This section solicits public comments on proposed draft new American National Standards, including the national adoption of ISO and IEC standards as American National Standards, and on proposals to revise, reaffirm or withdraw approval of existing American National Standards. A draft standard is listed in this section under the ANSI-accredited standards developer (ASD) that sponsors it and from whom a copy may be obtained. Comments in connection with a draft American National Standard must be submitted in writing to the ASD no later than the last day of the comment period specified herein. Such comments shall be specific to the section(s) of the standard under review and include sufficient detail so as to enable the reader to understand the commenter’s position, concerns and suggested alternative language, if appropriate. Please note that the ANSI Executive Standards Council (ExSC) has determined that an ASD has the right to require that interested parties submit public review comments electronically, in accordance with the developer’s procedures.

Ordering Instructions for “Call-for-Comment” Listings
1. Order from the organization indicated for the specific proposal.
2. Use the full identification in your order, including the BSR prefix; for example, Electric Fuses BSR/SAE J554.
3. Include remittance with all orders.
4. BSR proposals will not be available after the deadline of call for comment.

Comments should be addressed to the organization indicated, with a copy to the Board of Standards Review, American National Standards Institute, 25 West 43rd Street, New York, NY 10036. Fax: 212-840-2298; e-mail: psa@ansi.org

* Standard for consumer products
Standards Action - July 7, 2017 - Page 2 of 71 pages

Comment Deadline: August 6, 2017

ASME (American Society of Mechanical Engineers)

Revision

BSR/ASME B16.29-201x, Wrought Copper and Wrought Copper Alloy Solder Joint Drainage Fittings - DWV (revision of ANSI/ASME B16.29-2012)

This Standard for wrought copper and wrought copper alloy solder-joint drainage fittings, designed for use with copper drainage tube conforming to ASTM B306, covers the following: description, pitch (slope), abbreviations for end connections, sizes and method of designating openings for reducing fittings, marking, material, and dimensions and tolerances.

[Click here to view these changes in full](#)

Send comments (with copy to psa@ansi.org) to: Erika Lawson, (212) 591-8094, lawson@asme.org

NEMA (ASC C136) (National Electrical Manufacturers Association)

Revision

BSR C136.2-201x, Standard for Roadway and Area Lighting Equipment - Dielectric Withstand and Electrical Transient Immunity Requirements (revision of ANSI C136.2-2015)

This standard covers luminaires and control devices classified for 600 volt operation and intended for use in roadway and area lighting applications. This project is to correct a technical editorial misprint.

[Click here to view these changes in full](#)

Send comments (with copy to psa@ansi.org) to: Karen Willis, (703) 841-3277, Karen.Willis@nema.org

NSF (NSF International)

Revision

BSR/NSF 29-201x (i5r2), Detergent and Chemical Feeders for Commercial Spray-Type Dishwashing Machines (revision of ANSI/NSF 29-2012)

This Standard covers chemical sanitizing feeders, detergent feeders, drying agent feeders, and similar devices that automatically maintain the concentration of additives in the prewash, wash, pumped rinse, or final rinse of commercial spray-type dishwashing machines.

[Click here to view these changes in full](#)

Send comments (with copy to psa@ansi.org) to: Allan Rose, (734) 827-3817, arouse@nsf.org

NSF (NSF International)

Revision

BSR/NSF 62-201x (i33r1), Drinking Water Distillation Systems (revision of ANSI/NSF 62-2016)

This standard establishes minimum materials, design and construction, and performance requirements for point-of-use and point-of-entry drinking water distillation systems and the components used in these systems. Distillation systems covered by this standard are designed to reduce specific chemical contaminants from potable drinking water supplies. Systems covered under this standard may also be designed to reduce microbiological contaminants, including bacteria, viruses, and cysts, from potable drinking water supplies. It is recognized that a system may be effective in controlling one or more of these contaminants, but systems are not required to control all.

[Click here to view these changes in full](#)

Send comments (with copy to psa@ansi.org) to: Monica Leslie, (734) 827-5643, mleslie@nsf.org

NSF (NSF International)

Revision

This Standard contains minimum requirements for onsite residential and commercial water treatment systems.

[Click here to view these changes in full](#)

Send comments (with copy to psa@ansi.org) to: Lauren Panoff, (734) 769-5197, lpanoff@nsf.org

NSF (NSF International)

Revision

This Standard contains minimum requirements for onsite residential and commercial water treatment systems.

[Click here to view these changes in full](#)

Send comments (with copy to psa@ansi.org) to: Lauren Panoff, (734) 769-5197, lpanoff@nsf.org
NSF (NSF International)

Revision
This Standard contains minimum requirements for onsite residential and commercial water treatment systems.

Click here to view these changes in full
Send comments (with copy to psa@ansi.org) to: Lauren Panoff, (734) 769-5197, lpanoff@nsf.org

UL (Underwriters Laboratories, Inc.)

New Standard
BSR/UL 2748-201x, Standard for Safety for Arcing Fault Quenching Equipment (new standard)
This is a revised version of a proposal to publish a First Edition of the Standard for Arcing Fault Quenching Equipment, UL 2748, as an American National Standard. The original version of the proposal was published on March 17, 2017.

Click here to view these changes in full
Send comments (with copy to psa@ansi.org) to: Derrick Martin, (510) 319-4271, Derrick.L.Martin@ul.com

UL (Underwriters Laboratories, Inc.)

Revision
BSR/UL 96-201x, Standard for Safety for Lightning Protection Components (revision of ANSI/UL 96-2016)
(4) Withdrawal of proposal: Coatings Applied to Air Terminals.

Click here to view these changes in full
Send comments (with copy to psa@ansi.org) to: Mitchell Gold, (847) 664-2850, Mitchell.Gold@ul.com

UL (Underwriters Laboratories, Inc.)

Revision
BSR/UL 778-201x, Standard for Safety for Motor-Operated Water Pumps (revision of ANSI/UL 778-2016)
Revise proposal to include connector-inlet connection requirements.

Click here to view these changes in full
Send comments (with copy to psa@ansi.org) to: Megan Monsen, (847) 664-1292, megan.monsen@ul.com

UL (Underwriters Laboratories, Inc.)

Revision
BSR/UL 858-201x, Standard for Safety for Household Electric Ranges (revision of ANSI/UL 858-2017)
(1) Improvements to abnormal operation - Coil Surface Unit Cooking Oil Ignition Test.

Click here to view these changes in full
Send comments (with copy to psa@ansi.org) to: Amy Walker, (847) 664-2023, Amy.K.Walker@ul.com

UL (Underwriters Laboratories, Inc.)

Revision
ANSI Approval of the Sixth Edition of UL 60335-2-34, which covers the safety of sealed (hermetic and semi-hermetic type) motor-compressors, their protection and control systems, if any, which are intended for use in equipment for household and similar purposes and which conform with the standards applicable to such equipment. It applies to motor-compressors tested separately, under the most severe conditions that may be expected to occur in normal use, their rated voltage being not more than 250 V for single-phase motor-compressors and 600 V for other motor-compressors.

Click here to view these changes in full
Send comments (with copy to psa@ansi.org) to: Alan McGrath, (847) 664-3038, alan.t.mcgrath@ul.com

RESNET (Residential Energy Services Network, Inc.)

Addenda
BSR/RESNET/ICC 301-2014, Addendum K-201x, Roof Solar Absorptance Test Standard (addenda to ANSI/RESNET/ICC 301-2014)

Click here to view these changes in full
Send comments (with copy to psa@ansi.org) to: Comments are submitted via RESNET's online comment form. See the links from webpage: http://www.resnet.us/blog/resnet-consensus-standards/

RESNET (Residential Energy Services Network, Inc.)

Addenda
BSR/RESNET/ICC 380-2016 Addendum A-201x, Attics & Crawlspace (addenda to ANSI/RESNET/ICC 380-2016)
Revise Standard ANSI/RESNET/ICC 380-2016 to clarify the treatment of attics and crawlspaces in testing and calculations and to provide other clarifications essential to the implementation of the Standard.

Click here to view these changes in full
Send comments (with copy to psa@ansi.org) to: Comments are submitted via RESNET's online comment form. See the links from webpage: http://www.resnet.us/blog/resnet-consensus-standards/
Comment Deadline: August 21, 2017

AAMI (Association for the Advancement of Medical Instrumentation)

New National Adoption

BSR/AAMI/ISO 18250-7-201x, Connectors for reservoir delivery systems for healthcare applications - Part 7: Connectors for Intravascular Infusion (identical national adoption of ISO 18250-7)

Specifies dimensions and requirements for the design and functional 122 performance of connectors intended to be used on intravascular infusion reservoirs.

Single copy price: Free

Send comments (with copy to psa@ansi.org) to: celliott@aami.org

ACCA (Air Conditioning Contractors of America)

Reaffirmation

The First Edition of Manual SPS provides guidance for projects that range from a hot tub in a home to a large natatorium that has an Olympic-size pool with seating for hundreds of spectators. Even though these projects appear to be quite different, they are identical as far as construction requirements and mechanical system performance requirements are concerned. This Manual does not provide guidance for indoor water parks.

Single copy price: $121.95

Order from: ACCA Bookstore 888/290-2220

Send comments (with copy to psa@ansi.org) to: standards-sec.acca.org

AIAA (American Institute of Aeronautics and Astronautics)

Revision

Describes which types of information are most relevant, their purpose, and who should participate in the operational concept development effort. It also provides advice regarding effective procedures for generation of the information and how to document it.

Single copy price: $69.95

Order from: Hillary Woehrle, (703) 264-7546, hillaryw@aiaa.org

Send comments (with copy to psa@ansi.org) to: Same

BSR/AIAA S-102.1.4-201x, Performance-Based Failure Reporting, Analysis & Corrective Action Systems (FRACAS) Requirements (revision of ANSI/AIAA S-102.1.4-2008)

Provides the basis for developing the performance-based Failure Reporting, Analysis & Corrective Action System (FRACAS) to resolve the problems and failures of individual products along with those of their procured elements. The requirements for contractors, the planning and reporting needs, along with the analytical tools are established.

Single copy price: $54.95

Order from: Hillary Woehrle, (703) 264-7546, hillaryw@aiaa.org

Send comments (with copy to psa@ansi.org) to: Same

BSR/AIAA S-102.1.5-201x, Performance Based Failure Board Requirements (revision of ANSI/AIAA S-102.1.5-2008)

Provides the basis for developing the performance-based Failure Review Board (FRB), which is a group consisting of representatives from appropriate project organizations with the level of responsibility and authority to assure that root causes are identified and corrective actions are effected in a timely manner for all significant failures.

Single copy price: $64.95

Order from: Hillary Woehrle, (703) 264-7546, hillaryw@aiaa.org

Send comments (with copy to psa@ansi.org) to: Same

BSR/AIAA S-102.2.2-201x, System Reliability Modeling Requirements (revision of ANSI/AIAA S-102.2.2-2008)

Provides the basis for developing performance-based System Reliability Modeling to develop mathematical or simulation models to be used for making numerical apportionments and reliability predictions based on the reliability characteristics and functional interdependencies for all configured items required to perform the mission.

Single copy price: $64.95

Order from: Hillary Woehrle, (703) 264-7546, hillaryw@aiaa.org

Send comments (with copy to psa@ansi.org) to: Same

BSR/AIAA S-102.2.11-201x, Anomaly, Detection, and Response Analysis (revision of ANSI/AIAA S-102.2.11-2008)

Provides the basis for developing identification and response methods for system anomalies or faults that pose unacceptable risk. The requirements for contractors, planning and reporting needs, and analytical tools are established.

Single copy price: $64.95

Order from: Hillary Woehrle, (703) 264-7546, hillaryw@aiaa.org

Send comments (with copy to psa@ansi.org) to: Same
AIAA (American Institute of Aeronautics and Astronautics)

Revision

BSR/AIAA S-102.2.18-201x, Performance-Based Fault Tree Analysis Requirements (revision of ANSI/AIAA S-102.2.18-2008)

Provides the basis for developing the performance-based fault tree analysis (FTA) to review and analytically examine a system or equipment in such a way as to emphasize the lower-level fault occurrences that directly or indirectly contribute to the system-level fault or undesired event. The requirements for contractors, planning and reporting needs, and analytical tools are established.

Single copy price: $64.95
Order from: Hillary Woehrle, (703) 264-7546, hillaryw@aiaa.org
Send comments (with copy to psa@ansi.org) to: Same

ASA (ASC S12) (Acoustical Society of America)

New National Adoption

BSR ASA S12.55 Amd.1-201x/ISO 3745-201x Amd.1-201x, Acoustics - Determination of sound power levels and sound energy levels of noise sources using sound pressure - Precision methods for anechoic rooms and hemi-anechoic rooms - Amendment 1 (a nationally adopted international standard amendment) (identical national adoption of ISO 3745 Amd.1:2017)

This is the national adoption of a recent amendment to an ISO standard that was nationally adopted several years ago.

Single copy price: $19.00
Obtain an electronic copy from: asastds@acousticalsociety.org
Order from: Neil Stremmel, (631) 390-0215, nstremmel@acousticalsociety.org
Send comments (with copy to psa@ansi.org) to: Same

ASA (ASC S12) (Acoustical Society of America)

Reaffirmation

BSR ASA S12.55-2012, ISO 3745:2012 (R201x), Acoustics - Determination of sound power levels and sound energy levels of noise sources using sound pressure - Precision methods for anechoic rooms and hemi-anechoic rooms (a nationally adopted international standard) (reaffirmation of ANSI ASA S12.55-2012, ISO 3745:2012)

This Nationally Adopted International Standard specifies methods for measuring the sound pressure levels on a measurement surface enveloping a noise source (machinery or equipment) in an anechoic room or a hemi-anechoic room.

Single copy price: $105.00
Obtain an electronic copy from: asastds@acousticalsociety.org
Order from: Neil Stremmel, (631) 390-0215, nstremmel@acousticalsociety.org
Send comments (with copy to psa@ansi.org) to: Same

ASA (ASC S2) (Acoustical Society of America)

Reaffirmation

BSR ASA S2.21-1998 (R201x), Method for Preparation of a Standard Material for Dynamic Mechanical Measurements (reaffirmation of ANSI ASA S2.21-1998 (R2012))

Applies to the preparation of a standard material for calibration of instruments for measuring the dynamic mechanical properties of viscoelastic materials. The purpose of this Standard is to assist users of dynamic mechanical test equipment in preparing the standard material from its basic components. The standard material is used for the calibration of new instruments in comparison with other instruments and in checking the operation of the same instrument at different times.

Single copy price: $90.00
Obtain an electronic copy from: asastds@acousticalsociety.org
Order from: Neil Stremmel, (631) 390-0215, nstremmel@acousticalsociety.org
Send comments (with copy to psa@ansi.org) to: Same

ASA (ASC S2) (Acoustical Society of America)

Reaffirmation

Defines a procedure for measurement and analysis of the dynamic properties of viscoelastic materials using a resonance method. The Standard applies to materials used in sound and vibration damping systems operating at frequencies from a fraction of a hertz to about 20 kHz.

Single copy price: $90.00
Obtain an electronic copy from: asastds@acousticalsociety.org
Order from: Neil Stremmel, (631) 390-0215, nstremmel@acousticalsociety.org
Send comments (with copy to psa@ansi.org) to: Same
ASA (Acoustical Society of America)

Reaffirmation

Defines a method for measuring the dynamic mechanical properties of viscoelastic materials using a cantilever beam technique. The dynamic mechanical properties are expressed in terms of the frequency dependence of Young's modulus and loss factor at a given reference temperature. The Standard provides information for constructing such equipment and analyzing the results obtained.

Single copy price: $90.00
Obtain an electronic copy from: asastds@acousticalsociety.org
Order from: Neil Stremmel, (631) 390-0215, nstremmel@acousticalsociety.org
Send comments (with copy to psa@ansi.org) to: Same

ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.)

New Standard

BSR/ASHRAE/ACCA Standard 211-201x, Standard for Commercial Building Energy Audits (new standard)

The purpose of this standard is to establish consistent practices for conducting and reporting audits for commercial buildings.

Single copy price: $35.00
Obtain an electronic copy from: http://www.ashrae.org/standards-research--technology/public-review-drafts
Order from: standards.section@ashrae.org
Send comments (with copy to psa@ansi.org) to: http://www.ashrae.org/standards-research--technology/public-review-drafts

ASTM (ASTM International)

New Standard

BSR/ASTM E2147-201x, (Reinstate) Specification for Audit and Disclosure Logs for Use in Health Information Systems (new standard)

http://www.astm.org/ANSI_SA

Single copy price: Free
Obtain an electronic copy from: cleonard@astm.org
Order from: Corice Leonard, (610) 832-9744, accreditation@astm.org
Send comments (with copy to psa@ansi.org) to: Same

ASTM (ASTM International)

New Standard

BSR/ASTM F689-201x, Practice for Determination of the Temperature of Above-Ground Plastic Gas Pressure Pipe within Metallic Casings (new standard)

http://www.astm.org/ANSI_SA

Single copy price: Free
Obtain an electronic copy from: cleonard@astm.org
Order from: Corice Leonard, (610) 832-9744, accreditation@astm.org
Send comments (with copy to psa@ansi.org) to: Same

ASTM (ASTM International)

Reaffirmation

BSR/ASTM D2774-2017 (R201x), Practice for Underground Installation of Thermoplastic Pressure Piping (reaffirmation of ANSI/ASTM D2774-2017)

http://www.astm.org/ANSI_SA

Single copy price: Free
Obtain an electronic copy from: cleonard@astm.org
Order from: Corice Leonard, (610) 832-9744, accreditation@astm.org
Send comments (with copy to psa@ansi.org) to: Same
Standards Action - July 7, 2017 - Page 7 of 71 pages

ASTM (ASTM International)
Reaffirmation
http://www.astm.org/ANSI_SA
Single copy price: Free
Obtain an electronic copy from: cleonard@astm.org
Order from: Corice Leonard, (610) 832-9744, accreditation@astm.org
Send comments (with copy to psa@ansi.org) to: Same

ASTM (ASTM International)
Reaffirmation
http://www.astm.org/ANSI_SA
Single copy price: Free
Obtain an electronic copy from: cleonard@astm.org
Order from: Corice Leonard, (610) 832-9744, accreditation@astm.org
Send comments (with copy to psa@ansi.org) to: Same

ASTM (ASTM International)
Reaffirmation
BSR/ASTM F1924-2017 (R201x), Specification for Plastic Mechanical Fittings for Use on Outside Diameter Controlled Polyethylene Gas Distribution Pipe and Tubing (reaffirmation of ANSI/ASTM F1924-2017)
http://www.astm.org/ANSI_SA
Single copy price: Free
Obtain an electronic copy from: cleonard@astm.org
Order from: Corice Leonard, (610) 832-9744, accreditation@astm.org
Send comments (with copy to psa@ansi.org) to: Same

ASTM (ASTM International)
Reaffirmation
http://www.astm.org/ANSI_SA
Single copy price: Free
Obtain an electronic copy from: cleonard@astm.org
Order from: Corice Leonard, (610) 832-9744, accreditation@astm.org
Send comments (with copy to psa@ansi.org) to: Same

ASTM (ASTM International)
Reaffirmation
http://www.astm.org/ANSI_SA
Single copy price: Free
Obtain an electronic copy from: cleonard@astm.org
Order from: Corice Leonard, (610) 832-9744, accreditation@astm.org
Send comments (with copy to psa@ansi.org) to: Same

ASTM (ASTM International)
Reaffirmation
http://www.astm.org/ANSI_SA
Single copy price: Free
Obtain an electronic copy from: cleonard@astm.org
Order from: Corice Leonard, (610) 832-9744, accreditation@astm.org
Send comments (with copy to psa@ansi.org) to: Same

ASTM (ASTM International)
Reaffirmation
http://www.astm.org/ANSI_SA
Single copy price: Free
Obtain an electronic copy from: cleonard@astm.org
Order from: Corice Leonard, (610) 832-9744, accreditation@astm.org
Send comments (with copy to psa@ansi.org) to: Same

ASTM (ASTM International)
Reaffirmation
BSR/ASTM F2807-2017 (R201x), Specification for Multilayer Polyethylene-Polyamide (PE-PA) Pipe for Pressure Piping Applications (reaffirmation of ANSI/ASTM F2807-2017)
http://www.astm.org/ANSI_SA
Single copy price: Free
Obtain an electronic copy from: cleonard@astm.org
Order from: Corice Leonard, (610) 832-9744, accreditation@astm.org
Send comments (with copy to psa@ansi.org) to: Same

ASTM (ASTM International)
Reaffirmation
BSR/ASTM F2817-2017 (R201x), Specification for Poly(Vinyl Chloride) (PVC) Gas Pressure Pipe and Fittings for Maintenance or Repair (reaffirmation of ANSI/ASTM F2817-2017)
http://www.astm.org/ANSI_SA
Single copy price: Free
Obtain an electronic copy from: cleonard@astm.org
Order from: Corice Leonard, (610) 832-9744, accreditation@astm.org
Send comments (with copy to psa@ansi.org) to: Same

ASTM (ASTM International)
Reaffirmation
http://www.astm.org/ANSI_SA
Single copy price: Free
Obtain an electronic copy from: cleonard@astm.org
Order from: Corice Leonard, (610) 832-9744, accreditation@astm.org
Send comments (with copy to psa@ansi.org) to: Same
AWS (American Welding Society)

Revision
BSR/AWS C3.2M/C3.2 201x, Standard Method for Evaluating the Strength of Brazed Joints (revision of ANSI/AWS C3.2M/C3.2-2008)

This standard describes the test methods used to obtain brazed strength data of the short time testing of single-lap joints in shear, butt-tension, stress-rupture, creep-strength, four-point-bending, and ceramic-tensile-button specimens. Specimen preparation methods, brazing procedures, testing techniques, and methods for data analysis are detailed. Sample forms for recording data are presented. A graphical method of data presentation relates shear stress to overlap distance.

Single copy price: $34.00
Obtain an electronic copy from: jdouglass@aws.org
Order from: John Douglass, (800) 443-9353, jdouglass@aws.org
Send comments (with copy to psa@ansi.org) to: Same

AWS (American Welding Society)

Revision

Provides standards for producing structural welds used in the manufacture and repair of earthmoving, construction, agricultural, and ground-based material handling equipment. Such equipment is defined as self-propelled, on- and off-highway machinery, and associated implements. Manufacturer’s responsibilities are presented as they relate to the welding practices that have been proven successful within the industry in the production of weldments on this equipment. Requirements for basic weld details, base material, filler material, processes, welding procedure qualification and documentation, welding personnel qualification, weld quality, inspection, and repair are inc

Single copy price: $44.00
Obtain an electronic copy from: jdouglass@aws.org
Order from: John Douglass, (800) 443-9353, jdouglass@aws.org
Send comments (with copy to psa@ansi.org) to: Same

AWWA (American Water Works Association)

Revision
BSR/AWWA C655-201x, Field Dechlorination (revision of ANSI/AWWA C655-2009)

This standard describes procedures, materials, and requirements for the dechlorination of chlorinated or chloraminated water discharges.

Single copy price: Free
Obtain an electronic copy from: v david@awwa.org
Order from: Paul Olson, (303) 347-6178, polson@awwa.org; v david@awwa. org
Send comments (with copy to psa@ansi.org) to: Same

CSA (CSA Group)

Revision

This Standard applies to: (a) the mechanical and electrical features of newly manufactured systems that dispense natural gas for vehicles (NGV) where such a dispensing system is intended primarily to dispense the fuel directly into the fuel storage container of the vehicle; (b) NGV dispensers contained in a single housing; and (c) NGV dispensers contained in multiple housings for metering and registering devices, remote electronics, remote overfill protection, hoses, and nozzles.

Single copy price: Free
Obtain an electronic copy from: cathy.rake@csagroup.org
Order from: Cathy Rake, (216) 524-4990 x88321, cathy.rake@csagroup.org
Send comments (with copy to psa@ansi.org) to: Ed Mikoski, emikoski@ecianow.org
Standards Action - July 7, 2017 - Page 10 of 71 pages

ECIA (Electronic Components Industry Association)

New National Adoption

BSR/EIA 60384-1 Ed.5-201x, Fixed capacitors for use in electronic equipment - Part 1: Generic specification (identical national adoption of IEC 60384-1:2016 and revision of ANSI/EIA 60384-1 Ed.5-201x)

This part of IEC 60384 is a generic specification and is applicable to fixed capacitors for use in electronic equipment. It establishes standard terms, inspection procedures and methods of test for use in sectional and detail specifications of electronic components for quality assessment or any other purpose.

Single copy price: $156.00
Obtain an electronic copy from: https://global.ihs.com/
Send comments (with copy to psa@ansi.org) to: Ed Mikoski, emikoski@ecianow.org

ECIA (Electronic Components Industry Association)

New National Adoption

BSR/EIA 60384-23 Ed.2-201x, Fixed capacitors for use in electronic equipment - Part 23: Sectional specification - Fixed metallized polyethylene naphthalate film dielectric surface mount d.c. capacitors (identical national adoption of IEC 60384-23:2015 and revision of ANSI/EIA 60384-23 Ed.2-201x)

This part of IEC 60384 is applicable to fixed surface mount capacitors for direct current, with metallized electrodes and polyethylene naphthalate dielectric for use in electronic equipment. These capacitors have metallized connecting pads or soldering strips and are intended to be mounted directly onto substrates for hybrid circuits or onto printed boards. These capacitors may have "self-healing properties" depending on conditions of use. They are primarily intended for applications where the a.c. component is small with respect to the rated voltage. Capacitors for radio interference suppression are not included, they are covered by IEC 60384-14.

Single copy price: $101.00
Obtain an electronic copy from: https://global.ihs.com/
Send comments (with copy to psa@ansi.org) to: Ed Mikoski, emikoski@ecianow.org

ECIA (Electronic Components Industry Association)

New National Adoption

BSR/EIA 60384-4 Ed.5-201x, Fixed capacitors for use in electronic equipment - Part 4: Sectional specification - Fixed aluminum electrolytic capacitors with solid (MnO2) and non-solid electrolyte (identical national adoption of IEC 60384-4:2016 and revision of ANSI/EIA 60384-4 Ed.5-201x)

This part of IEC 60384 applies to fixed aluminum electrolytic capacitors with solid (MnO2) and non-solid electrolyte primarily intended for d.c. applications for use in electronic equipment. It covers capacitors for long-life applications and capacitors for general-purpose applications. Capacitors for fixed surface mount aluminum electrolytic capacitors are not included but they are covered by IEC 60384-18. Capacitors for special-purpose applications may need additional requirements.

Single copy price: $101.00
Obtain an electronic copy from: https://global.ihs.com/
Send comments (with copy to psa@ansi.org) to: Ed Mikoski, emikoski@ecianow.org

ECIA (Electronic Components Industry Association)

New National Adoption

BSR/EIA 60384-8 Ed.4-201x, Fixed capacitors for use in electronic equipment - Part 8: Sectional specification: Fixed capacitors of ceramic dielectric, Class 1 (identical national adoption of IEC 60384-8:2015 and revision of ANSI/EIA 60384-8 Ed.4-201x)

This part of IEC 60384 is applicable to fixed capacitors of ceramic dielectric with a defined temperature coefficient (dielectric Class 1), intended for use in electronic equipment, including leadless capacitors but excluding fixed surface mount multilayer capacitors of ceramic dielectric, which are covered by IEC 60384-21 (Class 1). Capacitors for electromagnetic interference suppression are not included, but are covered by IEC 60384-14.

Single copy price: $107.00
Obtain an electronic copy from: https://global.ihs.com/
Send comments (with copy to psa@ansi.org) to: Ed Mikoski, emikoski@ecianow.org

ECIA (Electronic Components Industry Association)

New National Adoption

BSR/EIA 60384-9 Ed.4-201x, Fixed capacitors for use in electronic equipment - Part 9: Sectional specification: Fixed capacitors of ceramic dielectric, Class 2 (identical national adoption of IEC 60384-9:2015 and revision of ANSI/EIA 60384-9 Ed.4-201x)

This part of IEC 60384 is applicable to fixed capacitors of ceramic dielectric with a defined temperature coefficient (dielectric Class 2), intended for use in electronic equipment, including leadless capacitors but excluding fixed surface mount multilayer capacitors of ceramic dielectric, which are covered by IEC 60384-22 (Class 2). Capacitors for electromagnetic interference suppression are not included, but are covered by IEC 60384-14.

Single copy price: $101.00
Obtain an electronic copy from: https://global.ihs.com/
Send comments (with copy to psa@ansi.org) to: Ed Mikoski, emikoski@ecianow.org

LIA (ASC Z136) (Laser Institute of America)

Revision

BSR Z136.3-201, Standard for Safe Use of Lasers in Health Care (revision of ANSI Z136.3-2011)

The standard provides guidance for the safe use of lasers in the health care environment. This guidance assists the establishment and monitoring of programs that promote the safe use of lasers in health care. The scope of this standard includes all circumstances when people may be exposed to a laser used in health care applications. Specific processes are provided to protect anyone who might become exposed to laser radiation during diagnostic or therapeutic procedures.

Single copy price: $30.00
Obtain an electronic copy from: bsams@lia.org
Order from: Barbara Sams, LIA (ASC Z136); bsams@lia.org
Send comments (with copy to psa@ansi.org) to: Same
NECA (National Electrical Contractors Association)

Revision

BSR/NECA 305-201x, Standard for Fire Alarm System Job Practices (revision of ANSI/NECA 305-2010)

This standard describes practices for installing, testing, and maintaining fire alarm systems. These job practices represent a minimum level of quality for fire alarm system installations.

Single copy price: $40.00

Obtain an electronic copy from: neis@necanet.org

Order from: neis@necanet.org

Send comments (with copy to psa@ansi.org) to: Same

NEMA (ASC C137) (National Electrical Manufacturers Association)

New Standard

BSR C137.0-201x, Standard for Lighting Systems Terms and Definitions (new standard)

The definitions listed in this document apply or are directly related to lighting systems and are used in multiple lighting system standards. This standard is intended for use by lighting systems standards developers. The terms found in this document are recommended for use in all ANSI C137 lighting system standards. Where this document does not include a term, other references are listed.

Single copy price: Free

Obtain an electronic copy from: karen.willis@nema.org

Order from: Karen Willis, (703) 841-3277, karen.willis@nema.org

Send comments (with copy to psa@ansi.org) to: Same

SCTE (Society of Cable Telecommunications Engineers)

New Standard

BSR/SCTE 236-201x, Content Metadata (new standard)

This standard describes the grammar needed to represent information pertinent to the distribution, presentation and consumption of multimedia content. In a normal-use case, the metadata originates from a provider and is distributed to operators.

Single copy price: $50.00

Obtain an electronic copy from: standards@scte.org

Send comments (with copy to psa@ansi.org) to: standards@scte.org

SCTE (Society of Cable Telecommunications Engineers)

Revision

BSR/SCTE 58-201x, AM Cross Modulation Measurements (revision of ANSI/SCTE 58-2012)

This document describes a test procedure for the laboratory and production measurement of Amplitude Modulation Cross Modulation (or AM-XMOD) that is present in Broadband Systems which carry Frequency Division Multiplexed (FDM), amplitude modulated, analog video channels.

Single copy price: $50.00

Obtain an electronic copy from: standards@scte.org

Send comments (with copy to psa@ansi.org) to: standards@scte.org

TIA (Telecommunications Industry Association)

Addenda

BSR/TIA 568.1-D-1-2015x, Commercial Building Telecommunications Infrastructure Standard, Addendum 1: Updated References, Accommodation of New Media Types (addenda to ANSI/TIA 568.1-D-2015)

This Addendum updates references and accommodates new media types introduced by ANSI/TIA 568-C.2-1 and ANSI/TIA 568.3-D.

Single copy price: $60.00

Obtain an electronic copy from: standards@tiaonline.org

Order from: TIA; standards@tiaonline.org

Send comments (with copy to psa@ansi.org) to: Same

TIA (Telecommunications Industry Association)

Addenda

BSR/TIA 4966-1-201x, Structured Cabling Infrastructure Standard for Educational Facilities, Addendum 1: Updated References, Accommodation of New Media Types (addenda to ANSI/TIA 4966-2014)

This Addendum updates references and accommodates new media types introduced by ANSI/TIA 568-C.2-1 and ANSI/TIA 568.3-D.

Single copy price: $60.00

Obtain an electronic copy from: standards@tiaonline.org

Order from: TIA; standards@tiaonline.org

Send comments (with copy to psa@ansi.org) to: Same

TIA (Telecommunications Industry Association)

Addenda

The objective of this document is to provide minimum criteria for specifying and designing steel antenna towers and antenna supporting structures. This Standard is not intended to supersede applicable codes. The information contained in this Standard was obtained from sources as referenced and noted herein and represents, in the judgment of the subcommittee, the accepted industry practices for minimum standards for the design of steel antenna supporting structures. This document contains a county by county listing of minimum basic wind speeds, as well as a commentary on ice and other design criteria. It is for general information only.

Single copy price: $377.00

Obtain an electronic copy from: standards@tiaonline.org

Order from: TIA; standards@tiaonline.org

Send comments (with copy to psa@ansi.org) to: Same
Comment Deadline: September 5, 2017

AGMA (American Gear Manufacturers Association)

Reaffirmation
BSR/AGMA 6008-A98 (R201x), Specifications for Powder Metallurgy Gears (reaffirmation of ANSI/AGMA 6008-A98 (R2004))
This standard describes the specification data required to adequately inform the producer of powder metallurgy (P/M) gears about the gear design features desired by the purchaser. It also describes some of the related industry practices which commonly apply unless replaced by written agreement between producer and purchaser.
Single copy price: $53.00
Obtain an electronic copy from: tech@agma.org
Order from: Amir Aboutaleb, (703) 684-0211, tech@agma.org
Send comments (with copy to psa@ansi.org) to: Same

AGMA (American Gear Manufacturers Association)

Reaffirmation
BSR/AGMA 9008-B99 (R201x), Flexible Couplings - Gear Type - Flange Dimensions (Inch Series) (reaffirmation of ANSI/AGMA 9008-B99 (R2012))
This standard defines the North American industry practice for the interface dimensions of the sleeves and rigid hubs of both shrouded- and exposed-bolt, inch-series, gear-type couplings.
Single copy price: $38.00
Obtain an electronic copy from: tech@agma.org
Order from: Amir Aboutaleb, (703) 684-0211, tech@agma.org
Send comments (with copy to psa@ansi.org) to: Same

AGMA (American Gear Manufacturers Association)

Reaffirmation
This standard provides calculation methods related to mass elastic properties of flexible couplings. Properties discussed include coupling mass, polar mass moment of inertia, center of gravity, axial stiffness, axial natural frequency, lateral stiffness, lateral natural frequency, and torsional stiffness. Calculation examples are provided in informative annexes.
Single copy price: $60.00
Obtain an electronic copy from: tech@agma.org
Order from: Amir Aboutaleb, (703) 684-0211, tech@agma.org
Send comments (with copy to psa@ansi.org) to: Same

Projects Withdrawn from Consideration

An accredited standards developer may abandon the processing of a proposed new or revised American National Standard or portion thereof if it has followed its accredited procedures. The following projects have been withdrawn accordingly:

AGMA (American Gear Manufacturers Association)
BSR/AGMA 6008-B-201x, Specifications for Powder Metallurgy Gears (revision and redesignation of ANSI/AGMA 6008-A98 (R2004))

NECA (National Electrical Contractors Association)
BSR/NECA 108-200x, Standard for Copper Wiring Applications (new standard)

NECA (National Electrical Contractors Association)
BSR/NECA 400-1999 (R200x), Recommended Practice for Installing and Maintaining Switchboards (reaffirmation of ANSI/NECA 400-1999)

NECA (National Electrical Contractors Association)
BSR/NECA 414-201x, Standard for Installing Wind Power Generation Turbines (new standard)

30 Day Notice of Withdrawal: ANS 5 to 10 years past approval date

In accordance with clause 4.7.1 Periodic Maintenance of American National Standards of the ANSI Essential Requirements, the following American National Standards have not been reaffirmed or revised within the five-year period following approval as an ANS. Thus, they shall be withdrawn at the close of this 30-day public review notice in Standards Action.

NECA (National Electrical Contractors Association)
ANSI/NECA 121-2007, Standard for Installing Nonmetallic-Sheathed Cable

NECA (National Electrical Contractors Association)
ANSI/NECA 331-2009, Standard for Building and Service Grounding and Bonding

NECA (National Electrical Contractors Association)
ANSI/NECA 400-2007, Standard for Installing and Maintaining Switchboards

NECA (National Electrical Contractors Association)
ANSI/NECA/IESNA 500-2006, Standard for Installing and Maintaining Indoor-Commercial Lighting Systems

NECA (National Electrical Contractors Association)
ANSI/NECA/IESNA 502-1999 (R2006), Standard for Installing Industrial Lighting Systems
Call for Members (ANS Consensus Bodies)

Directly and materially affected parties who are interested in participating as a member of an ANS consensus body for the standards listed below are requested to contact the sponsoring standards developer directly and in a timely manner.

ACCA (Air Conditioning Contractors of America)
Office: 2800 Shirlington Road
 Suite 300
 Arlington, VA 22206
Contact: Danny Halel
Phone: (703) 824-8868
E-mail: danny.halel@acca.org

AIAA (American Institute of Aeronautics and Astronautics)
Office: 12700 Sunrise Valley Drive, Suite 200
 Reston, VA 20191-5807
Contact: Hillary Woehrle
Phone: (703) 264-7546
E-mail: hillaryw@aiaa.org

BSR/AIAA S-102.1.4-201x, Performance-Based Failure Reporting, Analysis & Corrective Action Systems (FRACAS) Requirements (revision of ANSI/AIAA S-102.1.4-2008)
BSR/AIAA S-102.1.5-201x, Performance Based Failure Board Requirements (revision of ANSI/AIAA S-102.1.5-2008)
BSR/AIAA S-102.2.2-201x, System Reliability Modeling Requirements (revision of ANSI/AIAA S-102.2.2-2008)
BSR/AIAA S-102.2.11-201x, Anomaly, Detection, and Response Analysis (revision of ANSI/AIAA S-102.2.11-2008)
BSR/AIAA S-102.2.18-201x, Performance-Based Fault Tree Analysis Requirements (revision of ANSI/AIAA S-102.2.18-2008)

ASA (ASC S12) (Acoustical Society of America)
Office: 1305 Walt Whitman Rd
 Suite 300
 Melville, NY 11747
Contact: Neil Stremmel
Phone: (631) 390-0215
Fax: (631) 923-2875
E-mail: nstremmel@acousticalsociety.org

BSR ASA S12.55 Amd.1-201x/ISO 3745-201x Amd.1-201x, Acoustics - Determination of sound power levels and sound energy levels of noise sources using sound pressure - Precision methods for anechoic rooms and hemi-anechoic rooms - Amendment 1 (a nationally adopted international standard amendment) (identical national adoption of ISO 3745 Amd.1:2017)
BSR ASA S12.58-2012 (R201x), Sound Power Level Determination for Sources Using a Single-Source Position (reaffirmation of ANSI ASA S12.58-2012)

ASME (American Society of Mechanical Engineers)
Office: Two Park Avenue
 New York, NY 10016
Contact: Mayra Santiago
Phone: (212) 591-8521
Fax: (212) 591-8501
E-mail: ansibox@asme.org

BSR/ASME MUS-1-201x, Application of Mobile Unmanned Systems (MUS) for inspections, monitoring, and maintenance of industrial facilities and power plants as well as equipment, transmission lines, and pipelines (new standard)

NECA (National Electrical Contractors Association)
Office: 3 Bethesda Metro Center
Suite 1100
Bethesda, MD 20814
Contact: Agnieszka Golriz
Phone: (301) 215-4549
E-mail: Aga.golriz@necanet.org

NEMA (ASC C136) (National Electrical Manufacturers Association)
Office: 1300 North 17th Street
Suite 900
Rosslyn, VA 22209
Contact: Karen Willis
Phone: (703) 841-3277
Fax: (703) 841-3378
E-mail: Karen.Willis@nema.org

BSR C136.2-201x, Standard for Roadway and Area Lighting Equipment - Dielectric Withstand and Electrical Transient Immunity Requirements (revision of ANSI C136.2-2015)

BSR C136.20-201x, Standard for Roadway and Area Lighting Equipment - Fiber-Reinforced Composite (FRC) Lighting Poles (revision of ANSI C136.20-2012)

NEMA (ASC C137) (National Electrical Manufacturers Association)
Office: 1300 North 17th Street, Suite 900
Rosslyn, VA 22209
Contact: Karen Willis
Phone: (703) 841-3277
E-mail: Karen.Willis@nema.org

BSR C137.0-201x, Standard for Lighting Systems Terms and Definitions (new standard)

NSF (NSF International)
Office: 789 N. Dixboro Road
Ann Arbor, MI 48105-9723
Contact: Allan Rose
Phone: (734) 827-3817
Fax: (734) 827-7875
E-mail: arouse@nsf.org

BSR/NSF 29-201x (5R2), Detergent and Chemical Feeders for Commercial Spray-Type Dishwashing Machines (revision of ANSI/NSF 29-2012)

BSR/NSF 61-201x (i137r1), Drinking Water System Components - Health Effects (revision of ANSI/NSF 61-2016)

BSR/NSF 62-201x (i33r1), Drinking Water Distillation Systems (revision of ANSI/NSF 62-2016)

BSR/NSF 173-201x (i64r2), Dietary Supplements (revision of ANSI/NSF 173-2016)

TIA (Telecommunications Industry Association)

Office: 1320 North Courthouse Road
 Suite 200
 Arlington, VA 22201

Contact: Teesha Jenkins

Phone: (703) 907-7706

Fax: (703) 907-7727

E-mail: standards@tiaonline.org

BSR/TIA 102.AABB-C-201x, Project 25 - Trunking Control Channel Formats - Digital Radio Technical Standards (new standard)

BSR/TIA 102.AABC-D-2-201x, Trunking Control Channel Messages - Addendum 2: Vehicle Sensed Emergency (addenda to ANSI/TIA 102. AABC-D-1-2016)

BSR/TIA 455-95-B-201x, Absolute Optical Power Test for Optical Fibers and Cables (new standard)

BSR/TIA 568.1-D-1-201x, Commercial Building Telecommunications Infrastructure Standard, Addendum 1: Updated References, Accommodation of New Media Types (addenda to ANSI/TIA 568.1-D -2015)

BSR/TIA 568-D.3-1-201x, Optical Fiber Cabling Component Standard - Addendum 1: General Updates (addenda to ANSI/TIA 568-D.3-2016)

BSR/TIA 598-D-2-201x, Optical Fiber Cable Color Coding - Addendum 2, Jacket Color for Wideband Laser-Optimized 50/125 micron multimode fiber cables (OM5) (addenda to ANSI/TIA 598-D-2014)

BSR/TIA 862-B-1-201x, Structured Cabling Infrastructure Standard for Intelligent Building Systems, Addendum 1: Updated References, Accommodation of New Media Types (addenda to ANSI/TIA 862-B -2016)

BSR/TIA 4966-1-201x, Telecommunications Infrastructure Standard for Educational Facilities, Addendum 1: Updated References, Accommodation of New Media Types (addenda to ANSI/TIA 4966 -2014)

UL (Underwriters Laboratories, Inc.)

Office: 333 Pfingsten Road
 Northbrook, IL 60062

Contact: Megan Monsen

Phone: (847) 664-1292

E-mail: megan.monsen@ul.com

BSR/UL 778-201x, Standard for Safety for Motor-Operated Water Pumps (revision of ANSI/UL 778-2016)
Call for Members (ANS Consensus Bodies)

Call for Committee Members

ASC O1 – Safety Requirements for Woodworking Machinery

Are you interested in contributing to the development and maintenance of valuable industry safety standards? The ASC O1 is currently looking for members in the following categories:

- General Interest
- Government
- Producer
- User

If you are interested in joining the ASC O1, contact WMMA Associate Director Jennifer Miller at jennifer@wmma.org.
Call for Members (ANS Consensus Bodies)

ASTM International Committee F33 on Detention and Correctional Facilities

ASTM International Committee F33 on Detention and Correctional Facilities (https://www.astm.org/COMMITTEE/F33.htm) is welcoming new members (in all interest groups) interested in contributing to the development of standards on:

- Test Method for Physical Assault on Lighting Fixtures for Detention and Correctional Facilities
- Test Methods for Woven Rod Doors and Barriers Used in Detention and Correctional Facilities
- Guide for Selection of Security Control Systems

If you are interested in joining Committee F33, please contact ASTM Staff Manager Joe Hugo at jhugo@astm.org, or visit the Membership area of the ASTM website (https://www.astm.org/MEMBERSHIP/index.html).
Final Actions on American National Standards

The standards actions listed below have been approved by the ANSI Board of Standards Review (BSR) or by an ANSI-Audited Designator, as applicable.

ASABE (American Society of Agricultural and Biological Engineers)

Revision

AWC (American Wood Council)

Revision

AWS (American Welding Society)

Revision

AWWA (American Water Works Association)

New Standard

BICSI (Building Industry Consulting Service International)

New Standard

EIMA (EIFS Industry Members Association)

New Standard

NEMA (ASC C136) (National Electrical Manufacturers Association)

Reaffirmation

Revision

NSF (NSF International)

Revision

TIA (Telecommunications Industry Association)

Revision

UL (Underwriters Laboratories, Inc.)

Revision

ANSI Procedures require notification of ANSI by ANSI-accredited standards developers (ASD) of the initiation and scope of activities expected to result in new or revised American National Standards (ANS). Early notification of activity intended to reaffirm or withdraw an ANS and in some instances a PINS related to a national adoption is optional. The mechanism by which such notification is given is referred to as the PINS process. For additional information, see clause 2.4 of the ANSI Essential Requirements: Due Process Requirements for American National Standards.

Following is a list of proposed actions and new ANS that have been received recently from ASDs. Please also review the section in Standards Action entitled "American National Standards Maintained Under Continuous Maintenance" for additional or comparable information with regard to standards maintained under the continuous maintenance option. To view information about additional standards for which a PINS has been submitted and to search approved ANS, please visit www.NSSN.org, which is a database of standards information. Note that this database is not exhaustive.

Directly and materially affected interests wishing to receive more information or to submit comments are requested to contact the standards developer directly within 30 days of the publication of this announcement.

ABYC (American Boat and Yacht Council)

Office: 613 Third Street
Suite 10
Annapolis, MD 21403

Contact: Helen Koepper
Fax: (410) 990-4466
E-mail: hkoepper@abyccinc.org

* BSR/ABYC EDU-4-201x, On-Water Instruction Standard (new standard)

Stakeholders: Consumers, insurance personnel, surveyors.

Project Need: This standard identifies the required content for designing an on-water instruction course.

This standard is a guide for designing an on-water instruction course.

AGMA (American Gear Manufacturers Association)

Office: 1001 N Fairfax Street, 5th Floor
Alexandria, VA 22314-1587

Contact: Amir Aboutaleb
E-mail: tech@agma.org

* BSR/AGMA ISO 14104-A17-201x, Gears - Surface temper etch inspection after grinding, chemical method (identical national adoption of ISO 14104:2017)

Stakeholders: Manufacturers, inspectors, and users of gears.

Project Need: To replace current similar national standard.

This document specifies procedures and requirements for the detection and classification of localized overheating on ground surfaces by chemical etch methods.

ASABE (American Society of Agricultural and Biological Engineers)

Office: 2920 Niles Rd.
St. Joseph, MI 49085

Contact: Walter Brace
E-mail: brace@asabe.org

* BSR/ASABE S644 MONYEAR-201x, Performance Criteria for Optical Radiation Devices and Systems Installed for Plant Growth and Development (new standard)

Stakeholders: Lighting and radiation equipment manufacturers; greenhouse and controlled-environment (growth) chamber manufacturers; testing labs, consultants, designers, and distributors; operators of greenhouse, controlled-environment, growth chamber, and similar facilities; research organizations, government agencies, electric utilities, other specification agencies, and related entities.

Project Need: Devices and applications should be analyzed for energy performance relative to plant growth performance. Device energy performance metrics commonly utilize the human eye response to light; common practice is to measure or calculate luminous efficacy, which is not applicable to the plant growth in the horticultural industry. This standard will provide users with the guidelines for device selection and system evaluation relative to different plant growth applications.

This standard is intended to establish appropriate performance criteria of optical radiation devices designed for horticultural applications and installed systems that use such devices. This standard recommends minimum and advanced criteria (including specific values where appropriate). This standard provides plant spectral response characteristics. This standard also provides methodologies to compare the plant growth and energy performance between alternative devices and installed systems when applied to diverse horticultural operations.
ASME (American Society of Mechanical Engineers)
Office: Two Park Avenue
 New York, NY 10016
Contact: Mayra Santiago
Fax: (212) 591-8501
E-mail: ansibox@asme.org

BSR/ASME MUS-1-201x, Application of Mobile Unmanned Systems (MUS) for inspections, monitoring, and maintenance of industrial facilities and power plants as well as equipment, transmission lines, and pipelines (new standard)

Stakeholders: Industrial, power plant, and pipeline designers, builders, owners, and operators; MUS manufacturers and operators; and local/federal regulators.

Project Need: Increasingly, MUS are being used for inspection and maintenance of many types of systems and equipment. Standards are needed to ensure that minimum criteria are met and that there are repeatable, consistent results.

To develop, review and maintain guidelines and standards for the use of MUS for inspections, monitoring, and maintenance of industrial facilities and power plants as well as equipment, transmission lines, pipelines, and other areas not effectively accessible by humans.

BSR (B11 Standards, Inc.)
Office: P.O. Box 690905
 Houston, TX 77269
Contact: Chris Felinski
E-mail: cfelinski@b11standards.org

* BSR B11.3-201x, Safety Requirements for Power Press Brakes (revision of ANSI B11.3-2012)

Stakeholders: Machine users, distributors, and manufacturers.

Project Need: Update to current approaches and technology.

The requirements of this standard apply to those machines classified as power press brakes (referred to in this standard as "press brakes"), which are designed and constructed for the specific purpose of bending material. Where used in this standard, the terms "machine" or "machine system" refer to the press brake or press brake production system, respectively.

BIFMA (Business and Institutional Furniture Manufacturers Association)
Office: 678 Front Ave. NW
 Grand Rapids, MI 49504
Contact: David Panning
Fax: (616) 285-3765
E-mail: dpanning@bifma.org

* BSR/BIFMA ISO 24496-201X, Office furniture - Office chairs - Methods for the determination of dimensions (identical national adoption of ISO 24496:2017)

Stakeholders: Office furniture manufacturers, suppliers, test labs.

Project Need: Use global chair measurement device.

This document specifies methods for the determination of the dimensions of office chairs. This document does not contain dimensional specifications or requirements.

CTA (Consumer Technology Association)
Office: 1919 South Eads Street
 Arlington, VA 22202
Contact: Veronica Lancaster
Fax: (703) 907-4197
E-mail: vlancaster@cta.tech

* BSR/CTA 2041-A-201x, Standard for Round Tactile Feedback Feature (revision and redesignation of ANSI/CTA 2041-2012)

Stakeholders: Consumers, retailers, manufacturers.

Project Need: Revise ANSI/CTA 2041.

This standard defines the size, shape, and placement of a tactile indicator ("hib") to assist users who are blind or visually impaired in determining the location of numeric keys on handheld remote controls for consumer electronics products.

INMM (ASC N14) (Institute of Nuclear Materials Management)
Office: 75 North 200 East
 Oak Ridge National Laboratory
 Richmond, UT 84333
Contact: Ronald Natali
E-mail: N14Secretary@gmail.com

BSR N14.36-201x, Measurement of Radiation Level and Surface Contamination for Packages and Conveyances (revision of ANSI N14.36-2013)

Stakeholders: Organizations that package and ship radioactive materials regulated by the Department of Transportation.

Project Need: Update to current regulatory and industry standards.

This standard sets forth methods for radiation and contamination measurement for packaging and transportation of radioactive material by all transportation modes and during all phases of transportation activities. The objective of this standard is to provide users with an approach to conformance with regulations that control residual surface contamination and external radiation of shipping packages and conveyances.

ITI (INCITS) (InterNational Committee for Information Technology Standards)
Office: 1101 K Street NW
 Suite 610
 Washington, DC 20005-3922
Contact: Deborah Spittle
Fax: (202) 638-4922
E-mail: comments@itic.org

Stakeholders: ICT industry.

Project Need: Adoption of this International Standard is beneficial to the ICT industry.

Describes the conceptual framework used in other parts of ISO/IEC 9075 to specify the grammar of SQL and the result of processing statements in that language by an SQL-implementation.

Stakeholders: ICT industry.

Project Need: Adoption of this International Standard is beneficial to the ICT industry.

Defines the data structures and basic operations on SQL-data. It provides functional capabilities for creating, accessing, maintaining, controlling, and protecting SQL-data.

Stakeholders: ICT industry.

Project Need: Adoption of this International Standard is beneficial to the ICT industry.

Specifies the syntax and semantics of a database language for declaring and maintaining persistent database language routines in SQL-server modules. The database language for s and s includes: the specification of statements to direct the flow of control, the assignment of the result of expressions to variables and parameters. The specification of condition handlers that allow SQL-invoked routines to deal with various conditions that arise during their execution.

Stakeholders: ICT industry.

Project Need: Adoption of this International Standard is beneficial to the ICT industry.

Defines extensions to Database Language SQL to support management of external data through the use of foreign-data wrappers and datalink types.

INCITS/ISO/IEC 9075-10:2008/Cor 1-2012)

Stakeholders: ICT industry.

Project Need: Adoption of this International Standard is beneficial to the ICT industry.

Specifies embedded SQL for the programming languages: Ada, C, COBOL, Fortran, MUMPS, Pascal, and PL/I. ISO/IEC 9075-10:2016 defines similar features of Database language SQL that support embedding of SQL-statements into programs written in the Java® programming language (Java is a registered trademark of Sun Microsystems, Inc.). The embedding of SQL into Java is commonly known as "SQLJ". This part of ISO/IEC 9075 specifies the syntax and semantics of SQLJ, as well as mechanisms to ensure binary portability of resulting SQLJ applications. In addition, it specifies a number of Java packages and their contained classes (including methods).

Stakeholders: ICT industry.

Project Need: Adoption of this International Standard is beneficial to the ICT industry.

Specifies an Information Schema and a Definition Schema that describes the structure and integrity constraints of SQL-data, the security and authorization specifications relating to SQL-data, the features and subfeatures of ISO/IEC 9075, and the support that each of these has in an SQL-implementation, the SQL-implementation information and sizing items of ISO/IEC 9075 and the values supported by an SQL-implementation.

INCITS/ISO/IEC 9075-13:2016 [201x], Information technology - Database languages - SQL - Part 13: SQL Routines and types using the Java TM programming language as SQL-invoked routines and to use classes defined in the Java programming language as SQL structured user-defined types. (Java is a registered trademark of Oracle Corporation and/or its affiliates.)

Stakeholders: ICT industry.

Project Need: Adoption of this International Standard is beneficial to the ICT industry.

Specifies the ability to invoke static methods written in the Java® programming language as SQL-invoked routines and to use classes defined in the Java programming language as SQL structured user-defined types. (Java is a registered trademark of Oracle Corporation and/or its affiliates.)

Stakeholders: ICT industry.

Project Need: Adoption of this International Standard is beneficial to the ICT industry.

Defines test methods for characteristics of identification cards according to the definition given in ISO/IEC 7810. Each test method is cross-referenced to one or more base standards, which can be ISO/IEC 7810 or one or more of the supplementary standards that define the information storage technologies employed in identification cards applications.

Stakeholders: ICT industry.

Project Need: Adoption of this International Standard is beneficial to the ICT industry.

Defines a number of packages of generic data types and table structures common to various kinds of data used in multimedia and application areas, to enable that data to be stored and manipulated in an SQL database. The package in each subject area is defined as a part of ISO/IEC 13249. This part defines those concepts, notations and conventions that are common to two or more other parts of ISO/IEC 13249. In particular, it describes the way parts of ISO/IEC 9075 are used to define the user-defined types and their behavior and views as a representation of table structures appropriate to each subject area.

Stakeholders: ICT industry.

Project Need: Adoption of this International Standard is beneficial to the ICT industry.

Defines concepts specific to this part of ISO/IEC 13249 and defines spatial user-defined types and their associated routines.

Stakeholders: ICT industry.

Project Need: Adoption of this International Standard is beneficial to the ICT industry.

Provides definitions that apply in subsequent parts of this International Standard. The nature of encryption is introduced, and certain general aspects of its use and properties are described. The criteria used to select the algorithms specified in subsequent parts of this International Standard are defined in Annexes A and B.

Stakeholders: ICT industry.

Project Need: Adoption of this International Standard is beneficial to the ICT industry.

Provides an overview of the whole of MFI. In particular, the purpose, the underlying concepts, the overall architecture and the requirements for the development of other standards within the MFI family are described.

Stakeholders: ICT industry.

Project Need: Adoption of this International Standard is beneficial to the ICT industry.

Defines a system that integrates 3D graphics and multimedia. Conceptually, each X3D file is a 3D time-based space that contains graphic and aural objects that can be dynamically modified through a variety of mechanisms. This part of ISO/IEC 19776 defines a mapping of the abstract objects in X3D to a specific X3D encoding using the Extensible Markup Language.

Stakeholders: ICT industry.

Project Need: Adoption of this International Standard is beneficial to the ICT industry.

Defines a system that integrates 3D graphics and multimedia. Conceptually, each X3D file is a 3D time-based space that contains graphic and aural objects that can be dynamically modified through a variety of mechanisms. This part of ISO/IEC 19776 defines a mapping of the abstract objects in X3D to a specific X3D encoding written out in a compact binary form.

Stakeholders: ICT industry.

Project Need: Adoption of this International Standard is beneficial to the ICT industry.

Provides an overview of network security and related definitions. It defines and describes the concepts associated with, and provides management guidance on, network security. (Network security applies to the security of devices, security of management activities related to the devices, applications/services, and end-users, in addition to security of the information being transferred across the communication links.)

Stakeholders: ICT industry.

Project Need: Adoption of this International Standard is beneficial to the ICT industry.

Specifies the Universal Character Set (UCS). It is applicable to the representation, transmission, interchange, processing, storage, input, and presentation of the written form of the languages of the world as well as additional symbols. It covers 120,585 characters from the world's scripts.

Stakeholders: ICT industry.

Project Need: Adoption of this International Standard is beneficial to the ICT industry.

Defines the following: A reference comparison method. This method is applicable to two-character strings to determine their collating order in a sorted list. The method can be applied to strings containing characters from the full repertoire of ISO/IEC 10646. This method is also applicable to subsets of that repertoire, such as those of the different ISO/IEC 8-bit standard character sets, or any other character set, standardized or not, to produce ordering results valid (after tailoring) for a given set of languages for each script. This method uses collation tables derived either from the Common Template Table defined in this International Standard or from one of its tailorings. This method provides a reference format. The format is described using the Backus-Naur Form (BNF). This format is used to describe the Common Template Table. The format is used normatively within this International Standard.

Stakeholders: ICT industry.

Project Need: Adoption of this International Standard is beneficial to the ICT industry.

Specifies device-independent image-quality attributes, measurement methods, and analytical procedures to describe the quality of output images from hardcopy devices. This document is applicable to human-readable monochrome documents produced from printers and copiers.

Stakeholders: ICT industry.

Project Need: Adoption of this International Standard is beneficial to the ICT industry.

Stakeholders: ICT industry.

Project Need: Adoption of this International Standard is beneficial to the ICT industry.

Provides explanation and guidance for bodies providing audit and certification of an information security management system (ISMS), in addition to the requirements contained within ISO/IEC 17021-1 and ISO/IEC 27001. It is primarily intended to support the accreditation of certification bodies providing ISMS certification.

NEMA (ASC C136) (National Electrical Manufacturers Association)
Office: 1300 North 17th Street
Suite 900
Rosslyn, VA 22209
Contact: Karen Willis
Fax: (703) 841-3378
E-mail: Karen.Willis@nema.org

BSR C136.20-201x, Standard for Roadway and Area Lighting Equipment - Fiber-Reinforced Composite (FRC) Lighting Poles (revision of ANSI C136.20-2012)
Stakeholders: Producers, users, specifiers, test labs.
Project Need: This project is needed to update the standard for current industry practices and technology.

This standard applies to fiber-reinforced composite (FRC) lighting poles used for roadway and area lighting. This standard includes nomenclature, dimensional data, performance criteria, and some interchangeability features for standard poles as well as those that must meet breakaway requirements for poles as described in AASHTO LTS Standard Specifications for Structural Supports for Highway Signs, Luminaires, and Traffic Signals.

NEMA (ASC C82) (National Electrical Manufacturers Association)
Office: 1300 N 17th St
Rosslyn, VA 22209
Contact: Michael Erbesfeld
Fax: 703-841-3362
E-mail: Michael.Erbesfeld@nema.org

BSR C82.16-201x, Light Emitting Diode Drivers - Methods of Measurement (revision of ANSI C82.16-2015)
Stakeholders: Manufacturers, designers, testing labs, and end users
Project Need: This project is needed to test compliance of LED drivers with applicable standby power, energy efficiency, and uncertainty determination requirements.

This standard describes the procedures to be followed and the precautions to be taken in measuring performance of LED drivers. The scope includes, but is not limited to, LED drivers with these characteristics: General lighting, exterior lighting, and roadway lighting applications, Input supply voltage up to 600 VDC or 600 VAC (50 or 60 Hz), Output open-circuit voltage of 600 V or less, Constant-current or constant-voltage direct current (DC) output, Fixed, variable (dimmable), pulse-width modulation, or programmable (tunable) output power, external (standalone) or internal (enclosed in luminaire).

BSR C82.77-5-201X, Lighting Equipment - Voltage Surge Requirements (revision of ANSI C82.77-5-2015)
Stakeholders: Manufacturers, designers, testing labs, and end users
Project Need: This project is needed to Table 10 needs to be revised to reflect the correct impedance of 2 ohms.

This standard specifies voltage surge limits and testing requirements for lighting equipment. It covers all types of lighting equipment used for general illumination (typically found in residential, commercial, and industrial applications) and connected to commonly distributed 60-Hz alternating current (AC) power line systems.
BSR C82.77-10-201X, Lighting Equipment - Harmonic Emission Limits - Related Power Quality Requirements (revision of ANSI C82.77-10-2014)
Stakeholders: Manufacturers, designers, testing labs, and end users.
Project Need: This project is needed to better characterize innovative LED lighting devices power quality parameters.
This standard specifies harmonic limits, their methods of measurement, and power factor (PF) for lighting equipment. This standard covers all types of lighting equipment that is used for general illumination (typically found in residential, commercial, and industrial applications) and which is connected to commonly distributed 60-Hz alternating current (AC) power line systems.

BSR C82.77-12-201X, Lighting Equipment - Inrush Requirements (new standard)
Stakeholders: Manufacturers, designers, testing labs, and end users.
Project Need: This project is needed to provide limits and to test for compatibility of LED drivers, electronic ballasts, and self-ballasted lamps with lighting controls. It includes a new, one single device, test method.
This standard provides compatibility requirements among ballasts, LED drivers, self-ballasted lamps, and lighting controls in terms of maximum inrush currents. It provides limits and test methods.

NFPA (National Fire Protection Association)
Office: One Batterymarch Park
Quincy, MA 02169
Contact: Dawn Bellis
E-mail: ccronin@nfpa.org

Stakeholders: Manufacturers, users, installer/maintainers, labor, enforcing authority, insurance, consumers, special experts.
Project Need: Public interest and need.
Provides the minimum requirements for the design, installation, and system acceptance testing of water spray fixed systems for fire protection service and the minimum requirements for the periodic testing and maintenance of ultra-high-speed water spray fixed systems. Water-spray fixed systems shall be specifically designed to provide for effective fire control, extinguishment, prevention, or exposure protection.

BSR/NFPA 17-201x, Standard for Dry Chemical Extinguishing Systems (revision of ANSI/NFPA 17-2012)
Stakeholders: Manufacturers, users, installer/maintainers, labor, enforcing authority, insurance, consumers, special experts.
Project Need: Public interest and need.
This standard includes minimum requirements for dry chemical fire-extinguishing systems that discharge dry chemical from fixed nozzles or hand hose lines by means of expellant gas.

BSR/NFPA 17A-201x, Standard for Wet Chemical Extinguishing Systems (revision of ANSI/NFPA 17A-2012)
Stakeholders: Manufacturers, users, installer/maintainers, labor, enforcing authority, insurance, consumers, special experts.
Project Need: Public interest and need.
The provisions of this standard apply to the design, installation, operation, testing, and maintenance of pre-engineered wet chemical fire-extinguishing systems that discharge wet chemical from fixed nozzles and piping by means of expellant gas. It contains only the essential requirements and recommendations needed to make the standard workable in the hands of those skilled in this field.

BSR/NFPA 18A-201x, Standard on Wetting Agents (revision of ANSI/NFPA 18-2011)
Stakeholders: Manufacturers, users, installer/maintainers, labor, enforcing authority, insurance, consumers, special experts.
Project Need: Public interest and need.
This standard addresses qualification tests, methods of evaluation, and general rules for application of wetting agents and wetting agent solutions as related to fire control and extinguishment.

BSR/NFPA 18A-201x, Standard on Water Additives for Fire Control and Vapor Mitigation (revision of ANSI/NFPA 18A-2011)
Stakeholders: Manufacturers, users, installer/maintainers, labor, enforcing authority, insurance, consumers, special experts.
Project Need: Public interest and need.
This standard provides the minimum requirements for water additives used for the control and/or suppression of Class A and Class B fires and the mitigation of flammable vapors.

BSR/NFPA 36-201x, Standard for Solvent Extraction Plants (revision of ANSI/NFPA 36-2012)
Stakeholders: Manufacturers, users, installer/maintainers, labor, enforcing authority, insurance, consumers, special experts.
Project Need: Public interest and need.
This standard shall apply to the commercial scale extraction processing of animal and vegetable oils and fats by the use of Class I flammable hydrocarbon liquids, hereinafter referred to as solvents. Applies to any equipment and buildings that are located within 30 m (100 ft) of the extraction process. Applies to the unloading, storage, and handling of solvents, regardless of distance from the extraction process. Applies to the means by which material to be extracted is conveyed from the preparation process to the extraction process. Applies to the means by which extracted desolventized solids and oils are conveyed from the extract.

BSR/NFPA 56-201x, Standard for Fire and Explosion Prevention During Cleaning and Purging of Flammable Gas Piping Systems (revision and redesignation of ANSI/NFPA 56PS-2013)
Stakeholders: Manufacturers, users, installer/maintainers, labor, enforcing authority, insurance, consumers, special experts.
Project Need: Public interest and need.
Coverage of fuel gas piping systems shall extend from the point of delivery or source valve to the gas-consuming equipment isolation valve. Coverage of flammable gas piping systems other than fuel gas piping systems shall extend from the source valve serving the gas supply system to the gas-consuming equipment isolation valve.

BSR/NFPA 96-201x, Standard on Water Additives for Fire Control and Vapor Mitigation (revision of ANSI/NFPA 96-2013)
Stakeholders: Manufacturers, users, installer/maintainers, labor, enforcing authority, insurance, consumers, special experts.
Project Need: Public interest and need.
This standard shall apply to the commercial scale extraction processing of animal and vegetable oils and fats by the use of Class I flammable hydrocarbon liquids, hereinafter referred to as solvents. Applies to any equipment and buildings that are located within 30 m (100 ft) of the extraction process. Applies to the unloading, storage, and handling of solvents, regardless of distance from the extraction process. Applies to the means by which material to be extracted is conveyed from the preparation process to the extraction process. Applies to the means by which extracted desolventized solids and oils are conveyed from the extract.

Stakeholders: Manufacturers, users, installer/maintainers, labor, enforcing authority, insurance, consumers, special experts.
Project Need: Public interest and need.
This standard shall apply to residential cooking equipment used for commercial cooking operations.

BSR/NFPA 96A-201x, Standard for Water Additives for Fire Control and Vapor Mitigation (revision of ANSI/NFPA 96A-2011)
Stakeholders: Manufacturers, users, installer/maintainers, labor, enforcing authority, insurance, consumers, special experts.
Project Need: Public interest and need.
This standard shall apply to residential cooking equipment used for commercial cooking operations.
Standards Action - July 7, 2017 - Page 26 of 71 pages

BSR/NFPA 225-201x, Model Manufactured Home Installation Standard (revision of ANSI/NFPA 225-2012)
Stakeholders: Manufacturers, users, installer/maintainers, labor, enforcing authority, insurance, consumers, special experts.
Project Need: Public interest and need.
This model standard shall cover the installation of manufactured homes wherever sited in the United States and its territories. The manufacturer's installation instructions shall apply under either of the following conditions: (1) To items not covered by this standard, or (2) where the manufacturer's approved installation instructions provide a specific method of performing a specific operation or assembly.

BSR/NFPA 252-201x, Standard Methods of Fire Tests of Door Assemblies (revision of ANSI/NFPA 252-2011)
Stakeholders: Manufacturers, users, installer/maintainers, labor, enforcing authority, insurance, consumers, special experts.
Project Need: Public interest and need.
This model standard shall cover the installation of manufactured homes wherever sited in the United States and its territories. The manufacturer's installation instructions shall apply under either of the following conditions: (1) To items not covered by this standard, or (2) where the manufacturer's approved installation instructions provide a specific method of performing a specific operation or assembly.

BSR/NFPA 257-201x, Standard on Fire Test for Window and Glass Block Assemblies (revision of ANSI/NFPA 257-2011)
Stakeholders: Manufacturers, users, installer/maintainers, labor, enforcing authority, insurance, consumers, special experts.
Project Need: Public interest and need.
This standard prescribes standardized fire and hose stream test procedures that apply to the evaluation of fire window assemblies, including windows, glass block, and other light-transmitting assemblies intended to retard the spread of fire through openings in fire-resistance-rated walls. This standard is not to be construed as determining the suitability of fire window assemblies for continued use after fire exposure. This standard provides a standardized method for comparing the performance of fire window assemblies.

Stakeholders: Manufacturers, users, installer/maintainers, labor, enforcing authority, insurance, consumers, special experts.
Project Need: Public interest and need.
This test response std. describes a method for determining the propensity of ignition of exterior wall assemblies from exposure to 12.5 kW/m² (1.10 Btu/ft²-sec) radiant heat in the presence of a pilot ignition source. This method evaluates the propensity of ignition of an exterior wall assembly where subjected to a minimum radiant heat flux of 12.5 kW/m² (1.10 Btu/ft²-sec). This method determines whether ignition of an exterior wall assembly occurs when the wall is exposed to a specified radiant heat flux, in the presence of a pilot ignition source, during a 20-minute period.

BSR/NFPA 269-201x, Standard Test Method for Developing Toxic Potency Data for Use in Fire Hazard Modeling (revision of ANSI/NFPA 269-2011)
Stakeholders: Manufacturers, users, installer/maintainers, labor, enforcing authority, insurance, consumers, special experts.
Project Need: Public interest and need.
This test method is intended to provide a means for assessing the lethal toxic potency of combustion products produced from a material or product ignited when exposed to a radiant flux. This test method has been designed to generate toxic potency data on materials and products (including composites) for use in fire-hazard analysis. It is also permitted to be used to assist in the research and development of materials and products.

Stakeholders: Manufacturers, users, installer/maintainers, labor, enforcing authority, insurance, consumers, special experts.
Project Need: Public interest and need.
This method of fire tests for qualifying a thermal barrier for protecting foam plastic insulation or metal composite materials (MCM), referred to in this standard as a “thermal barrier,” is applicable to building construction materials, products, or assemblies intended to be used to protect foam plastic insulation or MCM from direct fire exposure. The performance of the thermal barrier is evaluated by its ability to limit the temperature rise on its unexposed surface and by the ability of the thermal barrier to remain intact in order to provide protection from ignition of the foam plastic insulation or MCM during a standard fire exposure.

Stakeholders: Manufacturers, users, installer/maintainers, labor, enforcing authority, insurance, consumers, special experts.
Project Need: Public interest and need.
This standard shall determine and quantify the flammability characteristics of materials containing polymers that are used in cleanroom applications.

Stakeholders: Manufacturers, users, installer/maintainers, labor, enforcing authority, insurance, consumers, special experts.
Project Need: Public interest and need.
This standard shall apply to horizontal fire door assemblies of various materials and types of construction that are installed in openings of fire-resistance-rated floor systems or roofs to retard the passage of fire. Tests made in conformity with this test method demonstrate the performance of horizontal fire door assemblies during the test exposure; however, such tests shall not be construed as determining the suitability of horizontal fire door assemblies for use after their exposure to fire.
BSR/NFPA 385-201x, Standard for Tank Vehicles for Flammable and Combustible Liquids (revision of ANSI/NFPA 385-2011)
Stakeholders: Manufacturers, users, installer/maintainers, labor, enforcing authority, insurance, consumers, special experts.
Project Need: Public interest and need.
This standard shall apply to tank vehicles used for the transportation of asphalt and for the transportation of normally stable flammable and combustible liquids with flash points below 200°F (93°C). This standard shall also provide minimum requirements for the design and construction of cargo tanks and their appurtenances and shall set forth certain matters pertaining to tank vehicles.

BSR/NFPA 408-201x, Standard for Aircraft Hand Portable Fire Extinguishers (revision of ANSI/NFPA 408-2010)
Stakeholders: Manufacturers, users, installer/maintainers, labor, enforcing authority, insurance, consumers, special experts.
Project Need: Public interest and need.
This standard specifies requirements for the type, capacity, rating, number, location, installation, and maintenance of aircraft handportable fire extinguishers to be provided for the use of flight crew members or other occupants of an aircraft for the control of incipient fires in the areas of aircraft that are accessible during flight.

BSR/NFPA 475-201x, Recommended Practice for Organizing, Managing, and Sustaining a Hazardous Materials/Weapons of Mass Destruction Response Program (new standard)
Stakeholders: Manufacturers, users, installer/maintainers, labor, enforcing authority, insurance, consumers, special experts.
Project Need: Public interest and need.
This recommended practice provides the minimum criteria for organizing, managing, and sustaining a hazardous material response program (HMRP) based on the authority having jurisdiction's (AHJ) function and assessed level of risk. A review of the laws, regulations, consensus standards, and guidance documents in addition to guidance for risk assessment, HMRP planning, resource management, staffing, training, health and medical issues, financial management, programs influences, and developing relationships are covered in this recommended practice.

BSR/NFPA 497-201x, Recommended Practice for the Classification of Flammable Liquids, Gases, or Vapors and of Hazardous (Classified) Locations for Electrical Installations in Chemical Process Areas (revision of ANSI/NFPA 497-2011)
Stakeholders: Manufacturers, users, installer/maintainers, labor, enforcing authority, insurance, consumers, special experts.
Project Need: Public interest and need.
Applies to those locations where flammable gases or vapors, flammable liquids, or combustible liquids are processed or handled; and where their release into the atmosphere could result in their ignition by electrical systems or equipment.

BSR/NFPA 501-201x, Standard on Manufactured Housing (revision of ANSI/NFPA 501-2012)
Stakeholders: Manufacturers, users, installer/maintainers, labor, enforcing authority, insurance, consumers, special experts.
Project Need: Public interest and need.
This standard shall cover all the equipment and installations used in the design, construction, transportation, fire safety, plumbing, heating-producing, and electrical systems of manufactured homes that are designed to be used as dwelling units. This standard shall, to the maximum extent possible, establish performance requirements. In certain instances, however, the use of specific requirements is necessary.

Stakeholders: Manufacturers, users, installer/maintainers, labor, enforcing authority, insurance, consumers, special experts.
Project Need: Public interest and need.
This standard shall cover fire safety requirements for the installation of manufactured homes and manufactured home sites, including accessory buildings, structures, and communities.

Stakeholders: Manufacturers, users, installer/maintainers, labor, enforcing authority, insurance, consumers, special experts.
Project Need: Public interest and need.
This guide describes the structure, application, and limitations of the Fire Safety Concepts Tree.

BSR/NFPA 655-201x, Standard for Prevention of Sulfur Fires and Explosions (revision of ANSI/NFPA 655-2011)
Stakeholders: Manufacturers, users, installer/maintainers, labor, enforcing authority, insurance, consumers, special experts.
Project Need: Public interest and need.
This standard addresses the size reduction of sulfur and the handling of sulfur in any form.

Stakeholders: Manufacturer, User, Installer/Maintainer, Labor, Enforcing Authority, Insurance, Consumer, Special Experts
Project Need: Public interest and need.
This standard covers the application, location, installation, performance, testing, and maintenance of electronic premises security systems and their components.

Stakeholders: Manufacturers, users, installer/maintainers, labor, enforcing authority, insurance, consumers, special experts.
Project Need: Public interest and need.
This code describes principles and practices of protection for cultural resource properties (including, but not limited to, museums, libraries, and places of worship), their contents, and collections, against conditions or physical situations with the potential to cause damage or loss.

BSR/NFPA 921-201x, Guide for Fire and Explosion Investigations (revision of ANSI/NFPA 921-2013)
Stakeholders: Manufacturers, users, installer/maintainers, labor, enforcing authority, insurance, consumers, special experts.
Project Need: Public interest and need.
This document is designed to assist individuals who are charged with the responsibility of investigating and analyzing fire and explosion incidents and rendering opinions as to the origin, cause, responsibility, or prevention of such incidents and the damage and injuries that arise from such incidents. The completion of reports for the United States National Fire Incident Reporting System (NFIRS) are outside the scope of this guide.
This standard establishes the minimum criteria for the following: (1) Accrediting bodies; (2) Assessment and validation of the process used to certify fire service, public safety, and related personnel to professional qualifications standards; and (3) Nonengineering, fire-related, academic, degree-granting programs offered by institutions of higher education.

This standard identifies the minimum job performance requirements (JPRs) for emergency response personnel who drive and operate fire apparatus.

This standard identifies the minimum job performance requirements (JPRs) for technical rescue personnel.

This standard identifies the minimum job performance requirements (JPRs) for personnel at the scene of a hazardous materials/weapons of mass destruction (WMD) incident at the following levels: awareness, operations, operations mission-specific, hazardous materials technician, and incident commander.

This standard covers the requirements for the fire protection infrastructure in wildland, rural, and suburban areas where there is an intended change of land use or intended land development.

This standard identifies a method of determining the minimum requirements for alternative water supplies for structural fire-fighting purposes in areas where the authority having jurisdiction (AHJ) determines that adequate and reliable water supply systems for fire-fighting purposes do not otherwise exist. An adequate and reliable municipal-type water supply is one that is sufficient every day of the year to control and extinguish anticipated fires in the municipality, particular building, or building group served by the water supply.

This document presents information for agencies planning to use Class A foam for structural fire fighting and protection. It presents information on foam properties and characteristics, proportioning and discharge hardware, application techniques, and safety considerations. This document describes the use and application of Class A foams that meet the requirements of NFPA 1150, Standard on Foam Chemicals for Fires in Class A Fuels.

This standard identifies a method of determining the minimum criteria for the process of accreditation and certification systems (revision of ANSI/NFPA 1142-2011)

Stakeholders: Manufacturers, users, installer/maintainers, labor, enforcing authority, insurance, consumers, special experts.

Project Need: Public interest and need.

This document describes the use and application of Class A foams that meet the requirements of NFPA 1150, Standard on Foam Chemicals for Fires in Class A Fuels.

This standard identifies a method of determining the minimum criteria for the process of accreditation and certification systems (revision of ANSI/NFPA 1142-2011)

Stakeholders: Manufacturers, users, installer/maintainers, labor, enforcing authority, insurance, consumers, special experts.

Project Need: Public interest and need.

This document describes the use and application of Class A foams that meet the requirements of NFPA 1150, Standard on Foam Chemicals for Fires in Class A Fuels.

This standard identifies a method of determining the minimum criteria for the process of accreditation and certification systems (revision of ANSI/NFPA 1142-2011)

Stakeholders: Manufacturers, users, installer/maintainers, labor, enforcing authority, insurance, consumers, special experts.

Project Need: Public interest and need.

This standard identifies a method of determining the minimum criteria for the process of accreditation and certification systems (revision of ANSI/NFPA 1142-2011)

Stakeholders: Manufacturers, users, installer/maintainers, labor, enforcing authority, insurance, consumers, special experts.

Project Need: Public interest and need.

This standard identifies a method of determining the minimum criteria for the process of accreditation and certification systems (revision of ANSI/NFPA 1142-2011)

Stakeholders: Manufacturers, users, installer/maintainers, labor, enforcing authority, insurance, consumers, special experts.

Project Need: Public interest and need.

This standard establishes the minimum criteria for the following: (1) Accrediting bodies; (2) Assessment and validation of the process used to certify fire service, public safety, and related personnel to professional qualifications standards; and (3) Nonengineering, fire-related, academic, degree-granting programs offered by institutions of higher education.
BSR/NFPA 1670-201x, Standard on Operations and Training for Technical Search and Rescue Incidents (revision of ANSI/NFPA 1670-2013)

Stakeholders: Manufacturers, users, installer/maintainers, labor, enforcing authority, insurance, consumers, special experts.

Project Need: Public interest and need.

This standard shall identify and establish levels of functional capability for conducting operations at technical search and rescue incidents while minimizing threats to rescuers. The requirements of this standard shall apply to organizations that provide response to technical search and rescue incidents, including those not regulated by governmental mandates. It is not the intent of this document to be applied to individuals and their associated skills and/or qualifications.

BSR/NFPA 1858-201x, Standard on Selection, Care, and Maintenance of Life Safety Rope and Equipment for Emergency Services (new standard)

Stakeholders: Manufacturers, users, installer/maintainers, labor, enforcing authority, insurance, consumers, special experts.

Project Need: Public interest and need.

This standard will identify the operating environment parameters, as well as the minimum requirements for the design, performance, testing, and certification of two-way, portable (i.e., hand-held) land mobile radios (LMR) for use by emergency services personnel during emergency incident operations without compromising compatibility with field emergency services communications networks.

BSR/NFPA 1859-201x, Selection, Care and Maintenance of Tactical Video Equipment (new standard)

Stakeholders: Manufacturers, users, installer/maintainers, labor, enforcing authority, insurance, consumers, special experts.

Project Need: Public interest and need.

This standard shall specify minimum design, performance, testing, and certifications requirements for life safety rope, escape rope, water rescue throwlines, life safety harnesses, belts, victim extrication devices, litters, escape webbing, escape systems, and auxiliary equipment for emergency services personnel. This standard shall specify requirements for new life safety rope, escape rope, water rescue throwlines, life safety harnesses, belts, manufacturer-supplied eye terminations, moderate elongation laid life safety rope, belay devices, and auxiliary equipment.

Stakeholders: Manufacturers, users, installer/maintainers, labor, enforcing authority, insurance, consumers, special experts.

Project Need: Public interest and need.

This standard shall specify minimum design, performance, testing, and certifications requirements for life safety rope, escape rope, water rescue throwlines, life safety harnesses, belts, victim extrication devices, litters, escape webbing, escape systems, and auxiliary equipment for emergency services personnel. This standard shall specify requirements for new life safety rope, escape rope, water rescue throwlines, life safety harnesses, belts, manufacturer-supplied eye terminations, moderate elongation laid life safety rope, belay devices, and auxiliary equipment.

BSR/NFPA 1986-201x, Standard on Respiratory Protection Equipment for Tactical and Technical Operations (new standard)

Stakeholders: Manufacturers, users, installer/maintainers, labor, enforcing authority, insurance, consumers, special experts.

Project Need: Public interest and need.

This standard shall specify the minimum requirements for the design, performance, testing, and certification of (1) new compressed breathing air open-circuit self-contained breathing apparatus (SCBA) and compressed breathing air combination open-circuit self-contained breathing apparatus and supplied air respirators (SCBA/SARs); and (2) replacement parts, components, and accessories for those respirators.

SCTE (Society of Cable Telecommunications Engineers)

Office: 140 Philips Rd
Exton, PA 19341

Contact: Kim Cooney

Fax: (800) 542-5040

E-mail: kcooney@scte.org

BSR/SCTE 177-201x, Specification for 75 ohm, Mini-Series Quad Shield Coaxial Cable for CMTS and SDI cables (revision of ANSI/SCTE 177-2012)

Stakeholders: Cable Telecommunications industry.

Project Need: Update to current technology.

This specification defines the required performance with regards to electrical and mechanical properties of 75-ohm, braided, mini-series quad shield coaxial cable for CMTS and SDI applications.

BSR/SCTE EMS 035-201x, Implementation Steps for Adaptive Power Systems Interface Specification (APSIS™) (new standard)

Stakeholders: Cable Telecommunications industry.

Project Need: Create new standard.

SCTE 216 addresses the end-to-end network; therefore, an implementation of APSIS can touch-back office networks, backbone networks, transport networks, access networks, and customer premises equipment. The primary focus of APSIS has been the access network, including critical facilities and outside plant.
The purpose of this revision TIA 102.AABB-C is to update information contained in TIA 102.AABB-B.

This addendum enhances trunking control channel messages as follows: (1) Specification of a “Vehicle Sensed Emergency” (VSE) bit in the “Special Information” field of the EMRG_ALRM_REQ message to convey additional information regarding a specific emergency alarm scenario request.

This standard is applicable to premises optical fiber cabling and components. The scope of this addendum includes subject matter on the following topics: (1) Use of OM5 name, (2) Use of OSIa name, (3) Color for OM5 connecting hardware, (4) Connecting hardware color definitions, (5) Reference-grade to standard-grade loss allocation, (6) MPO testing, and (7) Updates based on FOTP-171-B. The justification is to harmonize and update the existing standard.

Define the jacket color of cables containing TIA 492AAAE wideband multimode fiber (OM5). A distinguishing color is needed to visually identify this first multimode cable specified to support wavelength division multiplexing in the wavelength range from near 850 nm to 953 nm.
American National Standards Maintained Under Continuous Maintenance

The ANSI Essential Requirements: Due Process Requirements for American National Standards provides two options for the maintenance of American National Standards (ANS): periodic maintenance (see clause 4.7.1) and continuous maintenance (see clause 4.7.2). Continuous maintenance is defined as follows:

The standard shall be maintained by an accredited standards developer. A documented program for periodic publication of revisions shall be established by the standards developer. Processing of these revisions shall be in accordance with these procedures. The published standard shall include a clear statement of the intent to consider requests for change and information on the submittal of such requests. Procedures shall be established for timely, documented consensus action on each request for change and no portion of the standard shall be excluded from the revision process. In the event that no revisions are issued for a period of four years, action to reaffirm or withdraw the standard shall be taken in accordance with the procedures contained in the ANSI Essential Requirements.

The Executive Standards Council (ExSC) has determined that for standards maintained under the Continuous Maintenance option, separate PINS announcements are not required. The following ANSI Accredited Standards Developers have formally registered standards under the Continuous Maintenance option.

- AAMI (Association for the Advancement of Medical Instrumentation)
- AAMVA (American Association of Motor Vehicle Administrators)
- AARST (The AARST Consortium on National Radon Standards)
- AGA (American Gas Association)
- AGSC-AGRSS (Auto Glass Safety Council)
- ASC X9 (Accredited Standards Committee X9, Incorporated)
- ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.)
- ASME (American Society of Mechanical Engineers)
- ASTM (ASTM International)
- GBI (The Green Building Initiative)
- GEIA (Greenguard Environmental Institute)
- HI (Home Innovation)
- HL7 (Health Level Seven)
- IESNA (The Illuminating Engineering Society of North America)
- MHI (ASC MH10) (Material Handling Industry)
- NBBPVI (National Board of Boiler and Pressure Vessel Inspectors)
- NCPDP (National Council for Prescription Drug Programs)
- NISO (National Information Standards Organization)
- NSF (NSF International)
- PRCA (Professional Ropes Course Association)
- RESNET (Residential Energy Services Network)
- TIA (Telecommunications Industry Association)
- UL (Underwriters Laboratories, Inc.)

To obtain additional information with regard to these standards, including contact information at the ANSI Accredited Standards Developer, please visit ANSI Online at www.ansi.org/asd, select “Standards Activities,” click on “Public Review and Comment” and “American National Standards Maintained Under Continuous Maintenance.” This information is also available directly at www.ansi.org/publicreview.

Alternatively, you may contact the Procedures & Standards Administration department (PSA) at psa@ansi.org or via fax at 212-840-2298. If you request that information be provided via E-mail, please include your E-mail address; if you request that information be provided via fax, please include your fax number. Thank you.
The addresses listed in this section are to be used in conjunction with standards listed in PINS, Call for Comment and Final Actions. This section is a list of developers who have submitted standards for this issue of *Standards Action* – it is not intended to be a list of all ANSI-Accredited Standards Developers. Please send all address corrections to Standards Action Editor at standact@ansi.org.

AAMI
Association for the Advancement of Medical Instrumentation
4301 N Fairfax Drive
Suite 301
Arlington, VA 22203-1633
Phone: (703) 253-8261
Fax: (703) 276-0793
Web: www.aami.org

ABYC
American Boat and Yacht Council
613 Third Street
Suite 10
Annapolis, MD 21403
Phone: (410) 990-4460
Fax: (410) 990-4466
Web: www.abycinc.org

ACCA
Air Conditioning Contractors of America
2800 Shirlington Road
Suite 300
Arlington, VA 22206
Phone: (703) 824-8868
Web: www.acca.org

AGMA
American Gear Manufacturers Association
1001 N Fairfax Street, 5th Floor
Alexandria, VA 22314-1587
Phone: (703) 684-0211
Web: www.agma.org

AIAA
American Institute of Aeronautics and Astronautics
12700 Sunrise Valley Drive, Suite 200
Reston, VA 20191-5807
Phone: (703) 264-7546
Web: www.aiaa.org

ASA (ASC S12)
Acoustical Society of America
1305 Walt Whitman Rd
Suite 300
Melville, NY 11747
Phone: (631) 390-0215
Fax: (631) 923-2875
Web: www.acousticalsociety.org

ASA (ASC S2)
Acoustical Society of America
1305 Walt Whitman Road Suite 300
Melville, NY 11747
Phone: (631) 390-0215
Fax: (631) 923-2875
Web: www.acousticalsociety.org

ASABE
American Society of Agricultural and Biological Engineers
2920 Niles Rd.
St. Joseph, MI 49085
Phone: (269) 932-7009
Web: www.asabe.org

ASHRAE
American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.
1791 Tullie Circle, NE
Atlanta, GA 30329
Phone: (404) 636-8400
Fax: (404) 321-5478
Web: www.ashrae.org

ASME
American Society of Mechanical Engineers
Two Park Avenue
New York, NY 10016
Phone: (212) 591-8521
Fax: (212) 591-8501
Web: www.asme.org

ASTM
ASTM International
100 Barr Harbor Drive
West Conshohocken, PA 19428-2959
Phone: (610) 832-9744
Fax: (610) 834-3683
Web: www.astm.org

AWC
American Wood Council
222 Catoctin Circle
Suite 201
Leesburg, VA 20175
Phone: (202) 463-2770
Fax: (202) 463-2791
Web: www.awc.org

AWS
American Welding Society
8669 NW 36th Street #130
Miami, FL 33166
Phone: (800) 443-9353
Web: www.aws.org

AWWA
American Water Works Association
6666 W. Quincy Ave.
Denver, CO 80235
Phone: (303) 897-2179
Fax: (303) 795-7603
Web: www.awwa.org

B11
B11 Standards, Inc.
P.O. Box 690905
Houston, TX 77269
Phone: (832) 446-6999

BICSI
Building Industry Consulting Service International
8610 Hidden River Parkway
Tampa, FL 33637
Phone: (813) 903-4712
Fax: (813) 971-4311
Web: www.bicsi.org

BIFMA
Business and Institutional Furniture Manufacturers Association
678 Front Ave. NW
Grand Rapids, MI 49504
Phone: (616) 980-9798
Fax: (616) 285-3765
Web: www.bifma.org

CSA
CSA Group
8501 East Pleasant Valley Rd.
Cleveland, OH 44131
Phone: (216) 524-4990 x88321
Fax: (216) 520-8979
Web: www.csa-america.org

CTA
Consumer Technology Association
1919 South Eads Street
Arlington, VA 22202
Phone: (703) 907-7697
Fax: (703) 907-4197
Web: www.cta.tech

ECIA
Electronic Components Industry Association
2214 Rock Hill Road
Suite 265
Herndon, VA 20170-4212
Phone: (703) 323-0294
Fax: (703) 323-0245
Web: www.ecianow.org

EIMA
EIFS Industry Members Association
513 West Broad Street
Suite 210
Falls Church, VA 22046-3257
Phone: (703) 538-1729
Web: www.eima.com

INMM (ASC N14)
Institute of Nuclear Materials Management
75 North 200 East
Oak Ridge National Laboratory
Richmond, UT 84333
Phone: (435) 258-3730
Web: www.inmm.org

ITI (INCITS)
InterNational Committee for Information Technology Standards
1101 K Street NW
Suite 610
Washington, DC 20005-3922
Phone: (202) 626-5737
Fax: (202) 638-4922
Web: www.incits.org

LIA (ASC Z136)
Laser Institute of America
13501 Ingenuity Drive
Suite 128
Orlando, FL 32826
Phone: (407) 380-1553
Fax: (407) 380-5588
Web: www.laserinstitute.org

NECA
National Electrical Contractors Association
3 Bethesda Metro Center
Suite 1100
Bethesda, MD 20814
Phone: (301) 215-4549
Web: www.neca-neis.org

NEMA (ASC C136)
National Electrical Manufacturers Association
1300 North 17th Street
Suite 900
Rosslyn, VA 22209
Phone: (703) 841-3277
Fax: (703) 841-3378
Web: www.nema.org

NEMA (ASC C137)
National Electrical Manufacturers Association
1300 North 17th Street, Suite 900
Rosslyn, VA 22209
Phone: (703) 841-3277
Fax: (703) 841-3378
Web: www.nema.org

NEMA (ASC C82)
National Electrical Manufacturers Association
1300 N 17th St
Rosslyn, VA 22209
Phone: (703) 841-3262
Fax: (703) 841-3362
Web: www.nema.org
NFPA
National Fire Protection Association
One Batterymarch Park
Quincy, MA 02169
Phone: (617) 770-3000
Web: www.nfpa.org

NSF
NSF International
789 N. Dixboro Road
Ann Arbor, MI 48105-9723
Phone: (734) 827-6866
Web: www.nsf.org

RESNET
Residential Energy Services Network, Inc.
4857 Patina Court
Oceanside, CA 92057
Phone: (760) 408-5860
Fax: (760) 806-9449
Web: www.resnet.us.com

SCTE
Society of Cable Telecommunications Engineers
140 Philips Rd
Exton, PA 19341
Phone: (800) 542-5040
Fax: (800) 542-5040
Web: www.scte.org

TIA
Telecommunications Industry Association
1320 North Courthouse Road
Suite 200
Arlington, VA 22201
Phone: (703) 907-7706
Fax: (703) 907-7727
Web: www.tiaonline.org

UL
Underwriters Laboratories, Inc.
47173 Benicia Street
Fremont, CA 94538
Phone: (510) 339-4271
Web: www.ul.com
IEC Draft International Standards

This section lists proposed standards that the International Electrotechnical Commission (IEC) is considering for approval. The proposals have received substantial support within the technical committees or subcommittees that developed them and are now being circulated to IEC members for comment and vote. Standards Action readers interested in reviewing and commenting on these documents should order copies from ANSI.

Comments

Comments regarding IEC documents should be sent to Tony Zertuche, General Secretary, USNC/IEC, at ANSI's New York offices (t.zertuche@ansi.org). The final date for offering comments is listed after each draft.

Ordering Instructions

IEC Drafts can be made available by contacting ANSI’s Customer Service department. Please e-mail your request for an IEC Draft to Customer Service at sales@ansi.org. When making your request, please provide the date of the Standards Action issue in which the draft document you are requesting appears.

45B/874/CD, IEC 61098 ED3: Radiation protection instrumentation - Installed personnel surface contamination monitoring assemblies, 2017/9/22
45B/875/CD, IEC 62244 ED2: Radiation protection instrumentation - Installed radiation portal monitors (RPMs) for the detection of illicit trafficking of radioactive and nuclear materials, 2017/9/22
45A/1166/NP, PNW 45A-1166: Nuclear power plants - Instrumentation, control and electrical power systems important to safety - Common cause failure systems analysis and diversity, 2017/9/22
62C/696/CD, IEC 63073-1 ED1: Dedicated Radionuclide Imaging Devices - Characteristics and Test Conditions - Part 1: Cardiac SPECT, /2017/10/2
86C/1469/CD, IEC 62148-21 ED1: Fibre optic active components and devices - Package and interface standards - Part 21: Design guide of electrical interface of PIC packages using Silicon Fine-pitch Ball Grid Array (S-FBGA) and Silicon Fine-pitch Land Grid Array (S-FLGA), 2017/9/22
86C/1470/CD, IEC 61280-4-1 ED3: Fibre-optic communication subsystem test procedures - Part 4-1: Installed cable plant - Multimode attenuation measurement, 2017/9/22
86C/1472/CD, IEC TR 61292-8 ED1: Optical amplifiers - Part 8: High power amplifiers, 2017/9/22
26/626/FDIS, IEC 62822-3 ED1: Electric welding equipment - Assessment of restrictions related to human exposure to electromagnetic fields (0 Hz to 300 Hz) - Part 3: Resistance welding equipment, 2017/8/11
8/1470/DTS, IEC TS 63060 ED1: General aspects and methods for the maintenance of installations and equipment of electrical energy supply networks, 2017/9/22
85/607/CD, IEC 61557-1 ED3: Electrical safety in low voltage distribution systems up to 1 000 V a.c. and 1 500 V d.c. - Equipment for testing, measuring or monitoring of protective measures - Part 1: General requirements, 2017/9/22
85/608/CD, IEC 61557-2 ED3: Electrical safety in low voltage distribution systems up to 1 000 V a.c. and 1 500 V d.c. - Equipment for testing, measuring or monitoring of protective measures - Part 2: Insulation resistance, 2017/9/22
85/609/CD, IEC 61557-3 ED3: Electrical safety in low voltage distribution systems up to 1 000 V a.c. and 1 500 V d.c. - Equipment for testing, measuring or monitoring of protective measures - Part 3: Loop impedance, 2017/9/22
85/610/CD, IEC 61557-4 ED3: Electrical safety in low voltage distribution systems up to 1 000 V a.c. and 1 500 V d.c. - Equipment for testing, measuring or monitoring of protective measures - Part 4: Resistance of earth connection and equipotential bonding, 2017/9/22
Newly Published ISO & IEC Standards

Listed here are new and revised standards recently approved and promulgated by ISO - the International Organization for Standardization – and IEC – the International Electrotechnical Commission. Most are available at the ANSI Electronic Standards Store (ESS) at www.ansi.org. All paper copies are available from Standards resellers (http://webstore.ansi.org/faq.aspx#resellers).

ISO Standards

ACOUSTICS (TC 43)

AGRICULTURAL FOOD PRODUCTS (TC 34)
ISO 19343:2017, Paints and varnishes - Wettability - Part 2: Determination of the surface tension of liquids using the pendant drop method, $68.00

AIRCRAFT AND SPACE VEHICLES (TC 20)
ISO 17770:2017, Space systems - Cube satellites (CubeSats), $68.00

DOCUMENT IMAGING APPLICATIONS (TC 171)
ISO 22938:2017, Document management - Electronic content/document management (CDM) data interchange format, $103.00

FLOOR COVERINGS (TC 219)
ISO 11378-2/Amd1:2017, Textile floor coverings - Laboratory soiling tests - Part 2: Drum test - Amendment 1, $19.00

FLUID POWER SYSTEMS (TC 131)
ISO 6605:2017, Hydraulic fluid power - Test methods for hoses and hose assemblies, $68.00

MATERIALS, EQUIPMENT AND OFFSHORE STRUCTURES FOR PETROLEUM AND NATURAL GAS INDUSTRIES (TC 67)
ISO 21809-5:2017, Petroleum and natural gas industries - External coatings for buried or submerged pipelines used in pipeline transportation systems - Part 5: External concrete coatings, $162.00

OTHER
ISO/IEC TR 17028-2017, Conformity assessment - Guidelines and examples of a certification scheme for services, $162.00

PAINTS AND VARNISHES (TC 35)
ISO 19403-3:2017, Paints and varnishes - Wettability - Part 3: Determination of the surface tension of liquids from interfacial tension, $68.00

PLASTICS (TC 61)
ISO 15064:2017, Plastics - Aromatic isocyanates for use in the production of polyurethanes - Determination of the isomer ratio in toluenedisocyanate (TDI), $68.00

PLASTICS PIPES, FITTINGS AND VALVES FOR THE TRANSPORT OF FLUIDS (TC 138)
ISO 7510:2017, Plastics piping systems - Glass-reinforced plastics (GRP) components - Determination of the amounts of constituents, $45.00

RUBBER AND RUBBER PRODUCTS (TC 45)
ISO 1795:2017, Rubber, raw natural and raw synthetic - Sampling and further preparative procedures, $45.00

STERILIZATION OF HEALTH CARE PRODUCTS (TC 198)
ISO 11137-3:2017, Sterilization of health care products - Radiation - Part 3: Guidance on dosimetric aspects of development, validation and routine control, $185.00

THERMAL INSULATION (TC 163)
ISO 12631:2017, Thermal performance of curtain walling - Calculation of thermal transmittance, $185.00

TIMBER STRUCTURES (TC 165)
ISO 8375:2017, Timber structures - Glued laminated timber - Test methods for determination of physical and mechanical properties, $138.00
Standards Action - July 7, 2017 - Page 37 of 71 pages

WATER QUALITY (TC 147)
ISO 13843:2017, Water quality - Requirements for establishing performance characteristics of quantitative microbiological methods, $209.00

ISO Technical Reports

COSMETICS (TC 217)
ISO/TR 18818:2017, Cosmetics - Analytical method - Detection and quantitative determination of Diethanolamine (DEA) by GC/MS, $68.00

FIRE SAFETY (TC 92)
ISO/TR 16576:2017, Fire safety engineering - Examples of fire safety objectives, functional requirements and safety criteria, $232.00

ISO Technical Specifications

PLASTICS (TC 61)

ISO/IEC JTC 1, Information Technology

ISO/IEC TS 25011:2017, Information technology - Systems and software quality requirements and evaluation (SQuaRE) - Service quality models, $138.00

IEC Standards

ALL-OR-NOTHING ELECTRICAL RELAYS (TC 94)
IEC 61810-1 Ed. 4.0 b cor 1:2017, Corrigendum 1 - Electromechanical elementary relays - Part 1: General and safety requirements, Free

ELECTROMAGNETIC COMPATIBILITY (TC 77)
IEC 61000-2-2 Amd.1 Ed. 2.0 b:2017, Amendment 1 - Electromagnetic compatibility (EMC) - Part 2-2: Environment - Compatibility levels for low-frequency conducted disturbances and signalling in public low-voltage power supply systems, $82.00
IEC 61000-2-2 Ed. 2.1 b:2017, Electromagnetic compatibility (EMC) - Part 2-2: Environment - Compatibility levels for low-frequency conducted disturbances and signalling in public low-voltage power supply systems, $322.00

ELECTROMECHANICAL COMPONENTS AND MECHANICAL STRUCTURES FOR ELECTRONIC EQUIPMENTS (TC 48)
IEC 60603-7:81 Ed. 1.0 b cor 1:2017, Corrigendum 1 - Connectors for electronic equipment - Part 7-81: Detail specification for 8-way, shielded, free and fixed connectors, for data transmissions with frequencies up to 2 000 MHz, Free

LAMPS AND RELATED EQUIPMENT (TC 34)
IEC 63013 Ed. 1.0 b:2017, LED packages - Long-term luminous and radiant flux maintenance projection, $82.00

MARITIME NAVIGATION AND RADIOCOMMUNICATION EQUIPMENT AND SYSTEMS (TC 80)
IEC 62286 Ed. 2.0 b:2014, Maritime navigation and radiocommunication equipment and systems - Presentation of navigation-related information on shipborne navigational displays - General requirements, methods of testing and required test results, $387.00
IEC 62388 Ed. 2.0 b:2013, Maritime navigation and radiocommunication equipment and systems - Shipborne radar - Performance requirements, methods of testing and required test results, $410.00
IEC 61996-1 Ed. 2.0 b:2013, Maritime navigation and radiocommunication equipment and systems - Shipborne voyage data recorder (VDR) - Part 1: Performance requirements, methods of testing and required test results, $352.00

METHODS FOR THE ASSESSMENT OF ELECTRIC, MAGNETIC AND ELECTROMAGNETIC FIELDS ASSOCIATED WITH HUMAN EXPOSURE (TC 106)
IEC/IEEE 62704-2 Ed. 1.0 b:2017, Determining the peak spatial-average specific absorption rate (SAR) in the human body from wireless communications devices, 30 MHz to 6 GHz - Part 2: Specific requirements for finite difference time domain (FDTD) modelling of exposure from vehicle mounted antennas, $317.00

OTHER
CISPR 16-2-1 Amd.1 Ed. 3.0 b:2017, Amendment 1 - Specification for radio disturbance and immunity measuring apparatus and methods - Part 2-1: Methods of measurement of disturbances and immunity - Conducted disturbance measurements, $82.00
CISPR 16-2-1 Ed. 3.1 b:2017, Specification for radio disturbance and immunity measuring apparatus and methods - Part 2-1: Methods of measurement of disturbances and immunity - Conducted disturbance measurements, $586.00
CISPR/TR 16-4-4 Amd.1 Ed. 2.0 en:2017, Amendment 1 - Specification for radio disturbance and immunity measuring apparatus and methods - Part 4-4: Uncertainties, statistics and limit modelling - Statistics of complaints and a model for the calculation of limits for the protection of radio services calculation of limits for the protection of radio services, $164.00
CISPR/TR 16-4-4 Ed. 2.1 en:2017, Specification for radio disturbance and immunity measuring apparatus and methods - Part 4-4: Uncertainties, statistics and limit modelling - Statistics of complaints and a model for the calculation of limits for the protection of radio services calculation of limits for the protection of radio services, $645.00

PERFORMANCE OF HOUSEHOLD ELECTRICAL APPLIANCES (TC 59)
IEC/PAS 63124 Ed. 1.0 en:2017, Tumble dryers for commercial use - Methods for measuring the performance, $352.00
IEC/PAS 63125 Ed. 1.0 en:2017, Clothes washing machines for commercial use - Methods for measuring the performance, $375.00

SAFETY OF HOUSEHOLD AND SIMILAR ELECTRICAL APPLIANCES (TC 61)
IEC 60335-2-34 Amd.2 Ed. 5.0 b cor.1:2017, Corrigendum 1 - Appliances (TC 61) - Safety of household and similar electrical appliances - Safety - Part 2-34: Particular requirements for motor-compressors, Free
SEMICONDUCTOR DEVICES (TC 47)
IEC 61967-4 Ed. 1.0 b cor.1:2017, Corrigendum 1 - Integrated circuits
- Measurement of electromagnetic emissions, 150 kHz to 1 GHz -
 Part 4: Measurement of conducted emissions, 1 Ω/150 Ω direct
coupling method, Free

SURGE ARRESTERS (TC 37)
IEC 60099-5 Ed. 2.0 b:2013, Surge arresters - Part 5: Selection and
application recommendations, $387.00

SWITCHGEAR AND CONTROLGEAR (TC 17)
IEC/IEEE 62271-37-013 Ed. 1.0 en cor.1:2017, Corrigendum 1 - High-
voltage switchgear and controlgear - Part 37-013: Alternating-
current generator circuit-breakers, Free

IEC Technical Reports

SWITCHGEAR AND CONTROLGEAR (TC 17)
IEC/TR 62271-305 Ed. 1.0 en cor.1:2017, Corrigendum 1 - High-
voltage switchgear and controlgear - Part 305: Capacitive current
switching capability of air-insulated - Disconnectors for rated
voltages above 52 kV, Free

IEC Technical Specifications

ELECTRICAL ACCESSORIES (TC 23)
IEC/TS 63053 Ed. 1.0 en:2017, General requirements for residual
current operated protective devices for DC system, $281.00
Proposed Foreign Government Regulations

Call for Comment

U.S. manufacturers, exporters, regulatory agencies and standards developing organizations may be interested in proposed foreign technical regulations notified by Member countries of the World Trade Organization (WTO). In accordance with the WTO Agreement on Technical Barriers to Trade (TBT Agreement), Members are required to notify proposed technical regulations that may significantly affect trade to the WTO Secretariat in Geneva, Switzerland. In turn, the Secretariat issues and makes available these notifications. The purpose of the notification requirement is to provide global trading partners with an opportunity to review and comment on the regulations before they become final.

The USA Inquiry Point for the WTO TBT Agreement is located at the National Institute of Standards and Technology (NIST) in the Standards Coordination Office (SCO). The Inquiry Point distributes the notified proposed foreign technical regulations (notifications) and makes the associated full-texts available to U.S. stakeholders via its online service, Notify U.S. Interested U.S. parties can register with Notify U.S. to receive e-mail alerts when notifications are added from countries and industry sectors of interest to them.

To register for Notify U.S., please visit http://www.nist.gov/notifyus/.

The USA WTO TBT Inquiry Point is the official channel for distributing U.S. comments to the network of WTO TBT Enquiry Points around the world. U.S. business contacts interested in commenting on the notifications are asked to review the comment guidance available on Notify U.S. at https://tsapps.nist.gov/notifyus/data/guidance/guidance.cfm prior to submitting comments.

For further information about the USA TBT Inquiry Point, please visit: https://www.nist.gov/standardsgov/what-we-do/trade-regulatory-programs/usa-wto-tbt-inquiry-point

Contact the USA TBT Inquiry Point at: (301) 975-2918; Fax: (301) 926-1559; E-mail: usatbtep@nist.gov or notifyus@nist.gov.
American National Standards
Call for Members
INCITS Executive Board – ANSI Accredited SDO and US TAG to ISO/IEC JTC 1, Information Technology

The InterNational Committee for Information Technology Standards (INCITS), an ANSI accredited SDO, is the forum of choice for information technology developers, producers and users for the creation and maintenance of formal de jure IT standards. INCITS’ mission is to promote the effective use of Information and Communication Technology through standardization in a way that balances the interests of all stakeholders and increases the global competitiveness of the member organizations.

The INCITS Executive Board serves as the consensus body with oversight of its 40+ Technical Committees. Additionally, the INCITS Executive Board has the international leadership role as the US Technical Advisory Group (TAG) to ISO/IEC JTC 1, Information Technology.

Membership in the INCITS Executive Board is open to all directly and materially affected parties in accordance with INCITS membership rules. To find out more about participating on the INCITS Executive Board, contact Jennifer Garner at jgarner@itic.org or visit http://www.incits.org/participation/membership-info for more information.

Membership in all interest categories is always welcome; however, the INCITS Executive Board seeks to broaden its membership base in the following categories:

• Service Providers
• Users
• Standards Development Organizations and Consortia
• Academic Institutions

Society of Cable Telecommunications
ANSI Accredited Standards Developer

SCTE, an ANSI-accredited SDO, is the primary organization for the creation and maintenance of standards for the cable telecommunications industry. SCTE’s standards mission is to develop standards that meet the needs of cable system operators, content providers, network and customer premises equipment manufacturers, and all others who have an interest in the industry through a fair, balanced and transparent process.

SCTE is currently seeking to broaden the membership base of its ANS consensus bodies and is interested in new members in all membership categories to participate in new work in fiber-optic networks, advanced advertising, 3D television, and other important topics. Of particular interest is membership from the content (program and advertising) provider and user communities.

Membership in the SCTE Standards Program is open to all directly and materially affected parties as defined in SCTE’s membership rules and operating procedures. More information is available at www.scte.org or by e-mail from standards@scte.org.

ANSI Accreditation Program for Third Party Product Certification Agencies

Accreditation for HKCA Scopes

ACB, Inc.

Comment Deadline: August 7, 2017
Mr. Greg Czumak - Review Engineer
ACB, Inc.
6731 Whittier Avenue, Suite C110
McLean, VA 22101
Phone: 703-847-4700
Fax: 703-847-6888
E-mail: gczumak@acbcert.com
Web: www.ACBcert.com

Ms. Susan Holman
Director of North American Operations
ACB, Inc.
6731 Whittier Avenue, Suite C110
McLean, VA 22101
Phone: 703-847-4700
Fax: 703-847-6888
E-mail: susan@acbcert.com
Web: www.ACBcert.com

On June 30, 2017, ACB, Inc., an ANSI-accredited certification body, was granted ANSI accreditation for the following:

Name of Certification Scheme
Criteria and Requirements Applicable to Foreign Testing Laboratories and Certification Bodies Seeking Recognition by OFCA as Conformity Assessment Bodies

OFCA Radio Equipment Specifications (HKCA 10XX)
HKCA 1074
HKCA 1075
HKCA 1076

Please send your comments by August 7, 2017 to Reinaldo Balbino Figueiredo, Senior Program Director, Product/Process/Services Accreditation Programs, American National Standards Institute, 1899 L Street, NW, 11th Floor, Washington, DC 20036, Fax: 202-293 9287 or e-mail: rfigueir@ansi.org, or Nikki Jackson, Director, Product Certifier Accreditation, American National Standards Institute, 1899 L Street, NW, 11th Floor, Washington, DC 20036, Fax: 202-293 9287 or e-mail: njackson@ansi.org.
Accreditation

Curtis-Straus, LLC

Comment Deadline: August 7, 2017

Mr. Tadas Stukas - Quality & HSE Manager
Curtis-Straus, LLC
One Distribution Center Circle, Suite #1
Littleton, MA 01460
Phone: 978-486-8880
Fax: 978-486-8828
E-mail: tadas.stukas@us.bureauveritas.com
Web: www.curtis-straus.com

Mr. Myroslava Muchak
Quality & HSE Quality Specialist
Curtis-Straus, LLC
One Distribution Center Circle, Suite #1
Littleton, MA 01460
Phone: 978-486-8880
Fax: 978-486-8828
E-mail: myroslava.muchak@us.bureauveritas.com
Web: www.curtis-straus.com

On June 30, 2017, Curtis-Straus, LLC, an ANSI-accredited certification body, was granted accreditation for the following scopes:

List of Certification Scheme(s)
- Conditions and Criteria for Recognition of Certification Bodies for the ENERGY STAR® Program

Scopes of Accreditation
- Heating and Cooling
- Connected Thermostats
- Other
- Electric Vehicle Supply Equipment

Please send your comments by August 7, 2017 to Reinaldo Balbino Figueiredo, Senior Program Director, Product/Process/Services Accreditation Programs, American National Standards Institute, 1899 L Street, NW, 11th Floor, Washington, DC 20036, Fax: 202-293 9287 or e-mail: rfigueir@ansi.org, or Nikki Jackson, Director, Product Certifier Accreditation, American National Standards Institute, 1899 L Street, NW, 11th Floor, Washington, DC 20036, Fax: 202-293 9287 or e-mail: njackson@ansi.org.

International Organization for Standardization (ISO)

Call for U.S. TAG Administrator

ISO/TC 256 – Pigments, dyestuffs and extenders

There is currently no ANSI-accredited U.S. TAG Administrator for ISO/TC 256 and therefore ANSI is not a member of this committee. The Secretariat for the committee is held by Germany (DIN).

ISO/TC 256 operates under the following scope:
- Standardization in the field of colouring materials, i.e., pigments, extenders and dyestuffs, including terminology, product specifications and test methods.

Organizations interested in serving as the U.S. TAG Administrator or participating on a U.S. TAG should contact ANSI's ISO Team (isot@ansi.org).

Establishment of ISO Project Committee

ISO/PC 311 – Vulnerable consumers

A new ISO Project Committee, ISO/PC 311 – Vulnerable consumers, has been formed. The Secretariat has been assigned to the United Kingdom (BSI).

ISO/PC 311 operates under the following scope:
- Standardization in the field of vulnerable consumers

Organizations interested in serving as the U.S. TAG Administrator or participating on the U.S. TAG should contact ANSI’s ISO Team (isot@ansi.org).

Establishment of ISO Subcommittee

ISO/TC 61/SC 14 – Plastics and Environment

ISO/TC 61 – Plastics has created a new ISO Subcommittee on Plastics and environment (ISO/TC 61/SC 14). The Secretariat has been assigned to Germany (DIN).

ISO/TC 61/SC 14 operates under the following scope:
- Standardization in the field of plastics relating to biodegradability, biobased plastics, carbon and environmental footprint, microplastics and ocean/terrestrial environments, recycling, waste management, and circular economy.

Organizations interested in serving as the U.S. TAG Administrator or participating on the U.S. TAG should contact ANSI’s ISO Team (isot@ansi.org).

ISO New Work Item Proposal

Green Finance – Assessment of Green Financial Products

Comment Deadline: August 4, 2017

SAC, the ISO member body for China, has submitted to ISO a new work item proposal for the development of an ISO standard on Green finance – Assessment of green financial products, with the following scope statement:

This International Standard specifies the classification of green financial projects. This International Standard also specifies a framework for assessing green financial projects, including principles, scope, methodologies, procedure, reporting, and assessment bodies.

This International Standard helps users to identify and assess green financial projects.

Anyone wishing to review the proposal can request a copy by contacting ANSI’s ISO Team (isot@ansi.org), with a submission of comments to Steve Cornish (scornish@ansi.org) by close of business on Friday, August 4, 2017.
Meeting Notice

Association of Challenge Course Technology (ACCT) Consensus Group Meeting.

The next meeting of the ACCT Consensus Group is scheduled for the purpose of reviewing and clarifying roles of the Secretariat, Standards Development Committee (SDC), Consensus Group and Staff. A review of proposed revisions to the ANSI/ACCT procedures document, and a new standard proposal developed by the SDC will be included in the agenda.

Location: Aloft Denver International Airport Hotel
16470 E. 40th Circle, Aurora, CO 80011
Website: http://www.aloftdenverairport.com
Meeting Dates: August 7 - 8, 2017
Time: 8:00 am – 5pm MST on August 7th
8:00 am – 12:00pm MST on August 8th

The meeting is open to the public. Persons wishing to attend this meeting are required to pre-register by contacting Bill Weaver, ACCT Director of Operations, bill@acctinfo.org, 800-991-0286, extension 2.
Information Concerning
International Organization for Standardization (ISO)

Call for International (ISO) Secretariat

ISO/TC 190 – Soil quality

Reply Deadline: August 4, 2017

ANSI has been informed by the ISO Technical Management Board (ISO/TMB) that Netherlands (NEN), the ISO delegated Secretariat of ISO/TC 190, wishes to relinquish the role of the Secretariat.

ISO/TC 190 operates under the following scope:

Standardization in the field of soil quality

- Soils in situ;
- Soil materials intended for reuse in or on soils, including dredged sub-aquatic soil materials (= excavated sediments).

Excluded:

- Threshold or limit values for the assessment of soil quality;
- Civil engineering aspects (are dealt with by ISO/TC 182 "Geotechnics");
- In situ sediments (are dealt with by ISO/TC 147 "Water quality").

ANSI is seeking organizations in the U.S. that may be interested in assuming the role of the U.S. delegated Secretariat for ISO/TC 190. Alternatively, ANSI may be assigned the responsibility for administering an ISO Secretariat. Any request that ANSI accept the direct administration of an ISO Secretariat shall demonstrate that:

1. The affected interests have made a financial commitment for not less than three years covering all defined costs incurred by ANSI associated with holding the Secretariat;
2. The affected technical sector, organizations or companies desiring that the U.S. hold the Secretariat request that ANSI perform this function;
3. The relevant U.S. TAG has been consulted with regard to ANSI’s potential role as Secretariat; and
4. ANSI is able to fulfill the requirements of a Secretariat.

Information concerning the United States acquiring the role of international Secretariat may be obtained by contacting ANSI’s ISO Team (isot@ansi.org).
The following is a list of publications referenced in this Standard. Unless otherwise specified, the latest edition of the ASME publications shall apply. Materials manufactured to other editions of the referenced ASTM standards may be used to manufacture fittings meeting the requirements of this Standard, as long as the fitting manufacturer verifies that the material meets the requirements of the referenced edition.

ASME B1.20.1, Pipe Threads, General Purpose (Inch)
ASME B16.22, Wrought Copper and Copper Alloy Solder-Joint Pressure Fittings
ASME B16.23, Cast Copper Alloy Solder-Joint Drainage Fittings (DWV)

Publisher: The American Society of Mechanical Engineers (ASME), Three Two Park Avenue, New York, NY 10016-5990; Order Department: 22 Law Drive, P.O. Box 2900, Fairfield, NJ 07007-2900
Clove Road, Little Falls, NJ 07424-2100
(www.asme.org)

ASTM A74-09, Standard Specification for Cast Iron Soil Pipe and Fittings
ASTM B88-09, Standard Specification for Seamless Copper Water Tube
ASTM B306-09, Standard Specification for Copper Drainage Tube (DWV)
ASTM E29-08, Standard Practice for Using Significant Digits in Test Data to Determine Conformance With Specifications

Publisher: American Society for Testing and Materials (ASTM International), 100 Barr Harbor Drive, P.O. Box C700, West Conshohocken, PA 19428-2959
(www.astm.org)

ISO 9000: 2005/2015, Quality management systems – Fundamentals and vocabulary
ISO 9004: 2009, Managing for the sustained success of an organization – A quality management approach

Publisher: International Organization for Standardization (ISO) Central Secretariat,
Chemin de Blandonnet 8, Case postale 401, 1214 Vernier, Ch. de la Voie-Creuse, Case postale 56, CH-1211, Genève 20, Switzerland/Suisse
(www.iso.org)

May also be obtained from American National Standards Institute (ANSI), 25 West 43rd Street, New York, NY 10036.
Proposed ANSI C136.2-201X
A Revision of ANSI C136.2-2015

American National Standard for Roadway and Area Lighting Equipment—Dielectric Withstand and Electrical Transient Immunity Requirements

Secretariat:

National Electrical Manufacturers Association

Approved November 3, 2015

American National Standards Institute, Inc.
1.1 ELECTRICAL FAST TRANSIENT TEST PROCEDURE

The DUT shall be subjected to electrical fast transient (EFT) bursts, as defined in IEC 61000-4-4 Ed 3.0. The bursts shall be applied to all DUT power, protective earth (PE), signal, and control ports as specified by Table 5.

Direct coupling is required when applying EFT bursts to power and PE ports; the use of a coupling clamp is not allowed. The use of a calibrated capacitive coupling clamp is allowed for signal and control ports. Calibration of the capacitive coupling clamp shall be done according to the procedure described in IEC 61000-4-4 Ed 3.0.

Prior to testing, the EFT generator shall be exercised to verify that the open-circuit voltage peak minimum requirements specified in Table 5 can be met. Verification of the open-circuit voltage peak shall be done according to the calibration procedure described in IEC 61000-4-4 Ed 3.0. Verification and calibration shall be done using a burst repetition rate of 5 kHz for both 50 Ω and 1000 Ω coaxial terminations. A minimum of three pulse measurements shall be performed to verify output voltage peak requirements. The average of these output voltage peak measurements shall meet or exceed the requirements described in IEC 61000-4-4 Ed 3.0. Individual measurements shall be within 10% (50 Ω termination) or 20% (1000 Ω termination) of the average value, as described in IEC 61000-4-4 Ed 3.0.

Prior to testing, the EFT generator and CDN shall be calibrated according to the procedure described in IEC 61000-4-4 Ed 3.0. The EFT waveform shall be individually calibrated for each coupling line at each output terminal of the CDN with a single 50 Ω termination to reference ground. The test generator output and other test conditions shall be established according to the procedure described in IEC 61000-4-4 Ed 3.0. CDN inputs shall be open during calibration. The output voltage peak and burst characteristics shall meet the associated calibration requirements described in IEC 61000-4-4 Ed 3.0.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test level/configuration</th>
</tr>
</thead>
</table>
| Open-circuit voltage peak | Power and PE ports: 2 kV
Signal and control ports: 1 kV |
| Burst repetition rate | Power and PE ports: 5 kHz
Signal and control ports: 5 kHz |
| Burst duration | 15±3 milliseconds |
| Burst period | 300±60 milliseconds |
| Coupling modes | L1, L2, PE, L1+PE, L2+PE, L1+L2, L1+L2+PE
Signal and control port(s) to PE |
| Polarity | Positive and negative |
| Test duration | 1 minute minimum for each coupling mode and polarity combination |
| Total test duration | Power and PE ports: 1 minute
x 7 coupling modes x 2 polarities (14 total minutes)
Signal and control port(s): 1 minute x 2 polarities (2 total minutes per port) |

Note—L1 is typically hot, L2 is typically neutral, and PE = protective earth.
NSF International Standard/
American National Standard

Detergent and chemical feeders for commercial spray-type
dishwashing machines

5 Design and construction

This section contains design and construction requirements for equipment covered within the scope of this Standard.

5.1 General

Feeders shall automatically dispense additives to maintain the recommended concentration in the pre-wash, wash, pumped rinse, or final rinse.

When installed according to the manufacturer’s instructions, the feeder shall prevent uncontrolled siphonage or discharge of chemicals into the prewash, wash, pumped rinse or final rinse additives.

Rationale: When a feeder is used, it is required to dispense the proper concentration regardless of which compartment it is dispensed into. Changing the term ‘chemicals’ to ‘additives’ is consistent with terminology in the preceding section, and in section 1.2 and Scope.

5.5 Openings

5.5.1 Openings shall be located in a position protected from splash, spillage, or overhead drippage.

Rationale: this language adds clarity regarding the use of the terms “or” versus “and”
3 General requirements

3.5 Restriction on use of lead containing materials

There shall be no lead added as an intentional ingredient in any product, component, or material submitted for evaluation to this standard, with the following exceptions:

— Brass or bronze used in products meeting the definition of "lead free" under the specific provisions of the Safe Drinking Water Act of the United States.

— Solders and flux meeting the definition of "lead free" under the specific provisions of the Safe Drinking Water Act of the United States.

— Brass or bronze used in products specifically identified as exemptions within section (a)(4)(B) of the Safe Drinking Water Act of the United States.

— Fire sprinklers (head).

— Trace amounts required for operation of products used to monitor the characteristics of drinking water, such as the glass membranes used with some selective ion or pH electrodes.

— Materials or components exempted from formulation information requirements as allowed per Section 3.2, Note 1.

NOTE — To the maximum extent possible, lead should not be added as an intentional ingredient in any product covered by the scope of this standard. The exception above relative to materials and components exempt from formulation information requirements has only been included in recognition that the use of lead as an intentional additive is unable to be identified in cases where formulation information is not obtained.

3.6 Weighted average lead Lead content of products

With the exception of those exempted in the Safe Drinking Water Act of the United States, products shall have a weighted average lead content less than or equal to 0.25 percent. Products being evaluated for weighted average lead content shall be when evaluated in accordance with NSF/ANSI 372 – Drinking water system components – Lead content. For the purpose of this section, product shall refer to anything individually evaluated for compliance under the standard, including materials and components. Solders and fluxes shall have a lead content no more than 0.2 percent.
3.6.1 Exceptions to the requirement for lead content verification testing

High flow devices that are used exclusively at public water treatment facilities are exempt from the requirement for lead content verification testing. For the purposes of this section high flow devices are limited to chemical feeders, disinfectant generators (e.g. chlorine dioxide, hypochlorite, ozone and ultraviolet), electrodialysis technologies, microfiltration technologies, nanofiltration technologies, reverse osmosis, and ultrafiltration technologies.

Reason: Revision requires all products to have a weighted average lead content < 0.25% and ensures that lead content verification is performed on all products (unless specifically exempted by US SDWA) as a means of an additionally verifying the intent of Section 3.5. Additionally, the change would provide additional assurance that products comply with the US SDWA.
5 Structural performance

Table 5.1 – Structural integrity performance testing

<table>
<thead>
<tr>
<th>Systems and components</th>
<th>Hydrostatic pressure test</th>
<th>Cyclic pressure test</th>
<th>Burst pressure test for nonmetallic pressure vessels only</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete systems and components</td>
<td>2,070 kPa (300 psig) or 3 x maximum working pressure, whichever is greater</td>
<td>100,000 cycles at 0 to 1,040 kPa (0 to 150 psig) or 1.5 x the maximum working pressure, whichever is greater</td>
<td>2,760 kPa (400 psig) or 4 x maximum working pressure, whichever is greater</td>
</tr>
<tr>
<td>Complete disposable systems and components</td>
<td>2,070 kPa (300 psig) or 3 x maximum working pressure, whichever is greater</td>
<td>10,000 cycles at 0 to 1,040 kPa (0 to 150 psig) or 1.5 x the maximum working pressure, whichever is greater</td>
<td>2,760 kPa (400 psig) or 4 x maximum working pressure, whichever is greater</td>
</tr>
</tbody>
</table>

Metallic pressure vessels require measurement of circumference and head deflection. The pressure vessel circumference shall not exhibit a permanent increase of more than 0.2% when measured at the midsection and at 305 mm (12 in) intervals. The top and bottom head deflection of the pressure vessel shall not exhibit a permanent deflection exceeding 0.5% of the vessel diameter.

Reason: Removal of the component burst pressure test requirements was approved by the Joint Committee for the family of DWTU Standards in 2011. The approved revision was never implemented in Table 5.1 of NSF/ANSI 62, and is being balloted again here due to the length of time that has passed since the initial approval.
Dietary supplements

4 Labeling and literature requirements

4.X Probiotics

For products and ingredients containing probiotics, the following information must be present on the label:

- Colony Forming Units (CFU) count of each strain of live microorganism at the time of the product or ingredient’s expiration;

- Total CFU count for a blend of live microorganisms at the time of the product or ingredient’s expiration is acceptable

- Storage directions that guarantee the CFU count(s) at the time of expiration; and

- Identification of the bacteria including genus, species, and strain based on widely accepted nomenclature. If a trademarked name is used to identify the bacteria, the genus, species, and strain should also be included on the label.
8 Performance testing and evaluation

8.1.2.1.3 Graywater challenge water: Systems treating bathing and laundry source waters combined

Each 100 L challenge water shall be prepared using 53 L of 8.1.2.1.1 and 47 L of 8.1.2.1.2. The 30-d average concentration of the graywater delivered to the system shall be as follows:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Required range</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSS</td>
<td>50 – 160 mg/L</td>
</tr>
<tr>
<td>BOD₅</td>
<td>130 – 180 mg/L</td>
</tr>
<tr>
<td>temperature</td>
<td>25 – 35 °C</td>
</tr>
<tr>
<td>pH</td>
<td>6.5 – 8.0</td>
</tr>
<tr>
<td>turbidity</td>
<td>50 – 100 NTU</td>
</tr>
<tr>
<td>total phosphorous – P</td>
<td>1.0 – 3.0 mg/L</td>
</tr>
<tr>
<td>total Kjeldahl nitrogen – N</td>
<td>3.0 – 5.0 mg/L</td>
</tr>
<tr>
<td>COD</td>
<td>250 – 400 mg/L</td>
</tr>
<tr>
<td>TOC</td>
<td>50 – 100 mg/L</td>
</tr>
<tr>
<td>total coliforms</td>
<td>10³ – 10⁴ cfu/100 mL</td>
</tr>
<tr>
<td>E. coli</td>
<td>10² – 10³ cfu/100 mL</td>
</tr>
</tbody>
</table>
8 Performance testing and evaluation

8.1.2.1.1 Graywater challenge water: Systems treating bathing source water

Prepare the challenge water according to the following formula:

<table>
<thead>
<tr>
<th>Wastewater components¹</th>
<th>Amount/100 L</th>
</tr>
</thead>
<tbody>
<tr>
<td>body wash with moisturizer</td>
<td>30 g</td>
</tr>
<tr>
<td>toothpaste</td>
<td>3 g</td>
</tr>
<tr>
<td>deodorant</td>
<td>2 g</td>
</tr>
<tr>
<td>shampoo</td>
<td>19 g</td>
</tr>
<tr>
<td>conditioner</td>
<td>21 g</td>
</tr>
<tr>
<td>lactic acid</td>
<td>3 g</td>
</tr>
<tr>
<td>secondary effluent</td>
<td>2 L</td>
</tr>
<tr>
<td>bath cleaner</td>
<td>10 g</td>
</tr>
<tr>
<td>liquid hand soap</td>
<td>23 g</td>
</tr>
<tr>
<td>test dust²</td>
<td>10 g</td>
</tr>
</tbody>
</table>

| Urea | As needed to bring influent TKN within the specified range |

¹ See Annex C for example products.

8.1.2.1.2 Graywater challenge water: Systems treating laundry source water

Prepare the challenge water according to the following formula:

<table>
<thead>
<tr>
<th>Wastewater components¹</th>
<th>Amount/100 L</th>
</tr>
</thead>
<tbody>
<tr>
<td>liquid laundry detergent (2X)</td>
<td>40 mL</td>
</tr>
<tr>
<td>Component</td>
<td>Quantity</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>test dust</td>
<td>10 g</td>
</tr>
<tr>
<td>secondary effluent</td>
<td>2 L</td>
</tr>
<tr>
<td>liquid laundry fabric softener</td>
<td>21 mL</td>
</tr>
<tr>
<td>Na₂SO₄</td>
<td>4 g</td>
</tr>
<tr>
<td>NaHCO₃</td>
<td>2 g</td>
</tr>
<tr>
<td>Na₂PO₄</td>
<td>4 g</td>
</tr>
<tr>
<td>Urea</td>
<td>As needed to bring influent TKN within the specified range</td>
</tr>
</tbody>
</table>

1. See Annex C for example products.

2. See ISO 12103-1, Road Vehicles – Test Dust for Filter Evaluation. The test dust shall meet the specification of ISO 12103-1, A2 - Fine test dust. A test dust that meets these specifications is available from Powder Technology, Inc., P.O. Box 1464, Burnsville, MN 55337. [www.powdertechnologyinc.com/products/test-dust/testdust.php].

NOTE – The amount of individual wastewater components are recommendations. If the required range for the 30-d average concentration of individual parameters are not met using the recommended volumes, then the volume of wastewater components can be adjusted to achieve the required 30-d average concentrations. All necessary adjustments to the ingredient volumes shall be reported in the final report.
NSF/ANSI 350 - 2017
Onsite Residential and Commercial
Water Reuse Treatment Systems

8 Performance testing and evaluation

8.1.2.1.1 Graywater challenge water: Systems treating bathing source water

Prepare the challenge water according to the following formula:

<table>
<thead>
<tr>
<th>Wastewater components(^1)</th>
<th>Amount/100 L</th>
</tr>
</thead>
<tbody>
<tr>
<td>body wash with moisturizer</td>
<td>30 g</td>
</tr>
<tr>
<td>toothpaste</td>
<td>3 g</td>
</tr>
<tr>
<td>deodorant</td>
<td>2 g</td>
</tr>
<tr>
<td>shampoo</td>
<td>19 g</td>
</tr>
<tr>
<td>conditioner</td>
<td>21 g</td>
</tr>
<tr>
<td>lactic acid</td>
<td>3 g</td>
</tr>
<tr>
<td>secondary effluent</td>
<td>2 L</td>
</tr>
<tr>
<td>bath cleaner</td>
<td>10 g</td>
</tr>
<tr>
<td>liquid hand soap</td>
<td>23 g</td>
</tr>
<tr>
<td>test dust(^2)</td>
<td>10 g</td>
</tr>
<tr>
<td>NaOH</td>
<td>As needed to adjust pH</td>
</tr>
<tr>
<td>HCl</td>
<td>As needed to adjust pH</td>
</tr>
</tbody>
</table>

\(^1\) See Annex C for example products.

NOTE – The amount of individual wastewater components are recommendations. If the required range for the 30-d average concentration of individual parameters are not met using the recommended volumes, then the volume of wastewater components can be adjusted to achieve the required 30-d average concentrations. All necessary adjustments to the ingredient volumes shall be reported in the final report.
The 30-d average concentration of the bathing water delivered to the system shall be as follows:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Required range</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSS</td>
<td>50 – 100 mg/L</td>
</tr>
<tr>
<td>BOD₅</td>
<td>100 – 180 mg/L</td>
</tr>
<tr>
<td>temperature</td>
<td>25 – 35 °C</td>
</tr>
<tr>
<td>pH</td>
<td>6.0 – 7.5, 6.0 – 8.5</td>
</tr>
<tr>
<td>turbidity</td>
<td>30 – 70 NTU</td>
</tr>
<tr>
<td>total phosphorous – P</td>
<td>1.0 – 4.0 mg/L</td>
</tr>
<tr>
<td>total Kjeldahl nitrogen – N</td>
<td>3.0 – 5.0 mg/L</td>
</tr>
<tr>
<td>COD</td>
<td>200 – 400 mg/L</td>
</tr>
<tr>
<td>TOC</td>
<td>30 – 60 mg/L</td>
</tr>
<tr>
<td>total coliforms</td>
<td>10³ – 10⁴ cfu/100 mL</td>
</tr>
<tr>
<td>E. coli (Escherichia coli – ATCC¹ 11775)</td>
<td>10² – 10³ cfu/100 mL</td>
</tr>
</tbody>
</table>

8.1.2.1.2 Graywater challenge water: Systems treating laundry source water

Prepare the challenge water according to the following formula:

<table>
<thead>
<tr>
<th>Wastewater components¹</th>
<th>Amount/100 L</th>
</tr>
</thead>
<tbody>
<tr>
<td>liquid laundry detergent (2X)</td>
<td>40 mL</td>
</tr>
<tr>
<td>test dust²</td>
<td>10 g</td>
</tr>
<tr>
<td>secondary effluent</td>
<td>2 L</td>
</tr>
<tr>
<td>liquid laundry fabric softener</td>
<td>21 mL</td>
</tr>
<tr>
<td>Na₂SO₄</td>
<td>4 g</td>
</tr>
<tr>
<td>NaHCO₃</td>
<td>2 g</td>
</tr>
<tr>
<td>Na₂PO₄</td>
<td>4 g</td>
</tr>
<tr>
<td>NaOH</td>
<td>As needed to adjust pH</td>
</tr>
<tr>
<td>HCl</td>
<td>As needed to adjust pH</td>
</tr>
</tbody>
</table>

¹ See Annex C for example products.

NOTE – The amount of individual wastewater components are recommendations. If the required range for the 30-d average concentration of individual parameters are not met using the recommended volumes, then the volume of wastewater components can be adjusted to achieve the required 30-d average concentrations. All necessary adjustments to the ingredient volumes shall be reported in the final report.

¹ ATTC, American Type Culture Collection PO Box 1549, Manassas, VA 20108 <www.atcc.org>.
The 30-d average concentration of the laundry water delivered to the system shall be as follows:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Required range</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSS</td>
<td>50 – 100 mg/L</td>
</tr>
<tr>
<td>(\text{BOD}_5)</td>
<td>220 – 300 mg/L</td>
</tr>
<tr>
<td>temperature</td>
<td>25 – 35 °C</td>
</tr>
<tr>
<td>(\text{pH})</td>
<td>7.0 – 8.5, 6.0 – 8.5</td>
</tr>
<tr>
<td>turbidity</td>
<td>50 – 90 NTU</td>
</tr>
<tr>
<td>total phosphorous – P</td>
<td>< 2 mg/L</td>
</tr>
<tr>
<td>total Kjeldahl nitrogen – N</td>
<td>4.0 – 6.0 mg/L</td>
</tr>
<tr>
<td>COD</td>
<td>300 – 500 mg/L</td>
</tr>
<tr>
<td>TOC</td>
<td>50 – 100 mg/L</td>
</tr>
<tr>
<td>total coliforms</td>
<td>(10^3 – 10^4) cfu/100 mL</td>
</tr>
<tr>
<td>(E. \ coli)</td>
<td>(10^2 – 10^3) cfu/100 mL</td>
</tr>
</tbody>
</table>

8.1.2.1.3 Graywater challenge water: Systems treating bathing and laundry source waters combined

Each 100 L challenge water shall be prepared using 53 L of 8.1.2.1.1 and 47 L of 8.1.2.1.2. The 30-d average concentration of the graywater delivered to the system shall be as follows:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Required range</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSS</td>
<td>80 – 160 mg/L</td>
</tr>
<tr>
<td>(\text{BOD}_5)</td>
<td>130 – 180 mg/L</td>
</tr>
<tr>
<td>temperature</td>
<td>25 – 35 °C</td>
</tr>
<tr>
<td>(\text{pH})</td>
<td>6.5 – 8.0, 6.0 – 8.5</td>
</tr>
<tr>
<td>turbidity</td>
<td>50 – 100 NTU</td>
</tr>
<tr>
<td>total phosphorous – P</td>
<td>1.0 – 3.0 mg/L</td>
</tr>
<tr>
<td>total Kjeldahl nitrogen – N</td>
<td>3.0 – 5.0 mg/L</td>
</tr>
<tr>
<td>COD</td>
<td>250 – 400 mg/L</td>
</tr>
<tr>
<td>TOC</td>
<td>50 – 100 mg/L</td>
</tr>
<tr>
<td>total coliforms</td>
<td>(10^3 – 10^4) cfu/100 mL</td>
</tr>
<tr>
<td>(E. \ coli)</td>
<td>(10^2 – 10^3) cfu/100 mL</td>
</tr>
</tbody>
</table>
NSF/ANSI 350 - 2017
Onsite Residential and Commercial Water Reuse Treatment Systems

8 Performance testing and evaluation

8.1.2.1.1 Graywater challenge water: Systems treating bathing source water

The 30-d average concentration of the bathing water delivered to the system shall be as follows:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Required range</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSS</td>
<td>50 – 100 mg/L</td>
</tr>
<tr>
<td>BOD₅</td>
<td>100 – 180 mg/L</td>
</tr>
<tr>
<td>temperature</td>
<td>25 – 35 °C</td>
</tr>
<tr>
<td>pH</td>
<td>6.0 – 7.5</td>
</tr>
<tr>
<td>turbidity</td>
<td>30 – 70 NTU</td>
</tr>
<tr>
<td>total phosphorous – P</td>
<td>1.0 – 4.0 mg/L</td>
</tr>
<tr>
<td>total Kjeldahl nitrogen – N</td>
<td>3.0 – 5.0 mg/L</td>
</tr>
<tr>
<td>COD</td>
<td>200 – 400 mg/L</td>
</tr>
<tr>
<td>TOC</td>
<td>30 – 60 mg/L</td>
</tr>
<tr>
<td>total coliforms</td>
<td>(10^3) – (10^4) cfu/100 mL</td>
</tr>
<tr>
<td>E. coli (Escherichia coli – ATCC(^1) 11775(^1))</td>
<td>(10^2) – (4\times10^6) cfu/100 mL</td>
</tr>
</tbody>
</table>

8.1.2.1.2 Graywater challenge water: Systems treating laundry source water

The 30-d average concentration of the laundry water delivered to the system shall be as follows:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Required range</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSS</td>
<td>50 – 100 mg/L</td>
</tr>
<tr>
<td>BOD₅</td>
<td>220 – 300 mg/L</td>
</tr>
<tr>
<td>temperature</td>
<td>25 – 35 °C</td>
</tr>
<tr>
<td>pH</td>
<td>7.0 – 8.5</td>
</tr>
</tbody>
</table>

\(^1\)ATTC, American Type Culture Collection PO Box 1549, Manassas, VA 20108 <www.atcc.org>.
8.1.2.1.3 Graywater challenge water: Systems treating bathing and laundry source waters combined.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Required range</th>
</tr>
</thead>
<tbody>
<tr>
<td>turbidity</td>
<td>50 – 90 NTU</td>
</tr>
<tr>
<td>total phosphorous – P</td>
<td>< 2 mg/L</td>
</tr>
<tr>
<td>total Kjeldahl nitrogen – N</td>
<td>4.0 – 6.0 mg/L</td>
</tr>
<tr>
<td>COD</td>
<td>300 – 500 mg/L</td>
</tr>
<tr>
<td>TOC</td>
<td>50 – 100 mg/L</td>
</tr>
<tr>
<td>total coliforms</td>
<td>10^3 – 10^7 cfu/100 mL</td>
</tr>
<tr>
<td>E. coli</td>
<td>10^2 – 10^6 cfu/100 mL</td>
</tr>
</tbody>
</table>
NSF/ANSI 350 - 2017
Onsite Residential and Commercial Water Reuse Treatment Systems

8 Performance testing and evaluation

8.1.2.1.1 Graywater challenge water: Systems treating bathing source water

The 30-d average concentration of the bathing water delivered to the system shall be as follows:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Required range</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSS</td>
<td>50 – 100 mg/L</td>
</tr>
<tr>
<td>BOD₅</td>
<td>400 – 180 mg/L</td>
</tr>
<tr>
<td>temperature</td>
<td>25 – 35 °C</td>
</tr>
<tr>
<td>pH</td>
<td>6.0 – 7.5</td>
</tr>
<tr>
<td>turbidity</td>
<td>30 – 70 NTU</td>
</tr>
<tr>
<td>total phosphorous – P</td>
<td>1.0 – 4.0 mg/L</td>
</tr>
<tr>
<td>total Kjeldahl nitrogen – N</td>
<td>3.0 – 5.0 mg/L</td>
</tr>
<tr>
<td>COD</td>
<td>200 – 400 mg/L</td>
</tr>
<tr>
<td>TOC</td>
<td>30 – 60 mg/L</td>
</tr>
<tr>
<td>total coliforms</td>
<td>$10^3 – 10^4$ cfu/100 mL</td>
</tr>
<tr>
<td>E. coli (Escherichia coli – ATCC¹ 11775)</td>
<td>$10^2 – 10^3$ cfu/100 mL</td>
</tr>
</tbody>
</table>

8.1.2.1.2 Graywater challenge water: Systems treating laundry source water

The 30-d average concentration of the laundry water delivered to the system shall be as follows:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Required range</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSS</td>
<td>50 – 100 mg/L</td>
</tr>
<tr>
<td>BOD₅</td>
<td>220 – 300 mg/L</td>
</tr>
<tr>
<td>temperature</td>
<td>25 – 35 °C</td>
</tr>
<tr>
<td>pH</td>
<td>7.0 – 8.5</td>
</tr>
</tbody>
</table>

¹ATTC, American Type Culture Collection PO Box 1549, Manassas, VA 20108 <www.atcc.org>.
8.1.2.1.3 Graywater challenge water: Systems treating bathing and laundry source waters combined.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Required range</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSS</td>
<td>80 – 160 mg/L</td>
</tr>
<tr>
<td>BOD₅</td>
<td>130 – 180 mg/L</td>
</tr>
<tr>
<td>temperature</td>
<td>25 – 35 °C</td>
</tr>
<tr>
<td>pH</td>
<td>6.5 – 8.0</td>
</tr>
<tr>
<td>turbidity</td>
<td>50 – 100 NTU</td>
</tr>
<tr>
<td>total phosphorous – P</td>
<td>1.0 – 3.0 mg/L</td>
</tr>
<tr>
<td>total Kjeldahl nitrogen – N</td>
<td>3.0 – 5.0 mg/L</td>
</tr>
<tr>
<td>COD</td>
<td>250 – 400 mg/L</td>
</tr>
<tr>
<td>TOC</td>
<td>50 – 100 mg/L</td>
</tr>
<tr>
<td>total coliforms</td>
<td>10^3 – 10^4 cfu/100 mL</td>
</tr>
<tr>
<td>E. coli</td>
<td>10^2 – 10^3 cfu/100 mL</td>
</tr>
</tbody>
</table>
Table 4.2(1) Specifications for the Energy Rating Reference and Rated Homes

<table>
<thead>
<tr>
<th>Building Component</th>
<th>Energy Rating Reference Home</th>
<th>Rated Home</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roofs:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type: composition shingle on wood sheathing</td>
<td>Same as Rated Home</td>
<td>Same as Rated Home</td>
</tr>
<tr>
<td>Gross area: same as Rated Home</td>
<td>Same as Rated Home</td>
<td>Same as Rated Home</td>
</tr>
<tr>
<td>Solar absorptance = 0.75</td>
<td>Values from Table 4.2.2(4) shall be used to determine solar absorptance except where test data are provided for roof surface in accordance with ASTM Standards C1549, E1918, or CRRC Method #1 ANSI/CRRC S100.</td>
<td>Emittance values provided by the roofing manufacturer in accordance with ASTM Standard C1371 shall be used when available. In cases where the appropriate data are not known, same as the Reference Home.</td>
</tr>
<tr>
<td>Emittance = 0.90</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| **Attics:** | | |
| Type: vented with aperture = 1ft² per 300 ft² ceiling area | Same as Rated Home |

The remaining sections of Table 4.2.2(1) remain unchanged.

6. Normative References

All other Normative References in Section 6 Remain unchanged.
Changes to Draft PDS-02 of BSR/RESNET/ICC 380-2016 Addendum A-201x

Infiltration Volume\(^{23}\) – The sum of the Conditioned Space Volume and additional adjacent volumes in the dwelling unit that meet the following criteria:

- Crawlspace, when the access doors or hatches between the crawlspace and Conditioned Space Volume are open during the enclosure airtightness test (Section 3.2.3),
- Attics, when the access doors or access hatches between the attic and Conditioned Space Volume are open during the enclosure airtightness test (Section 3.2.4),
- Vented crawlspace,
- Garages,
- Basements, where the doors between the basement and Conditioned Space Volume are open during the enclosure airtightness test (Section 3.2.5).
BSR/UL 2748, Standard for Safety for Arcing Fault Quenching Equipment

1. Publication of the First Edition of the Standard for Arcing Fault Quenching Equipment, UL 2748, as an American National Standard

19.3 Arc transfer testing shall be conducted with the maximum allowable an ac impedance between the quenching device and the arcing fault. The ac impedance shall be equal to the maximum allowable impedance as specified by the manufacturer in accordance with 20.3.

20.1 Quenching devices shall have the following ratings:

 a) Maximum rated voltage;
 b) Maximum arcing fault current;
 c) Minimum arcing fault current (if a minimum current is required for proper operation);
 d) Short-time (fault current) withstand duration;
 e) Maximum number of operations (if the quenching device is reusable);
 f) Dielectric withstand voltage;
 g) Basic impulse withstand (medium-voltage equipment only);
 h) Rated control voltage;
 i) Enclosure type rating(s), where applicable, unless intended for installation completely within metal-enclosed switchgear or similar equipment.
 j) Continuous current rating, when the device is part of the continuous current path during normal operation. Devices that carry current only while performing the quenching function have no continuous current rating.
 k) A reference to the appropriate instruction manual, including revision number or publication date.

20.3 The manufacturer shall specify the maximum allowable ac impedance between the quenching device and the arcing fault when the arcing fault occurs between the input terminals of the protected equipment and the quenching device. This distance may be specified in number of vertical sections of a specific type of switchgear, linear feet of a particular type of bus, or similar parameter based on the intended application. The distance specified shall be that distance that was determined during the Arc Transfer Test, Section 19. The manufacturer is not required to, but may, specify the maximum allowable distance between the arcing fault and the mitigation quenching device when the quenching device is located between the equipment input terminals and the arcing fault.
22.3 Instructions shall guide the user in proper application by clearly describing that the specified Arc Quenching Time is in addition to the time for operation of the sensor/triggering devices chosen for the application.
4. Withdrawal of Proposal: Coatings Applied to Air Terminals

7.9 Non-metallic coatings applied to air terminals shall not be applied within the top 10 inches nor on the threads connecting the air terminal to the mounting base.
BSR/UL 778, Standard for Safety for Motor-Operated Water Pumps

1. Revise proposal to include connector-inlet connection requirements

16.10.2 A three-phase cord-connected submersible pump or a single-phase cord-connected sewage, effluent, and grinder pump shall be provided with at least 6 feet (1.83 m) of permanently attached flexible cord. The cord shall:

a) Be Type SEW, SEOW, SEOOW, SJEW, SJEOW, SJOW, SJOOW, SJTW, SJTOW, SJTOOW, SOW, SOOW, STW, STOW, or STOOW and

b) Include an equipment-grounding conductor. The cord shall also be provided with:

1) An attachment plug for connection to the branch circuit supply or

2) A junction box, outlet box, enclosure with a wiring compartment that complies with the requirements of 16.2.3, or similar container, and applicable fittings for supply connection. Such provision for supply connection shall reduce the risk of water entry during temporary, limited submersion and shall comply with the applicable requirements of the Standard for Enclosures for Electrical Equipment, UL 50, or the Standard for Metallic Outlet Boxes, UL 514A, and this standard.

Exception No. 1: Provision for supply connection with the cord specified in (b)(2) is not required when:

a) The pump is marked in accordance with 58.19 and

b) The installation instructions provided with the pumps are in accordance with 61.5.

Exception No. 2: Single-phase cord-connected sewage, effluent, and grinder pumps that are intended to be connected to a branch circuit outlet receptacle shall be provided with an attachment plug.

Exception No. 3: The flexible cord is not required to be permanently attached if the inlet and molded-on cord connector comply with the applicable requirements of Standard for Cable Assemblies and Fittings for Industrial Control and Signal Distribution, UL 2238 including the 5 ft.-lb. impact test when assembled and be suitable for continuous immersion. The connector-inlet connection shall require the use of tools for disconnection.
60A.5 The cast iron pan specified in Table 60.A.1 and Figure 60.A.1 shall be placed on the center of the coil cooktop element. For purposes of selecting pan size, the heating element size shall be determined by the maximum heated diameter as shown in Figure 60.A.2. A detailed specification for the reference pans can be found in AHAM ER-1:2017 clause 5.7.5.

Table 60A.1
Reference cast iron test pan dimensions and oil amounts

<table>
<thead>
<tr>
<th>Heating Element Size</th>
<th>Reference Bottom Thickness A</th>
<th>Reference Bottom Flatness B</th>
<th>Reference Overall Diameter C</th>
<th>Reference Height D</th>
<th>Reference Side Angle E</th>
<th>Oil Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>in (mm)</td>
<td>in (mm)</td>
<td>in (mm)</td>
<td>in (mm)</td>
<td>degrees</td>
<td>g</td>
</tr>
<tr>
<td>≤ 7 in</td>
<td>± 0.010</td>
<td>± 0.010</td>
<td>± 0.1</td>
<td>± 0.1</td>
<td>± 5°</td>
<td></td>
</tr>
<tr>
<td>> 7 in.</td>
<td>.15 (3.8)</td>
<td>.010 (.25)</td>
<td>8.26 (210)</td>
<td>1.90 (48.3)</td>
<td>68</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>.15 (3.8)</td>
<td>.03 (0.8)</td>
<td>10.40 (264)</td>
<td>2.04 (52)</td>
<td>70</td>
<td>106</td>
</tr>
</tbody>
</table>
BSR/UL 60335-2-34-201X, Standard for Safety for Household and Similar Electrical Appliances, Part 2: Particular Requirements for Motor-Compressors

5.103DV DR Add Clause 5.103DV.1 to Clause 5 of the Part 2:

5.103DV.1 Cheesecloth specified in this Standard shall be untreated cotton cloth 0.8 - 1.0 m (31 - 39 inches) wide and 28 - 30 m/kg (42 - 45 ft/lbm). Tests involving cheesecloth are to be conducted in a room free of drafts.

22.102.DV D1 Addition of Clause 22.102.DV as follows:

Motor-compressors intended to be used with A2 or A3 classified refrigerants shall be of a hermetically sealed design construction with a leakage rate of 3 grams per year or less.

The leakage rate shall be measured by filling the MOTOR-COMPRESSOR HOUSING with helium to a pressure of not less than one-third of the pressure applied during the testing conducted under Clause 22.7 or Annex 101.DVG. A mass spectrometer shall be used to determine the leakage rate.

24DV DC D1 Modification to replace Clause 24 with the following:

Except for 24.1.4, 24.1.4DV, 24.101 and 24.102.DV, component requirements are replaced by the relevant component standards in Annex DVA. A component not complying with a Standard in Annex DVA shall be evaluated using the applicable component standard. If a standard does not exist for a component, then the component shall comply with requirements in this standard as far as they reasonably apply.

30.102.DV.3 Three times the rated voltage shall be applied to the starting relay. After the PTCR changes from a low resistance state to the high resistance state, three times the rated voltage shall be maintained for 6 minutes. The With the PTCR starting relay assembly at rated voltage, the voltage shall be increased in 50 V increments every 2 min until the starting relay changes from a low resistance state to the high resistance state. If the voltage at which this occurs:

- Is less than three times the PTCR starting relay rated voltage, then the voltage shall be increased at the same rate until three times the starting relay rated voltage is reached. This voltage shall be held for not less than 6 minutes.

- Equals or exceeds three times the PTCR starting relay rated voltage, then this voltage shall be held for not less than 6 minutes.

The voltage to the PTCR starting relay shall then be increased at the same rate until the PTCR opens, is either open circuit or short circuits or the PTCR enters a negative temperature coefficient (NTC) NTG zone with a thermal runaway. When one of these conditions occurs, the voltage shall be maintained for an additional 2 min. If No ignition of the cheesecloth shall occur during any part of this test occurs, the fire shall be extinguished as soon as possible.
NOTE 1 The PTCR change of state will occur when the voltage level exceeds the withstand voltage of the starting relay.

AA.1DV D1 Add AA.1DV.1 and Table AADV.1 (after AA.1), and AA.3DV.1 (after Table AA.3):

AADV.1 If a compressor is not able to be tested to the conditions set forth in Tables AA.1 and AA.2, testing can be completed using the optional test condition table in Table AADV.1. A compressor tested to the optional test condition table will be deemed to comply with Annex AA.

Table AADV.1 - Optional test conditions

<table>
<thead>
<tr>
<th>Test conditions</th>
<th>Evaporation temperature °C</th>
<th>Condensation temperature °C</th>
<th>Motor-compressor ambient temperature °C</th>
<th>Return gas temperature °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-25</td>
<td>+55</td>
<td>+43</td>
<td>+43</td>
</tr>
<tr>
<td>2</td>
<td>-25</td>
<td>+60</td>
<td>+43</td>
<td>+43</td>
</tr>
<tr>
<td>3</td>
<td>-15</td>
<td>+65</td>
<td>+43</td>
<td>+43</td>
</tr>
<tr>
<td>4</td>
<td>-0</td>
<td>+65</td>
<td>+43</td>
<td>+25</td>
</tr>
<tr>
<td>5</td>
<td>+15</td>
<td>+65</td>
<td>+43</td>
<td>+25</td>
</tr>
<tr>
<td>6</td>
<td>+30</td>
<td>+70</td>
<td>+43</td>
<td>+43</td>
</tr>
</tbody>
</table>

AA.3DV.1 In neither of these conditions shall the motor-compressor winding temperature exceed 160 °C for motor-compressors with synthetic insulation and 150 °C for motor-compressors with cellulose insulation.

BB.1.DV D1 Add the following:

BB.1.DV.1 If motor-compressors are not used, either two or six (at the manufacturer’s option) motorettes or coilettes or samples as shown in Annex BB are to be prepared for this test.

BB.1.DV.2 For winding wires over 600 volts refer to IEEE 1776.

101.DVA.5 At least three samples of neoprene, rubber or polyvinyl chloride materials shall be used for each of the following tests:

a) Recovery

b) Before Elongation

c) After Elongation

d) Before Tensile Strength
e) After Tensile Strength

101.DVA.6 A neoprene, rubber or polyvinyl chloride gasket material shall be considered as complying if the average results for all samples comply with the physical properties to which they were subjected as specified in Table 101.DVA.1.

101.DVK.1 Testing of winding wire insulation shall be conducted on two sets of two or six representative samples (at the manufacturer's option) as follows:

a) Film-coated winding wire shall be prepared in motorettes or coilettes.