup

UL copyrighted material. Not authorized for further reproduction without prior permission from UL.
BSR/UL 1247-202x, Standard for Safety for Diesel Engines for Driving Stationary Fire Pumps

1. Electronic Fuel Managed Engines

PROPOSAL

7.2.2 An electronic fuel controlled engine shall be equipped with a primary ECM and an equivalent functioning alternate ECM to control the fuel injection process. Engines that require more than one primary ECM to manage the engine performance shall be provided with an equivalent number of alternate ECMs.

7.2.5A The circuitry for an engine shall be designed so that the primary and alternate ECM(s) are not operating simultaneously to manage the engine performance. The primary and alternate ECM(s) shall be permitted to be powered-on during the normal operating mode provided that only the primary or only the alternate ECM(s) is managing the engine performance.
BSR/UL 1369, Standard for Safety for Aboveground Piping for Flammable and Combustible Liquids

1A. Revisions to the Fire Test

PERFORMANCE

12 Fire Test

12.1 One 92 cm (3 ft) sample of all aboveground pipe types in worst case sizes shall be subjected to the hydrocarbon pool fire described in Clauses 12.2 to 12.4 for at least 30 min, or higher time options in 15 min increments up to 2 h while the primary pipe is filled with water at rated pressure. A repeat Leakage Test according to Subsection 6.2 shall then be conducted at laboratory temperature. Optional fire jackets to protect end connections used to seal and/or test the pipe, not including the actual pipe end being tested, are permitted if also included in applicable evaluations in the Physical Abuse, Short Term Compatibility, Long Term Compatibility Tests, supplied with the pipe, and included in the installation instructions, and the secondary pipe, if applicable, shall contain unpressurized air. The primary pipe and/or secondary pipe may be maintained at 2X rated pressure during the test to determine the time of any leakage if the alternate leak test method is used.

12.1.1 A repeat Leakage Test according to Subsection 6.2 shall then be conducted at laboratory temperature. Alternately, if the primary pipe and/or secondary pipe is continuously monitored at 2X rated pressure during the test, the data is permitted to be used to determine the leakage test results and time rating. Similarly, visual observations such as bursting or spraying are also permitted to be used.

12.1.2 Optional fire jackets to protect end connections used to seal and/or test the pipe, not including the actual pipe end being tested, are permitted if also included in applicable evaluations in the Physical Abuse, Short Term Compatibility, Long Term Compatibility Tests, supplied with the pipe, and included in the installation instructions.

12.4 When the test reaches the required time, or a failure is identified, the fire shall be extinguished using an appropriate method that does not damage the sample. After cooling to laboratory temperature, the sample shall be visually examined for damage before repeat leak testing on only the pipe system, if the alternate leak test method is not used.

12.5 The primary pipe and secondary pipe samples shall not leak before the time it is rated for during the fire test or after the repeat leakage test.

Exception 1: The secondary pipe is permitted to leak at the end fittings.

Exception 2: The secondary pipe is permitted to leak at a location other than at the fittings, if the markings and instructions require the piping system to be continuously monitored for interstitial leakages.
MARKINGS AND INSTRUCTIONS

14 Markings

14.1 Each pipe, at minimum 3 m (10 ft) intervals, and fitting (primary piece or packaging) shall be marked with the following required information on the outer surface in a permanent and legible manner where visible after assembly. Abbreviations may be used for smaller parts if detailed information is also provided in the manufacturer's instructions:

a) The manufacturer's name, trade name, trademark or other descriptive mark that identifies the company responsible for the product. If the product is manufactured at more than one location, a factory code shall also be provided;

Exception: The manufacturer's identification may be in a traceable code if the product is identified by the brand or trademark owned by a private labeler.

b) Manufacturing date, with a minimum combination of day, month, year, or time period not exceeding three consecutive months (for example, first quarter of the year);

Exception: A date code may be used provided it is traceable by the manufacturer, does not repeat in less than 20 years, and does not require reference to production records.

c) Catalog, model, part or equivalent number to identify the pipe, fitting or component and the nominal size (inches or mm);

d) The statement “Aboveground Use” and the maximum pressure rating (psig);

e) The statement “Use Only OEM Fittings - Follow Installation Instructions”;

f) The type of pipe system(s), and special use or temperature ratings marked on the pipe only (abbreviations or codes may be used if identified in the manufacturer's instructions):

 1) “Primary”;
 2) “Secondary”;
 3) “Coaxial” or “Integral Primary/Secondary”;
 4) “Marina Use” if compliant with the optional Marina rating tests in Subsection 9.2, and Subsection 9.3 if applicable;
 5) “Severe HT” or “Severe LT” if compliant with the optional high or low temperature test values.

g) The fuel and fire rating(s), marked on the pipe only (abbreviations or codes may be used if identified in the manufacturer's instructions):

 1) English - “Fuels for Engines, Generators and Heaters, plus the Equivalent Combustible Liquids” French - “Carburants pour moteurs, génératrices et chaufferettes, plus les liquides combustibles équivalents”;
2) “* Fuels” if compliant with specific fuels or fuel components optionally evaluated in Section 11;

3) “* Liquids” if compliant with specific liquids optionally evaluated in Section 11;

4) “* Hr Fire Rating” based on the compliant fire test time in Section 12.

5) “Continuous Interstitial Monitoring Required Over Complete Secondary Length” if meeting Exception 2 of paragraph 12.5.

h) Assembly specifications:

1) For threaded pipe or compression fittings - recommended torque [N·m (in·lb)];

2) For screw clamp fittings - recommended torque [N·m (in·lb)];

3) For crimp fittings - proper tool setting or “See Joining Instructions”;

4) For adhesives, weld or other connection means - “See Joining Instructions”.

i) The statement “For Use Only With _ Mfg and Model_ Secondary Pipe” for primary pipe intended for use only with a specific secondary pipe when used as a system.

15 Manufacturer’s Instructions

15.1 Instructions shall be attached to all pipe (roll or bundle) and included with fittings (boxes or packages). Instructions shall be preceded by the statement “IMPORTANT INFORMATION - FOLLOW ALL INSTRUCTIONS” in bold text minimum 8.0 mm high and shall include the following information:

a) General and Ratings - A statement indicating that the piping system shall only be installed by a qualified person (determined by the manufacturer) and that the use of non-qualified personnel or any deviations from these recommended procedures could result in damage or leakage of the system. The instructions shall provide the company name, phone number and any other information that is essential to contact the manufacturer or the qualified person. Additionally, the following information shall be provided:

1) The manufacturer and model of each pipe and fitting component in a system matching Clause 14.1 (a) and (c);

2) The aboveground use pipe system containment type, special use or temperature ratings and maximum pressures per Clause 14.1 (d) and (f); and

3) The fuel and fire rating(s) for the primary pipe and secondary pipe, as appropriate, per Clause 14.1(g), and;

4) The pipe manufacturers recommendation for continuous interstitial leak monitor per Clause 14.1 g) 5), such as monitor type(s), manufacturer(s)/model(s) and other installation details.
BSR/UL 121201, Standard for Safety for Nonincendive Electrical Equipment for Use in Class I and II, Division 2 and Class III, Divisions 1 and 2 Hazardous (Classified) Locations

1. For Preliminary Review Only: Revisions to opening of sealed devices.

PROPOSAL

3.11 MAINTENANCE, OPERATIONAL – any maintenance activity, excluding corrective maintenance, that is intended to be performed by the operator and is required for the equipment to serve its intended purpose. Such operational maintenance activities typically include opening of the enclosure for charging or replacement of batteries, the correcting of “zero” on a panel instrument, changing charts, keeping of records, and adding ink, or the like.

NOTE: Battery charging that does not require opening of the enclosure (such as by inductive means) need not be considered a maintenance function and can be considered a normal operating condition.

3.34 SEALED DEVICE – a device so constructed that it cannot be opened during normal operating conditions or operational maintenance; it is sealed to restrict entry of an external atmosphere. These requirements apply to the device design, and not just only to when it is operated in a hazardous (classified) location.

2. For Preliminary Review Only: Revisions to Consideration of Normal operating conditions.

PROPOSAL

3.30 NORMAL OPERATING CONDITIONS – conditions under which equipment conforms electrically and mechanically with its design specification and is used within the conditions specified by the manufacturer. These conditions include the following, as a minimum:

 a) addressing all declared supply voltage, current, and frequency, including declared tolerances;

 b) addressing all declared environmental conditions (including process interface);

 c) all tool-removable enclosures or parts of enclosures remaining (e.g., covers) in place;

 d) any part of the enclosure that can be opened or removed without a tool, being opened or removed;

 e) any controls that are operable without using a tool, being adjusted to the “worst case” position all operator accessible adjustments at their most unfavorable settings; and

 f) opening or grounding of any one or shorting of any two of the nonincendive field-wiring conductors that result in the “worst case” condition.

The evaluation of equipment or components for use in or associated with hazardous (classified) locations in accordance with this Standard shall include all of the above conditions.
3. For Preliminary Review Only: Revisions to the application of general industrial / ordinary locations requirements.

PROPOSAL

4.2.1 Equipment covered by this Standard shall comply with the unclassified location requirements (also referred to as ordinary location or general-purpose requirements) for the particular equipment except as specifically amended herein. See Annex B for a list of commonly applied standards covering the unclassified location requirements for such equipment. Equipment shall comply with the Canadian National or USA National ANSI standards as appropriate for the country where the product is to be used.

NOTE: For battery powered portable equipment, applicable ordinary location standards include CSA and UL 61010-1, CSA and UL 62368-1, UL 508, CSA and UL 60950-1. One of the concerns regarding this type of equipment is the risk of fire associated with the battery.

4.4.1 A component of a equipment product covered by this Standard shall comply with the unclassified location requirements (also referred to as ordinary location or general-purpose requirements for the particular component, except as specifically amended herein. See Annex B for a list of commonly applied standards covering the unclassified location requirements for such components generally used in the equipment products covered by this Standard. Components shall comply with the Canadian National or USA National ANSI standards as appropriate for the country where the equipment product is to be used, including all conditions of acceptability associated with the component (often referred to as the schedule of limitations).

All conditions of acceptability for components shall be addressed so as to determine compliance associated with the required risks of fire, electric shock, and injury to persons, in addition to the risks of explosion.

5.6 Batteries and battery-powered equipment

SPECIAL NOTE: 5.6.1 has been renumbered to 5.6.2 per the addition of a replacement 5.6.1.

(NEW)

5.6.1 Potential adverse conditions that may result from the charging and discharging of batteries in hazardous (classified) locations, and in unclassified locations if so intended, shall be addressed in accordance with the applicable Canadian National or USA National ANSI standards. See Clause 4.4.1.

(REvised)

5.6.12 Operator accessible batteries and any components that are used to limit the short circuit currents below a value that will ignite the specified test gas mixture, and are not an integral part of the battery, shall be constructed as follows:
 a) current-limiting components shall be enclosed in a manner that will reduce the likelihood of defeating the current limitation;
 b) the construction of the battery compartment of portable equipment shall comply with 16.1;
 c) the equipment shall be marked as indicated in 9.3.1; and
d) if changing of the battery does not meet the nonincendive circuit requirements of 5.1.2 b), the equipment shall be additionally marked as indicated in 9.3.2.

Annex B – Commonly Applied Standards – Safety Requirements for Electrical Equipment (informative)
The following are commonly applied standards used to verify conformance with safety requirements for electrical equipment. This list is not comprehensive.

CAN/CSA C22.2 No. 61010-1 Safety Requirements for Electrical Equipment for Measurement, Control, and Laboratory Use – Part 1: General Requirements

CAN/CSA C22.2 No. 60950-1 Information Technology Equipment – Safety – Part 1: General Requirements

CSA 60065 Audio, Video, and Similar Electronic Apparatus-Safety Requirements

CSA 62368-1 Audio/Video, Information and Communication Technology Equipment - Part 1: Safety Requirements

CSA C9 Dry-Type Transformers

UL 61010-1 Electrical Equipment for Measurement, Control, and Laboratory Use; Part 1: General Requirements

UL 60065 Audio, Video, and Similar Electronic Apparatus-Safety Requirements

UL 62368-1 Audio/Video, Information and Communication Technology Equipment - Part 1: Safety Requirements

4. For Preliminary Review Only: Revisions to Li ion batteries used in Division 2 portable equipment.

PROPOSAL

5.2.2 For portable devices incorporating a Li ion rechargeable battery, so as to minimize battery failures resulting in the device becoming a source of ignition, one of the following minimum enclosure ratings is required.

i. IP54 in accordance with IEC 60529;
ii. in the United States: Type 3 in accordance with UL 50E, along with UL 50; or
iii. in Canada: Type 3 in accordance with CAN/CSA C22.2 No. 94.2, along with CAN/CSA C22.2 No. 94.1

5. For Preliminary Review Only: Revisions to the sealed device requirements.

PROPOSAL

13.1.5 The sealed device itself, or the sealing and encapsulating material of the sealed device, shall have a continuous operating temperature at least 20K higher than equal to the maximum service temperature and equal to the minimum service temperature to which it is exposed.

Alternatively, the sealed device itself, or the sealing and encapsulating material of the sealed device, may have a continuous operating temperature equal to the maximum and minimum service temperature to which it is exposed if it is subjected to the Temperature aging requirements in this standard based on the maximum service temperature prior to the air leakage test in 13.2.

Where the sealed device is fixed equipment or an internal part of fixed equipment, and the device is constructed with a separate housing and base that are sealed together, the housing and base of the device need not be are not considered to be part of the seal. Where the sealed device is portable equipment or an internal part of portable equipment, and the device is constructed with a separate housing and base that are sealed together, the housing and base of the device shall be considered part of the seal.

NOTE 1 For fixed equipment applications involving seal material with continuous operating temperature at least 20K higher than the maximum service temperature and equal to the minimum service temperature to which it is exposed, a manufacturer’s COT ratings or declaration regarding the COT ratings is a means of determining suitability.

NOTE 2 For all portable equipment applications, and for fixed equipment applications involving seal material with a COT that is not at least 20K higher than the maximum service temperature, a manufacturer’s declaration regarding the specific manufacturer and part number of the housing and base material relied upon to comply with the applicable requirements is a means of determining suitability.

6. For Preliminary Review Only: Revisions to the Drop test for portable equipment.

PROPOSAL

16.2.1 A sample shall be subjected to the following thermal conditioning:

 i. Seven (7) days at a uniform temperature of at least 10°C (18°F) higher than the maximum temperature of the material measured under worst case normal operating conditions, but not less than 70°C (158°F),
 ii. directly followed by cooling to the minimum rated ambient temperature.

Within 10 minutes of this thermal conditioning, the equipment shall be dropped six times, not more than once on any one equipment surface, from a height of at least 1.9 m onto a smooth concrete floor. A nonrestrictive guide may be used.
There shall be no ejection of the battery (or batteries) and there shall be no damage to the nonincendive protection that invalidates compliance with the requirements in this standard.

16.2.2 The drop test in CSA/UL 60079-0 may be used as an alternative. The testing shall be performed after the required thermal endurance to heat and to cold and to the required impact testing at the specified maximum and minimum temperatures as specified in CSA/UL 60079-0.

7. For Preliminary Review Only: Revisions to correct reference in Clauses 5.1.2 and 5.3.1

PROPOSAL

5.1.2 Each make/break component shall be one or more of the following:
 a) used in a nonincendive circuit that meets the requirements of Clause 7;
 b) a normally nonarc ing component that meets the requirements of Clause 8;
 c) a nonincendive component that meets the requirements of Clause 12;
 d) a sealed device that meets the requirements of Clause 13;
 e) an enclosed-break device that meets the requirements of Clause 14; or
 f) immersed in oil that meets the requirements of Clause 17.

5.3.1 Fuses used in circuits that are subject to overloading in normal use shall be:
 a) housed in an enclosure suitable for Division 1 locations;
 b) evaluated in accordance with a type of protection listed in 5.1.2 b) – e f); or
 c) constructed such that the operating element is immersed in oil; or
 d) a nonindicating, filled, current-limiting type.

NOTE 1 Examples of circuits that are subject to overloading in normal use include a motor circuit where a possibility of a stalled motor opening the fuse exists, or where there is the possibility of an overload not caused by a fault in the circuit. Reference 501.115(B)(3) of NFPA 70:2014 (NEC).

NOTE 2 The material characteristics of the oil, and the depth to which the operating element of the fuse is immersed within the oil, is not controlled by this requirement.