This section solicits public comments on proposed draft new American National Standards, including the national adoption of ISO and IEC standards as American National Standards, and on proposals to revise, reaffirm or withdraw approval of existing American National Standards. A draft standard is listed in this section under the ANSI-accredited standards developer (ASD) that sponsors it and from whom a copy may be obtained. Comments in connection with a draft American National Standard must be submitted in writing to the ASD no later than the last day of the comment period specified herein. Such comments shall be specific to the section(s) of the standard under review and include sufficient detail so as to enable the reader to understand the commenter's position, concerns and suggested alternative language, if appropriate. Please note that the ANSI Executive Standards Council (ExSC) has determined that an ASD has the right to require that interested parties submit public review comments electronically, in accordance with the developer’s procedures.

Ordering Instructions for “Call-for-Comment” Listings
1. Order from the organization indicated for the specific proposal.
2. Use the full identification in your order, including the BSR prefix; for example, Electric Fuses BSR/SAE J554.
3. Include remittance with all orders.
4. BSR proposals will not be available after the deadline of call for comment.

Comments should be addressed to the organization indicated, with a copy to the Board of Standards Review, American National Standards Institute, 25 West 43rd Street, New York, NY 10036. Fax: 212-840-2298; e-mail: psa@ansi.org

* Standard for consumer products
Comment Deadline: January 22, 2017

CPA (Composite Panel Association (30-Day Public Comment Period: Announcement of Limited Substantive Changes to an Approved American National Standard))

New Standard

BSR A135.7-201x, Engineered Wood Trim (new standard)

The purpose of this Standard is to establish a nationally recognized voluntary consensus standard for engineered wood trim which can serve as a common basis for understanding among those manufacturing, specifying, or using engineered wood trim.

Public Review is limited to the revisions shown in the linked pages.

Send comments (with copy to psa@ansi.org) to: Gary Heroux, (703) 724-1128, gheroux@cpamail.org

NSF (NSF International)

Revision

BSR/NSF 8-201x (i12r1), Commercial Powered Food Preparation Equipment (revision of ANSI/NSF 8-2007 (i6))

Equipment covered by this Standard includes, but is not limited to, coffee grinders, grinders, mixers, pasta makers, peelers, saws, slicers, tenderizers, and similar equipment.

Send comments (with copy to psa@ansi.org) to: Allan Rose, (734) 827-3817, arouse@nsf.org

NSF (NSF International)

Revision

BSR/NSF 14-201x (i82r1), Plastics Piping System Components and Related Materials (revision of ANSI/NSF 14-2007 (i17))

The physical, performance, and health effects requirements in this Standard apply to thermoplastic and thermostet plastic piping system components including, but not limited to, pipes, fittings, valves, joining materials, gaskets, and appurtenances.

Send comments (with copy to psa@ansi.org) to: Lauren Panoff, (734) 769-5197, lpanoff@nsf.org

NSF (NSF International)

Revision

BSR/NSF 50-201x (i125r1), Equipment for Swimming Pools, Spas, Hot Tubs and Other Recreational Water Facilities (revision of ANSI/NSF 50-2016)

This Standard covers materials, components, products, equipment, and systems, related to public and residential recreational water facility operation.

Send comments (with copy to psa@ansi.org) to: Lauren Panoff, (734) 769-5197, lpanoff@nsf.org

UL (Underwriters Laboratories, Inc.)

Revision

BSR/UL 1322-201x, Standard for Safety for Fabricated Scaffold Planks and Stages (revision of ANSI/UL 1322-2010 (R2015))

Proposal (dated 12-23-2016) adds requirements for Multiple Suspension Points and Anchoring Directly to the Platform.

Send comments (with copy to psa@ansi.org) to: Paul Lloret, (510) 319-4269, Paul.E.Lloret@ul.com

UL (Underwriters Laboratories, Inc.)

Revision

The following topics for the Standard for Light Emitting Diode (LED) Equipment for Use in Lighting Products, UL 8750, are being recirculated: (1) Add Supplement SF - Requirements for LED Equipment with Wired Control Circuits.

Send comments (with copy to psa@ansi.org) to: Heather Sakellariou, (847) 664-2346, Heather.Sakellariou@ul.com

Comment Deadline: February 6, 2017

ASABE (American Society of Agricultural and Biological Engineers)

New Standard

BSR/ASAEB S620 MONYEAR-201x, Safety for Anyhydrous Ammonia Application Equipment (new standard)

The purpose of this standard is to establish the safety requirements for implements of husbandry used in the local transport and application of anhydrous ammonia for agricultural fertilizer. This standard does not cover bulk storage and handling equipment, manufacture of, or over-the-road bulk transport equipment (other than implements of husbandry) for anhydrous ammonia. This standard is applicable to new equipment manufactured and assembled after the publication of this standard.

Single copy price: $58.00

Order from: Jean Walsh, (269) 932-7027, walsh@asabe.org

Send comments (with copy to psa@ansi.org) to: Same
ASABE (American Society of Agricultural and Biological Engineers)

New Standard
BSR/ASABE S638 MONYEAR-201x, Pintle Hitch for Agricultural Field Equipment (new standard)
This standard establishes requirements for a pintle hitch suitable for use with agricultural field equipment. Usage of a conforming pintle hitch is primarily intended for towing trailers as defined by ANSI/ASAE S390.6 (ISO 12934:2013), but is not restricted to that application.
Single copy price: $58.00
Order from: Carla VanGilder, (269) 932-7015, vangilder@asabe.org
Send comments (with copy to psa@ansi.org) to: Same

ASC X9 (Accredited Standards Committee X9, Incorporated)

Reaffirmation
BSR X9.111-2011 (R201x), Penetration Testing within the Financial Services Industry (reaffirmation of ANSI X9.111-2011)
This standard specifies recommended processes for conducting penetration testing with financial service organizations. This standard describes a framework for specifying, describing and conducting penetration testing, and then relating the results of the penetration testing. This standard allows an entity interested in obtaining penetration testing services to identify the objects to be tested, specify a level of testing to occur, and to set a minimal set of testing expectations. Included in this standard are: A conceptual framework for describing penetration testing, including
- Roles and Responsibilities of participants;
- Types of penetration test;
- A generalized penetration testing cycle;
- General testing methodologies/techniques;
- Limitations of penetration testing;
- Ranking of methodologies, bases of testing effort (testing levels);
- Engagement and scope of work considerations;
- Test report guidelines;
- Testing requirements;
- Security of the testing environment;
- General practices and methodologies; and
- Tester expertise
Single copy price: $100.00
Order from: Ambria Frazier, (410) 267-7707, Ambria.frazier@x9.org
Send comments (with copy to psa@ansi.org) to: Same

ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.)

New Standard
BSR/ASHRAE Standard 41.2-201x, Standard Methods for Air Velocity and Airflow Measurement (new standard)
Standard 41.2P prescribes methods for air velocity and airflow measurement, including consideration of density effects.
Single copy price: $35.00
Order an electronic copy from: http://www.ashrae.org/standards-research-technology/public-review-drafts
Order from: standards.section@ashrae.org
Send comments (with copy to psa@ansi.org) to: http://www.ashrae.org/standards-research-technology/public-review-drafts

ASIS (ASIS International)

Revision
BSR/ASIS ORM 1-201x, Security and Resilience in Organizations and Their Supply Chains - Requirements with Guidance (revision, redesignation and consolidation of ANSI/ASIS/BSI BCM.01-2010, ANSI/ASIS SPG.1-2009)
This Standard specifies requirements for an integrated management system for organizations and their supply chains. The organizational resilience management system (ORMS) enables an organization to identify, assess, and manage risks related to the achievement of its strategic, operational, tactical, and reputational objectives in the organization and its supply chains.
Single copy price: $100.00
Order an electronic copy from: standards@asisonline.org
Order from: Aivelis Opicka, (703) 518-1439, standards@asisonline.org
Send comments (with copy to psa@ansi.org) to: Same

ASME (American Society of Mechanical Engineers)

Revision
BSR/ASME BPVC Section XII-201x, Rules for Construction and Continued Service of Transport Tanks (revision of ANSI/ASME BPVC Section XII-2015)
The rules of this Section constitute requirements for construction and continued service of pressure vessels for the transportation of dangerous goods via highway, rail, air, or water.
Single copy price: Free
Obtain an electronic copy from: http://cstools.asme.org/publicreview
Order from: Mayra Santiago, ASME; ansibox@asme.org
Send comments (with copy to psa@ansi.org) to: Richard Lucas, (212) 591-7541, lucasr@asme.org

Revision
BSR/ASME QME-1-201x, Qualification of Active Mechanical Equipment Used in Nuclear Power Plants (revision of ANSI/ASME QME-1-2012)
This Standard provides the requirements and guidelines for the qualification of active mechanical equipment whose function is required to ensure the safe operation or safe shutdown of a nuclear facility. The active mechanical equipment shall also comply with the requirements of the applicable design and construction codes and standards.
Single copy price: Free
Obtain an electronic copy from: http://cstools.asme.org/publicreview
Order from: Mayra Santiago, ASME; ansibox@asme.org
Send comments (with copy to psa@ansi.org) to: Kimberly Verderber, ASME; verderberk@asme.org

AWS (American Welding Society)

New Standard
BSR/AWS C2.16/C2.16M-201X, Guide for Thermal Spray Operator Qualification Programs (new standard)
This guide contains recommendations for establishing a thermal spray operator qualification program. Information related to training, knowledge and skill testing, and coating system inspection methods is provided. Example thermal spray operator qualification tests (TSOQT) parameters and forms are provided, to address common engineering and corrosion control applications using arc, flame, air-plasma and high-velocity oxygen fuel (HVOF) spray processes.
Single copy price: $31.50
Obtain an electronic copy from: jrosario@aws.org
Order from: Jennifer Rosario, (800) 443-9353, jrosario@aws.org
Send comments (with copy to psa@ansi.org) to: Andrew Davis, (305) 443-9353, x466, adavis@aws.org
AWWA (American Water Works Association)

New Standard
BSR/AWWA G520-201x, Wastewater Collection System Operation and Management (new standard)
This standard describes the critical requirements for the effective operation and management of a wastewater collection system.
Single copy price: $20.00
Obtain an electronic copy from: vdavid@awwa.org
Order from: Paul Olson, (303) 347-6178, polson@awwa.org; vdavid@awwa.org
Send comments (with copy to psa@ansi.org) to: Same

ECIA (Electronic Components Industry Association)

Revision
BSR/EIA 364-87B-201x, Nanosecond Event Detection Test Procedure for Electrical Connectors, Contacts and Sockets (revision and redesignation of ANSI/EIA 364-87A-2009)
The object of this procedure is to define methods for detecting events that can be as short as 1 nanosecond.
Single copy price: $84.00
Obtain an electronic copy from: global.ihs.com (877) 413-5184
Send comments (with copy to psa@ansi.org) to: emikoski@ecianow.org

AWWA (American Water Works Association)

Revision
BSR/AWWA C600-201x, Installation of Ductile-Iron Mains and Their Appurtenances (revision of ANSI/AWWA C600-2010)
This standard describes installation procedures for ductile-iron mains and their appurtenances for potable water, wastewater, reclaimed water, and raw water.
Single copy price: $20.00
Obtain an electronic copy from: vdavid@awwa.org
Order from: Paul Olson, (303) 347-6178, polson@awwa.org; vdavid@awwa.org
Send comments (with copy to psa@ansi.org) to: Same

AWWA (American Water Works Association)

Revision
BSR/AWWA C151/A21.51-201x, Ductile-Iron Pipe, Centrifugally Cast (revision of ANSI/AWWA C151/A21.51-2009)
This standard describes 3-in. through 64-in. (80-mm through 1,600-mm) ductile-iron pipe, centrifugally cast, for potable water, raw water, wastewater, and reclaimed water systems with push-on joints or mechanical joints. Requirements for pipe according to this standard are discussed in the text and are shown in Tables 1 through 5 and Figures 1, 2, and 3. This standard may be used for pipe with other types of joints as may be agreed on at the time of purchase.
Single copy price: $20.00
Obtain an electronic copy from: vdavid@awwa.org
Order from: Paul Olson, (303) 347-6178, polson@awwa.org; vdavid@awwa.org
Send comments (with copy to psa@ansi.org) to: Same

ICT (International Code Council)

New Standard
BSR/ICC 902/SRCC 400-201x, Solar Swimming Pool and Spa Heating Systems Performance Standard (new standard)
This standard will establish minimum requirements for the performance, design and installation of solar thermal heating systems for heating water used within pools, spas, hot tubs, exercise spas, water parks, and spray grounds. This standard will also establish methods for rating the performance of these systems based on projections and test data for specific climates, locations, times of year, and pool or spa type. This standard will apply to both residential and commercial systems, both direct and indirect heating systems and both new and existing installations.
Single copy price: Free
Obtain an electronic copy from: http://www.iccsafe.org/codes-tech-support/codes/code-development-process/standards-development/is-phsc/
Order from: Edward Wirtschoreck, (888) 422-7233, erwirtschoreck@iccsafe.org
Send comments (with copy to psa@ansi.org) to: Same

AWWA (American Water Works Association)

Revision
BSR/AWWA E102-201x, Submersible Vertical Turbine Pumps (revision of ANSI/AWWA E102-2008)
This standard provides minimum requirements for submersible vertical turbine pumps utilizing a discharge column pipe assembly for installation in wells, water treatment plants, water transmission systems, and water distribution systems. Electric motors are the only type of prime movers addressed in this standard.
Single copy price: $20.00
Obtain an electronic copy from: vdavid@awwa.org
Order from: Paul Olson, (303) 347-6178, polson@awwa.org; vdavid@awwa.org
Send comments (with copy to psa@ansi.org) to: Same

IESNA (Iluminating Engineering Society of North America)

Revision
BSR/IES RP-27.3-201x, Photobiological Safety for Lamps - Risk Group Classification and Labeling (revision and redesignation of ANSI/IESNA RP-27.3-2007)
The purpose of this standard (BSR/IES RP-27.3-201x) is to provide the criteria for proper categorization, classification, and informational requirements of lamps so that such sources may be properly applied in the design of lamp systems.
Single copy price: $25.00
Obtain an electronic copy from: pmcgillicuddy@ies.org
Order from: Patricia McGillicuddy, (212) 248-5000, pmcgillicuddy@ies.org
Send comments (with copy to psa@ansi.org) to: Same
ISA (International Society of Automation)

New National Adoption

BSR/ISA 61511-3 (84.00.01)-201x, Functional safety - Safety instrumented systems for the process industry sector - Part 3: Guidance for the determination of the required safety integrity levels (identical national adoption of IEC 61511-3 Ed. 2.0)

Provides guidelines for determining the required safety integrity levels for safety instrumented systems in the process industry sector.

Single copy price: $200.00 usd
Obtain an electronic copy from: crobinson@isa.org
Order from: crobinson@isa.org
Send comments (with copy to psa@ansi.org) to: Same

NEMA (ASC C8) (National Electrical Manufacturers Association)

New Standard

BSR ICEA P-45-482-201x, Short Circuit Performance of Metallic Shields and Sheaths on Insulated Cable (new standard)

Equations and parameters have been established for short circuit calculations for sheaths or shields made of aluminum, bronze, copper, lead, steel, zinc and cupronickel alloys. The types of sheaths or shields included are:

- Wires, applied either helically, as braid or serving; or longitudinally with corrugations;
- Helically applied flat tape, not overlapped;
- Helically applied, overlapped, flat tape;
- Corrugated tape, longitudinally applied; and
- Tubular sheath.

The types of cable materials in contact with the sheath or shield are: crosslinked (thermoset), thermoplastic, impregnated paper, and varnished cloth. The materials that determine the maximum allowable short circuit temperatures are: paper, varnished cloth and several thermoplastic and thermosetting materials presently appearing in ICEA standards.

Temperature limits, considered safe, were established for the various coverings and insulation materials. The equations may be used to determine:

- The maximum short circuit current permitted for a specific sheath/shield and short circuit duration;
- The sheath/shield size necessary to carry a specific short circuit current for a given duration; and
- The maximum duration a specific sheath/shield can carry a specific short circuit current.

Single copy price: $88.00
Order from: Kevin Connelly, (703) 841-3299, Kevin.Connelly@Nema.org
Send comments (with copy to psa@ansi.org) to: Same

SAIA (ASC A92) (Scaffold & Access Industry Association)

New Standard

BSR/SAIA A92.22-201x, Safe Use of Mobile Elevating Work Platforms (MEWPs) (new standard)

This Standard is intended to be used in conjunction with the following American National Standards: ANSI/SAIA A92.22 - Safe Use of Mobile Elevating Work Platforms (MEWPs), and ANSI/SAIA A92.24 - Training Requirements for Operators of Mobile Elevating Work Platforms (MEWPs). This Standard specifies requirements for application, inspection, training, maintenance, repair, and safe operation of Mobile Elevating Work Platforms (hereafter known as MEWPs). It applies to all types and sizes of MEWPs as specified in ANSI/SAIA A92.20 (design, calculations, safety requirements and test methods) that are intended to position personnel, along with their necessary tools and materials, at work locations.

Single copy price: Free
Obtain an electronic copy from: deanna@saiaonline.org
Order from: DeAnna Martin, (816) 595-4860, deanna@saiaonline.org
Send comments (with copy to psa@ansi.org) to: Same

SAIA (ASC A92) (Scaffold & Access Industry Association)

New Standard

BSR/SAIA A92.24-201x, Training Requirements for the Use, Operation, Inspection, Testing and Maintenance of Mobile Elevating Work Platforms (MEWPs) (new standard)

This standard provides methods and guidelines to prepare MEWP training materials, defines administrative criteria, and delivers elements required for proper training and familiarization. It applies to all types and sizes of MEWPs defined in ANSI/SAIA A92.20 (design, calculations, safety requirements and test methods) that are intended to position personnel, along with their necessary tools and materials, at work locations.

Single copy price: Free
Obtain an electronic copy from: deanna@saiaonline.org
Order from: DeAnna Martin, (816) 595-4860, deanna@saiaonline.org
Send comments (with copy to psa@ansi.org) to: Same

TAPPI (Technical Association of the Pulp and Paper Industry)

New Standard

BSR/TAPPI T 827 om-201x, Blank box dimensioning (new standard)

This method is used to determine the score-to-score dimensions of a box blank. It may be used for solid or corrugated fiberboard containers. This would include all box designs both diecut and scored and slotted.

Single copy price: Free
Obtain an electronic copy from: standards@tappi.org
Order from: Laurence Womack, (770) 209-7276, standards@tappi.org
Send comments (with copy to psa@ansi.org) to: Same
TAPPI (Technical Association of the Pulp and Paper Industry)

Revision
BSR/TAPPI T 809 om-2011, Flat crush of corrugating medium (CMT test) (revision of ANSI/TAPPI T 809 om-2011)
This method describes a procedure for measuring the crushing resistance of a laboratory fluted strip of corrugating medium, and provides a means of estimating, in the laboratory, the potential flat crush resistance of a corrugated board.
Single copy price: Free
Send comments (with copy to tappi.org) to: Same

TAPPI (Technical Association of the Pulp and Paper Industry)

Revision
BSR/TAPPI T 811 om-201x, Edgewise compressive strength of corrugated fiberboard (short column test) (revision of ANSI/TAPPI T 811 om-2011)
This method describes procedures for determining the edgewise compressive strength (ECT), perpendicular to the axis of the flutes, of a short column of single-, double-, or triple-wall corrugated fiberboard.
Single copy price: Free
Send comments (with copy to tappi.org) to: Same

UL (Underwriters Laboratories, Inc.)

New National Adoption
Single copy price: Contact comm2000 for pricing and delivery options
Send comments (with copy to psa@ansi.org) to: Same

UL (Underwriters Laboratories, Inc.)

Reaffirmation
Covers the fourth edition of UL 497B, Protectors for Data Communications and Fire Alarm Circuits.
Single copy price: Contact comm2000 for pricing and delivery options
Send comments (with copy to psa@ansi.org) to: Same

UL (Underwriters Laboratories, Inc.)

New National Adoption
Single copy price: Contact comm2000 for pricing and delivery options
Send comments (with copy to psa@ansi.org) to: Same
Comment Deadline: February 21, 2017

ASME (American Society of Mechanical Engineers)

Reaffirmation

BSR/ASME TDP-2-2012 (R201x), Prevention of Water Damage to Steam Turbines Used for Electric Power Generation: Nuclear Fueled Plants (reaffirmation of ANSI/ASME TDP-2-2012)

This Standard includes practices that are concerned primarily with the prevention of water damage to steam turbines used for water-cooled nuclear reactor power generation. The practices cover design, operation, inspection, testing, and maintenance of those aspects of the following power plant systems and equipment concerned with the prevention of water induction into steam turbines and the safe removal of water from steam turbines.

Single copy price: $49.00

For Reaffirmations and Withdrawn standards, please view our catalog at http://www.asme.org/kb/standards.

Send comments (with copy to psa@ansi.org) to: April Amaral, AmaralA@asme.org

Correction

Errors in Call-for-Comment Listings

BSR/UL 1123-201x and BSR/UL 1180-201x

In the December 16, 2016 issue of Standards Action, BSR/UL 1123-201x and BSR/UL 1180-201x were accidentally listed in the Call-for-Comment section. These two standards are not subject to comment and were listed in error.
Call for Members (ANS Consensus Bodies)

Directly and materially affected parties who are interested in participating as a member of an ANS consensus body for the standards listed below are requested to contact the sponsoring standards developer directly and in a timely manner.

AAMI (Association for the Advancement of Medical Instrumentation)
Office: 4301 N. Fairfax Dr., Ste 301
 Suite 301
 Arlington, VA 22203-1633
Contact: Cliff Bernier
Phone: (703) 253-8263
Fax: (703) 276-0793
E-mail: cbernier@aami.org

BSR/AAMI/IEC 60601-2-16-201x, Medical electrical equipment - Part 2
 -16: Particular requirements for basic safety and essential
 performance of haemodialysis, haemodiafiltration, and haemofiltration
 equipment (identical national adoption of IEC 60601-2-16, Ed. 5.0 and
 revision of ANSI/AAMI/IEC 60601-2-16, Ed. 4-2012)

BSR/AAMI/IEC 60601-2-39-201x, Medical electrical equipment - Part 2
 -39: Particular requirements for basic safety and essential
 performance of peritoneal dialysis equipment (identical national
 adoption of IEC 60601-2-39 Ed. 3.0)

ACCA (Air Conditioning Contractors of America)
Office: 2800 Shirlington Road
 Suite 300
 Arlington, VA 22206
Contact: Danny Halel
Phone: (703) 824-8868
E-mail: danny.halel@acca.org

BSR/ACCA 11 Manual Zr-201x, Residential Zoning Systems (revision of
 ANSI/ACCA 11 Manual Zr-2012)

CGA (Compressed Gas Association)
Office: 14501 George Carter Way
 Suite 103
 Chantilly, VA 20151
Contact: Kristy Mastromichalis
Phone: (703) 788-2728
Fax: (703) 961-1831
E-mail: kmastromichalis@cganet.com

BSR/CGA P-18-201x, Standard for Bulk Inert Gas Systems (revision of
 ANSI/CGA P-18-2013)

ECIA (Electronic Components Industry Association)
Office: 2214 Rock Hill Road
 Suite 265
 Herndon, VA 20170-4212
Contact: Laura Donohoe
Phone: (571) 323-0294
Fax: (571) 323-0245
E-mail: ldonohoe@ecianow.org

BSR/EIA 364-87B-201x, Nanosecond Event Detection Test Procedure
 for Electrical Connectors, Contacts and Sockets (revision and
 redesignation of ANSI/EIA 364-87A-2009)

IESNA (Illuminating Engineering Society of North America)
Office: 120 Wall St. 17th Floor
 New York, NY 10005
Contact: Patricia McGillicuddy
Phone: (212) 248-5000
E-mail: pmcillicuddy@ies.org

BSR/IES RP-27.3-201x, Photobiological Safety for Lamps - Risk Group
 Classification and Labeling (revision and redesignation of
 ANSI/IESNA RP-27.3-2007)

MedBiq (MedBiquitous Consortium)
Office: 5801 Smith Avenue
 Davis 3110C
 Baltimore, MD 21209
Contact: Valerie Smothers
Phone: (410) 735-6142
Fax: (410) 735-4660
E-mail: vsmothters@jhmi.edu

BSR/MEDBIQ CIA.10.1-201x, Curriculum Inventory Application
 Programming Interface (new standard)

NSF (NSF International)
Office: 789 N. Dixboro Road
 Ann Arbor, MI 48105-9723
Contact: Lauren Panoff
Phone: (734) 769-5197
E-mail: lpanoff@nsf.org

BSR/NSF 14-201x (i82r1), Plastics Piping System Components and
 Related Materials (revision of ANSI/NSF 14-2007 (i17))

BSR/NSF 50-201x (i125r1), Equipment for Swimming Pools, Spas, Hot
 Tubs and Other Recreational Water Facilities (revision of ANSI/NSF
 50-2016)
BSR/UL 1322-201x, Standard for Safety for Fabricated Scaffold Planks and Stages (revision of ANSI/UL 1322-2010 (R2015))
Call for Members (ANS Consensus Bodies)

Call for Committee Members

ASC O1 – Safety Requirements for Woodworking Machinery

Are you interested in contributing to the development and maintenance of valuable industry safety standards? The ASC O1 is currently looking for members in the following categories:

- General Interest
- Government
- Producer
- User

If you are interested in joining the ASC O1, contact WMMA Associate Director Jennifer Miller at jennifer@wmma.org.
Final Actions on American National Standards
The standards actions listed below have been approved by the ANSI Board of Standards Review (BSR) or by an ANSI-Audited Designator, as applicable.

AWS (American Welding Society)
Revision

GTESS (Georgia Tech Energy & Sustainability Services)
New National Adoption

IEEE (Institute of Electrical and Electronics Engineers)
New Standard
Revision

ISA (International Society of Automation)
New Standard
ANSI/ISA 75.05.01-2016, Control Valve Terminology (new standard): 12/9/2016

NSF (NSF International)
Revision

UL (Underwriters Laboratories, Inc.)
New Standard
Reaffirmation

Revision
* ANSI/UL 82-2016b, Electric Gardening Appliances (revision of ANSI/UL 82-2016): 12/9/2016
ANSI/UL 1278-2016c, Standard for Safety for Movable and Wall- or Ceiling-Hung Electric Room Heaters (revision of ANSI/UL 1278-2016): 12/14/2016
Project Initiation Notification System (PINS)

ANSI Procedures require notification of ANSI by ANSI-accredited standards developers (ASD) of the initiation and scope of activities expected to result in new or revised American National Standards (ANS). Early notification of activity intended to reaffirm or withdraw an ANS and in some instances a PINS related to a national adoption is optional. The mechanism by which such notification is given is referred to as the PINS process. For additional information, see clause 2.4 of the ANSI Essential Requirements: Due Process Requirements for American National Standards.

Following is a list of proposed actions and new ANS that have been received recently from ASDs. Please also review the section in Standards Action entitled "American National Standards Maintained Under Continuous Maintenance" for additional or comparable information with regard to standards maintained under the continuous maintenance option. To view information about additional standards for which a PINS has been submitted and to search approved ANS, please visit www.NSSN.org, which is a database of standards information. Note that this database is not exhaustive.

Directly and materially affected interests wishing to receive more information or to submit comments are requested to contact the standards developer directly within 30 days of the publication of this announcement.

AAFS (American Academy of Forensic Sciences)

Office: 4200 Wisconsin Ave, NW Suite 106-310
Washington, DC 20016

Contact: Teresa Ambrosius
E-mail: tambrosius@aaafs.org

BSR/ASB Std 020-201x, Standards for Validation Studies of DNA Mixtures for the Development and Verification of a Laboratory Mixture Interpretation Protocol (new standard)
Stakeholders: DNA Professionals.
Project Need: This document will provide needed guidance to practitioners in the field.

These standards were designed to provide direction and guidance to laboratories for the development of DNA mixture interpretation protocols that consistently produce reliable and reproducible interpretations and conclusions, which are supported by internal validation data.

AAMI (Association for the Advancement of Medical Instrumentation)

Office: 4301 N. Fairfax Dr., Ste 301
Suite 301
Arlington, VA 22203-1633

Contact: Cliff Bernier
Fax: (703) 276-0793
E-mail: cbernier@aami.org

BSR/AAMI/IEC 60601-2-16-201x, Medical electrical equipment - Part 2 -16: Particular requirements for basic safety and essential performance of haemodialysis, haemodiafiltration, and haemofiltration equipment (identical national adoption of IEC 60601-2-16, Ed. 5.0 and revision of ANSI/AAMI/IEC 60601-2-16, Ed. 4 -2012)
Stakeholders: Manufacturers, users, and regulators of dialysis equipment.
Project Need: Safety and performance standards for dialysis equipment.
Applies to the basic safety and essential performance of hemodialysis, hemodiafiltration, and hemofiltration equipment. Does not take into consideration specific safety details of the dialysis fluid control system of hemodialysis equipment using regeneration of dialysis fluid or central delivery systems for dialysis fluid. It does, however, take into consideration the specific safety requirements of such hemodialysis equipment concerning electrical safety and patient safety.

BSR/AAMI/IEC 60601-2-39-201x, Medical electrical equipment - Part 2 -39: Particular requirements for basic safety and essential performance of peritoneal dialysis equipment (identical national adoption of IEC 60601-2-39 Ed. 3.0)
Stakeholders: Manufacturers, users, and regulators of peritoneal dialysis equipment.
Project Need: Safety and performance standards for peritoneal dialysis equipment.

Applies to the basic safety and essential performance of peritoneal dialysis ME equipment. Applies to PD equipment intended for use either by medical staff or under the supervision of medical experts, including PD equipment operated by the patient, regardless of whether the PD equipment is used in a hospital or domestic environment.

ACCA (Air Conditioning Contractors of America)

Office: 2800 Shirlington Road
Suite 300
Arlington, VA 22206

Contact: Danny Halel
E-mail: danny.halel@acca.org

Stakeholders: Contractors, designers and residential owners/occupants.
Project Need: Zoning of HVAC systems achieve their full potential, operating cost savings, and consumer comfort when designed and installed properly. Currently, there are conflicting zoning guidance provided by various sectors of the HVAC industry. This standard will provide the step-by-step procedures for the design of optimum zoning in residential structures.

Provides the unique needs of zoning design that include: (1) Zonal load calculations; (2) Zoning strategies and protocols (diversity issues; multi-level construction, diverse floor plans, winter/summer room, and zone CFM variations, etc.); (3) Zoned systems types/attributes (multiple furnaces or refrigeration cycle units, central heating and cooling with VAV dampers, split coil refrigeration cycle with multiple indoor coils); (4) Controls and control strategies (VAV bypass air; VAV damper sizing; multi- or variable-speed; airflow management); and (5) Duct design and supply.
This standard establishes the definitions of terms, symbols, and abbreviations that may be used to communicate the technology and specifications of external and internal gear teeth. It provides definitive meanings by the use of words and illustrations, for commonly used gearing terms.

The purpose of this document is to illustrate, by detailed example, the most important aspects of Verification and Validation (V&V) described in the V&V 10 Guide to Verification and Validation in Computational Solid Mechanics.
BSR ASC C2 NESC-201x, National Electrical Safety Code (revision of ANSI ASC C2 NESC-2017)

Stakeholders: Utilities (private and public), telecommunication industry, municipalities, regulators, labor, railroads, electrical contractors.

Project Need: The NESC is revised every 5 years.

These rules cover supply and communication lines, equipment, and associated work practices employed by a public or private electric supply, communications, railway, or similar utility in the exercise of its function as a utility. They cover similar systems under the control of qualified persons, such as those associated with an industrial complex or utility interactive system.

BSR/MEDBIQ CIA.10.1-201x, Curriculum Inventory Application Programming Interface (new standard)

Stakeholders: Medical schools, health professions schools, government agencies, associations, information technology vendors, accreditation organizations, healthcare professionals.

Project Need: Health professions education programs frequently use an ecosystem of educational technologies to deliver and manage their curriculum and related resources and activities. Connecting data across the systems can be difficult or impossible. Institutions could facilitate the integration of their systems and their resources by having a consistent interface between the various systems.

The interface will support multiple approaches or uses cases, including the following:
- Transmission of a subset of curriculum data from one system to another;
- The inclusion of curriculum data as part of a request for curriculum-specific content or services; and
- Analytic queries.

Stakeholders: Designers and specifiers of roof systems; roof edge manufacturers; contractors; and insurance companies and building owners.

The following standard is a reference for those who design, specify, manufacture, or install edge materials used with low slope roofing systems. This standard focuses primarily on design for wind resistance. Nevertheless, it does address water and snow loads for gutters, corrosion thermal expansion, and material thicknesses that lead to satisfactory flatness. It is intended for use with the specifications and requirements of the manufacturers of the specific roofing materials and edge systems used in the roofing assembly, including fascia, coping, and gutters. The membrane manufacturer shall be consulted for specific recommendations for making the roof watertight at the edge.

Stakeholders: E-mobility industry and authorities having jurisdiction.

Project Need: To obtain national recognition of a standard covering electric bicycles, electric-power-assisted cycles (EPAC bicycles), electric scooters, and electric motorcycles.

This Outline covers the electrical systems of eBikes, electric scooters, and electric motorcycles. EBikes are defined as both Pedalec (pedal assist) and non-Pedalec types. Electric scooters and electric motorcycles are intended for over the road use. This Outline covers the on board electrical system, vehicle systems (which includes the combination of chargers and batteries) of eBikes, electric scooters, and electric motorcycles.
American National Standards Maintained Under Continuous Maintenance

The ANSI Essential Requirements: Due Process Requirements for American National Standards provides two options for the maintenance of American National Standards (ANS): periodic maintenance (see clause 4.7.1) and continuous maintenance (see clause 4.7.2). Continuous maintenance is defined as follows:

The standard shall be maintained by an accredited standards developer. A documented program for periodic publication of revisions shall be established by the standards developer. Processing of these revisions shall be in accordance with these procedures. The published standard shall include a clear statement of the intent to consider requests for change and information on the submittal of such requests. Procedures shall be established for timely, documented consensus action on each request for change and no portion of the standard shall be excluded from the revision process. In the event that no revisions are issued for a period of four years, action to reaffirm or withdraw the standard shall be taken in accordance with the procedures contained in the ANSI Essential Requirements.

The Executive Standards Council (ExSC) has determined that for standards maintained under the Continuous Maintenance option, separate PINS announcements are not required. The following ANSI Accredited Standards Developers have formally registered standards under the Continuous Maintenance option.

- AAMI (Association for the Advancement of Medical Instrumentation)
- AAMVA (American Association of Motor Vehicle Administrators)
- AGA (American Gas Association)
- AGSC (Auto Glass Safety Council)
- ASC X9 (Accredited Standards Committee X9, Incorporated)
- ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.)
- ASME (American Society of Mechanical Engineers)
- ASTM (ASTM International)
- GBI (The Green Building Initiative)
- GEIA (Greenguard Environmental Institute)
- HL7 (Health Level Seven)
- IESNA (The Illuminating Engineering Society of North America)
- MHI (ASC MH10) (Material Handling Industry)
- NAHBRC (NAHB Research Center, Inc.)
- NBBPVI (National Board of Boiler and Pressure Vessel Inspectors)
- NCPDP (National Council for Prescription Drug Programs)
- NISO (National Information Standards Organization)
- NSF (NSF International)
- PRCA (Professional Ropes Course Association)
- RESNET (Residential Energy Services Network)
- TIA (Telecommunications Industry Association)
- UL (Underwriters Laboratories, Inc.)

To obtain additional information with regard to these standards, including contact information at the ANSI Accredited Standards Developer, please visit ANSI Online at www.ansi.org/asd; select “Standards Activities,” click on “Public Review and Comment” and “American National Standards Maintained Under Continuous Maintenance.” This information is also available directly at www.ansi.org/publicreview.

Alternatively, you may contact the Procedures & Standards Administration department (PSA) at psa@ansi.org or via fax at 212-840-2298. If you request that information be provided via E-mail, please include your E-mail address; if you request that information be provided via fax, please include your fax number. Thank you.
ANSI-Accredited Standards Developers Contact Information

The addresses listed in this section are to be used in conjunction with standards listed in PINS, Call for Comment and Final Actions. This section is a list of developers who have submitted standards for this issue of *Standards Action* – it is not intended to be a list of all ANSI-Accredited Standards Developers. Please send all address corrections to Standards Action Editor at standact@ansi.org.

<table>
<thead>
<tr>
<th>AAFS</th>
<th>American Academy of Forensic Sciences</th>
</tr>
</thead>
<tbody>
<tr>
<td>4200 Wisconsin Ave, NW Suite 106-310</td>
<td>Washington, DC 20016</td>
</tr>
<tr>
<td>Phone: (719) 453-1036</td>
<td>Web: www.aafs.org</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AAMI</th>
<th>Association for the Advancement of Medical Instrumentation (AAMI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4301 N. Fairfax Dr., Ste 301</td>
<td>Suite 301</td>
</tr>
<tr>
<td>Arlington, VA 22203-1633</td>
<td>Phone: (703) 253-8263</td>
</tr>
<tr>
<td>Fax: (703) 276-0793</td>
<td>Web: www.aami.org</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ACCA</th>
<th>Air Conditioning Contractors of America</th>
</tr>
</thead>
<tbody>
<tr>
<td>2800 Shirlington Road</td>
<td>Suite 300</td>
</tr>
<tr>
<td>Arlington, VA 22206</td>
<td>Phone: (703) 824-8868</td>
</tr>
<tr>
<td>Web: www.acca.org</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AGMA</th>
<th>American Gear Manufacturers Association</th>
</tr>
</thead>
<tbody>
<tr>
<td>1001 N Fairfax Street, 5th Floor</td>
<td>Alexandria, VA 22314-1587</td>
</tr>
<tr>
<td>Phone: (703) 684-0211</td>
<td>Web: www.agma.org</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ASABE</th>
<th>American Society of Agricultural and Biological Engineers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2950 Niles Road</td>
<td>St Joseph, MI 49085</td>
</tr>
<tr>
<td>Phone: (269) 932-7027</td>
<td>Fax: (269) 429-3852</td>
</tr>
<tr>
<td>Web: www.asabe.org</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ASC X9</th>
<th>Accredited Standards Committee X9, Incorporated</th>
</tr>
</thead>
<tbody>
<tr>
<td>275 West Street</td>
<td>Suite 107</td>
</tr>
<tr>
<td>Annapolis, MD 21401</td>
<td>Phone: (410) 267-7707</td>
</tr>
<tr>
<td>Web: www.x9.org</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ASHRAE</th>
<th>American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1791 Tulie Circle, NE</td>
<td>Atlanta, GA 30329</td>
</tr>
<tr>
<td>Phone: (404) 636-8400</td>
<td>Fax: (404) 321-5478</td>
</tr>
<tr>
<td>Web: www.ashrae.org</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ASIS</th>
<th>ASIS International</th>
</tr>
</thead>
<tbody>
<tr>
<td>1625 Prince Street</td>
<td>Alexandria, VA 22314-2818</td>
</tr>
<tr>
<td>Phone: (703) 518-1439</td>
<td>Fax: (703) 518-1517</td>
</tr>
<tr>
<td>Web: www.asisonline.org</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ASME</th>
<th>American Society of Mechanical Engineers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two Park Avenue</td>
<td>New York, NY 10016</td>
</tr>
<tr>
<td>Phone: (212) 591-8521</td>
<td>Fax: (212) 591-8501</td>
</tr>
<tr>
<td>Web: www.asme.org</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ASTM</th>
<th>ASTM International</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 Barr Harbor Drive</td>
<td>West Conshohocken, PA 19428-2959</td>
</tr>
<tr>
<td>Phone: (610) 832-9744</td>
<td>Fax: (610) 834-3683</td>
</tr>
<tr>
<td>Web: www.astm.org</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AWS</th>
<th>American Welding Society</th>
</tr>
</thead>
<tbody>
<tr>
<td>8669 NW 36th Street</td>
<td>Suite #130</td>
</tr>
<tr>
<td>Miami, FL 33166-6672</td>
<td>Phone: (800) 443-9353</td>
</tr>
<tr>
<td>Fax: (305) 443-5951</td>
<td>Web: www.aws.org</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AWWA</th>
<th>American Water Works Association</th>
</tr>
</thead>
<tbody>
<tr>
<td>6666 W. Quincy Ave.</td>
<td>Denver, CO 80235</td>
</tr>
<tr>
<td>Phone: (303) 347-6178</td>
<td>Fax: (303) 795-7603</td>
</tr>
<tr>
<td>Web: www.awwa.org</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CGA</th>
<th>Compressed Gas Association</th>
</tr>
</thead>
<tbody>
<tr>
<td>14501 George Carter Way</td>
<td>Suite 101</td>
</tr>
<tr>
<td>Chantilly, VA 20151</td>
<td>Phone: (703) 788-2728</td>
</tr>
<tr>
<td>Fax: (703) 961-1831</td>
<td>Web: www.cganet.com</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CPA</th>
<th>Composite Panel Association</th>
</tr>
</thead>
<tbody>
<tr>
<td>19465 Deerfield Avenue</td>
<td>Suite 306</td>
</tr>
<tr>
<td>Leesburg, VA 20176</td>
<td>Phone: (703) 724-1128</td>
</tr>
<tr>
<td>Fax: (703) 724-1588</td>
<td>Web: www.cpamodules.org</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CSA</th>
<th>CSA Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>8501 East Pleasant Valley Rd.</td>
<td>Cleveland, OH 44131</td>
</tr>
<tr>
<td>Phone: (216) 524-4990 x88321</td>
<td>Fax: (216) 520-8979</td>
</tr>
<tr>
<td>Web: www.csa-america.org</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECIA</th>
<th>Electronic Components Industry Association</th>
</tr>
</thead>
<tbody>
<tr>
<td>2214 Rock Hill Road</td>
<td>Suite 265</td>
</tr>
<tr>
<td>Herndon, VA 20170-4212</td>
<td>Phone: (571) 323-0294</td>
</tr>
<tr>
<td>Fax: (571) 323-0245</td>
<td>Web: www.ecianow.org</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GTESS</th>
<th>Georgia Tech Energy & Sustainability Services</th>
</tr>
</thead>
<tbody>
<tr>
<td>75 Fifth Street N.W</td>
<td>Suite 300</td>
</tr>
<tr>
<td>Atlanta, GA 30308</td>
<td>Phone: (404) 407-6404</td>
</tr>
<tr>
<td>Fax: (404) 894-8194</td>
<td>Web: www.innovate.gatech.edu</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ICC</th>
<th>International Code Council</th>
</tr>
</thead>
<tbody>
<tr>
<td>4051 West Flossmoor Road</td>
<td>Country Club Hills, IL 60478-5795</td>
</tr>
<tr>
<td>Phone: (888) 422-7233</td>
<td>Fax: (708) 799-0320</td>
</tr>
<tr>
<td>Web: www.iccsafe.org</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IEEE</th>
<th>Institute of Electrical and Electronics Engineers</th>
</tr>
</thead>
<tbody>
<tr>
<td>445 Hoes Lane, P.O. Box 1331</td>
<td>Piscataway, NJ 08855-1331</td>
</tr>
<tr>
<td>Phone: (732) 562-3817</td>
<td>Fax: (732) 796-6966</td>
</tr>
<tr>
<td>Web: www.ieee.org</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IESNA</th>
<th>Illuminating Engineering Society of North America</th>
</tr>
</thead>
<tbody>
<tr>
<td>120 Wall St. 17th Floor</td>
<td>New York, NY 10005</td>
</tr>
<tr>
<td>Phone: (212) 248-5000</td>
<td>Web: www.iesna.org</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ISA</th>
<th>(Organization) International Society of Automation</th>
</tr>
</thead>
<tbody>
<tr>
<td>67 Alexander Drive</td>
<td>Research Triangle Park, NC 27709</td>
</tr>
<tr>
<td>Phone: (919) 990-9213</td>
<td>Fax: (919) 549-8288</td>
</tr>
<tr>
<td>Web: www.isa.org</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MedBiq</th>
<th>Mediquitous Consortium</th>
</tr>
</thead>
<tbody>
<tr>
<td>5801 Smith Avenue</td>
<td>Davis 3110C</td>
</tr>
<tr>
<td>Baltimore, MD 21209</td>
<td>Phone: (410) 735-6142</td>
</tr>
<tr>
<td>Fax: (410) 735-4660</td>
<td>Web: www.medbiq.org</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NEMA</th>
<th>National Electrical Manufacturers Association</th>
</tr>
</thead>
<tbody>
<tr>
<td>1300 North 17th Street</td>
<td>Rosslyn, VA 22209</td>
</tr>
<tr>
<td>Phone: (703) 841-3299</td>
<td>Web: www.nema.org</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NSF</th>
<th>NSF National Science Foundation</th>
</tr>
</thead>
<tbody>
<tr>
<td>789 N. Dixboro Road</td>
<td>Ann Arbor, MI 48105-9723</td>
</tr>
<tr>
<td>Phone: (734) 769-5197</td>
<td>Web: www.nsf.org</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RESNET</th>
<th>Residential Energy Services Network, Inc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4867 Patina Court</td>
<td>Oceanside, CA 92057</td>
</tr>
<tr>
<td>Phone: (760) 408-5860</td>
<td>Fax: (760) 806-9449</td>
</tr>
<tr>
<td>Web: www.resnet.us.com</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SAIA (ASC A92)</th>
<th>Scaffold & Access Industry Association</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 Admiral Boulevard</td>
<td>Kansas City, MO 64106</td>
</tr>
<tr>
<td>Phone: (816) 395-4860</td>
<td>Web: www.saliaonline.org</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SPIR</th>
<th>Single Ply Roofing Institute</th>
</tr>
</thead>
<tbody>
<tr>
<td>465 Waverly Oaks Road</td>
<td>Suite 421</td>
</tr>
<tr>
<td>Waltham, MA 02452</td>
<td>Phone: (781) 647-7026</td>
</tr>
<tr>
<td>Fax: (781) 647-7222</td>
<td>Web: www.spir.org</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TAPPI</th>
<th>Technical Association of the Pulp and Paper Industry</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 Technology Parkway South</td>
<td>Peachtree Corners, GA 30092</td>
</tr>
<tr>
<td>Phone: (770) 209-7276</td>
<td>Fax: (770) 446-6947</td>
</tr>
<tr>
<td>Web: www.tappi.org</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UL</th>
<th>Underwriters Laboratories, Inc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 Laboratory Drive</td>
<td>Research Triangle Park, NC 27709-3995</td>
</tr>
<tr>
<td>Phone: (919) 549-1636</td>
<td>Fax: (919) 549-1636</td>
</tr>
<tr>
<td>Web: www.ul.com</td>
<td></td>
</tr>
</tbody>
</table>
ISO & IEC Draft International Standards

This section lists proposed standards that the International Organization for Standardization (ISO) and the International Electrotechnical Commission (IEC) are considering for approval. The proposals have received substantial support within the technical committees or subcommittees that developed them and are now being circulated to ISO and IEC members for comment and vote. Standards Action readers interested in reviewing and commenting on these documents should order copies from ANSI.

Comments
Comments regarding ISO documents should be sent to ANSI's ISO Team (isot@ansi.org); those regarding IEC documents should be sent to Tony Zertuche, General Secretary, USNC/IEC, at ANSI's New York offices (tzertuche@ansi.org). The final date for offering comments is listed after each draft.

Ordering Instructions
ISO and IEC Drafts can be made available by contacting ANSI's Customer Service department. Please e-mail your request for an ISO or IEC Draft to Customer Service at sales@ansi.org. When making your request, please provide the date of the Standards Action issue in which the draft document you are requesting appears.

ISO Standards

AGRICULTURAL FOOD PRODUCTS (TC 34)
ISO/DIS 20635, Infant formula and adult nutritional - Determination of vitamin C by (ultra) high performance liquid chromatography with ultraviolet detection ((U)HPLC-UV) - 1/3/2017, $46.00

AIRCRAFT AND SPACE VEHICLES (TC 20)
ISO/DIS 16157, Space systems - Human-life activity support systems and equipment integration in space flight - Techno-medical requirements for space vehicle human habitation environments - 2/2/2017, $40.00
ISO/DIS 16726, Space systems - Human-life activity support systems and equipment integration in space flight - Techno-medical requirements for space vehicle human habitation environments - Requirements for the air quality affected by harmful chemical contaminants - 3/4/2017, $53.00
ISO/DIS 17763, Space systems - Human-life activity support systems and equipment integration in space flight - 3/4/2017, $46.00

BUILDING CONSTRUCTION MACHINERY AND EQUIPMENT (TC 195)
ISO 13105-2/DAmd1, Building construction machinery and equipment - Machinery for concrete surface floating and finishing - Part 2: Safety requirements and verification - Amendment 1 - 3/10/2017, $29.00

CLEANROOMS AND ASSOCIATED CONTROLLED ENVIRONMENTS (TC 209)
ISO/DIS 14644-3, Cleanrooms and associated controlled environments - Part 3: Test methods - 1/8/2017, $146.00

CONCRETE, REINFORCED CONCRETE AND PRE-STRESSED CONCRETE (TC 71)
ISO/DIS 1920-5, Testing of concrete - Part 5: Properties of hardened concrete other than strength - 12/25/2040, $67.00

CONTROL AND SAFETY DEVICES FOR NON INDUSTRIAL GAS-FIRED APPLIANCES AND SYSTEMS (TC 161)
ISO/DIS 23551-7, Safety and control devices for gas burners and gas-burning appliances - Particular requirements - Part 7: Pressure sensing controls - 1/4/2017, $107.00

DENTISTRY (TC 106)
ISO/DIS 21533, Dentistry - Reusable cartridge syringes intended for intraligamentary injections - 1/8/2017, $53.00

DOCUMENT IMAGING APPLICATIONS (TC 171)
ISO/DIS 19475-2, Document management applications - Minimum requirements for the storage of documents - Part 2: Storage - 3/2/2017, $40.00

FIRE SAFETY (TC 92)
ISO/DIS 19677, Guidelines for assessing the adverse impact of wildland fires on the environment and to people through environmental exposure - 3/8/2017, $77.00

INDUSTRIAL AUTOMATION SYSTEMS AND INTEGRATION (TC 184)

INDUSTRIAL FANS (TC 117)
ISO/DIS 12759-3, Fans - Efficiency classification for fans without drives at maximum operating speed - 1/8/2017, $46.00

NUCLEAR ENERGY (TC 85)
ISO/DIS 12807, Safe transport of radioactive materials - Leakage testing on packages - 12/8/2016, $155.00
ISO/DIS 14146, Radiological protection - Criteria and performance limits for the periodic evaluation of dosimetry services - 1/4/2017, $58.00

OPTICS AND OPTICAL INSTRUMENTS (TC 172)
ISO/DIS 10110-14, Optics and photonics - Preparation of drawings for optical elements and systems - Part 14: Wavefront deformation tolerance - 3/4/2017, $58.00

PERSONAL SAFETY - PROTECTIVE CLOTHING AND EQUIPMENT (TC 94)
ISO/DIS 11393-1, Protective clothing for users of hand-held chain-saws - Part 1: Test rig for testing resistance to cutting by a chain-saw - 1/7/2017, $71.00
ISO/DIS 11393-2, Protective clothing for users of hand-held chainsaws - Part 2: Performance requirements and test methods for leg protectors - 1/7/2017, $88.00
ISO/DIS 11393-3, Protective clothing for users of hand-held chainsaws - Part 3: Test methods for footwear - 1/7/2017, $58.00
ISO/DIS 11393-4, Protective clothing for users of hand-held chainsaws - Part 4: Test methods and performance requirements for protective gloves - 1/7/2017, $93.00
ISO/DIS 11393-5, Protective clothing for users of hand-held chainsaws - Part 5: Test methods and performance requirements for protective gaiters - 1/7/2017, $62.00
ISO/DIS 11393-6, Protective clothing for users of hand-held chainsaws - Part 6: Test methods and performance requirements for upper body protectors - 1/7/2017, $88.00

ROAD VEHICLES (TC 22)
ISO/DIS 21308-6, Road vehicles - Product data exchange between chassis and bodywork manufacturers (BEP) - Part 6: Coding of hook loader bodywork - 3/3/2017, $93.00
ISO/DIS 21308-7, Road vehicles - Product data exchange between chassis and bodywork manufacturers (BEP) - Part 7: Coding of skip loader bodywork - 3/3/2017, $93.00

ROLLING BEARINGS (TC 4)
ISO/DIS 3096, Rolling bearings - Needle rollers - Boundary dimensions, geometrical product specifications (GPS) and tolerance values - 1/8/2017, $53.00
ISO/DIS 7083, Rolling bearings - Needle roller bearing track rollers - Boundary dimensions, geometrical product specifications (GPS) and tolerance values - 3/10/2017, $58.00

SHIPS AND MARINE TECHNOLOGY (TC 8)

TEXTILES (TC 38)
ISO/DIS 15487, Textiles - Method for assessing appearance of apparel and other textile end products after domestic washing and drying - 1/5/2017, $71.00

TYRES, RIMS AND VALVES (TC 31)
ISO/DIS 19940, Tyre stiffness index testing procedure for passenger extended mobility and run flat tyres - 3/9/2017, $53.00

ISO/IEC JTC 1, Information Technology

OTHER
ISO/IEC DGuide 14, Product information for consumers - 2/6/2017, $88.00

IEC Standards
10/1008/CD, IEC 63012 ED1: Insulating liquids - Unused modified or blended esters and mixtures with esters for electrotechnical applications, 2017/2/17
23B/1235/FDIS, IEC 60669-1 Ed. 4: Switches for household and similar fixed-electrical installations - Part 1: General requirements, 01/18/17
23E/990/CDV, IEC 60755 Ed.1: General safety requirements for residual current operated protective devices - Group safety publication, 2017/2/17
31/1295/NP, PNW 31-1295: Workplace atmospheres - Part 2: Gas detectors - Selection, installation, use and maintenance of detectors for toxic gases and vapours and oxygen, 2017/2/17
45A/1116/CDV, IEC 62887 Ed. 1: Nuclear power plants - Instrumentation systems important to safety - Pressure transmitters: Characteristics and test methods, 2017/2/17
48B/2539/FDIS, IEC 61076-2-113 Ed1: Connectors for electronic equipment - Product requirements - Part 2-113: Circular connector - Detail specification for connectors with data and power contacts with M12 screw-locking, 01/17/16/

64/2145/CDV, IEC 60364-7-711: Low voltage electrical installation - Part 7-711: Requirements for special installations or locations - Exhibitions, shows and stands, 2017/2/17
82/1212/DTS, IEC TS 62788-7-2 ED1: Measurement procedures for materials used in photovoltaic modules - Part 7-2: Environmental exposures - Accelerated weathering tests of polymeric materials, 2017/2/17
86B/4025/CDV, IEC 61300-3-30/Ed2: Fibre optic interconnecting devices and passive components - Basic test and measurement procedures - Part 3-30: Examinations and measurements - Endface geometry of rectangular ferrule, 2017/2/17
121A/122/NP, PNW 121A-122: Low-voltage switchgear and controlgear - Ancillary equipment - Terminal blocks for aluminium conductors, 2017/2/17
121A/123/CD, IEC 60947-4-1 Ed. 4: Low-voltage switchgear and controlgear - Part 4-1: Contactors and motor-starters - Electromechanical contactors and motor-starters, 2017/2/17
Newly Published ISO Standards

Listed here are new and revised standards recently approved and promulgated by ISO - the International Organization for Standardization. Most are available at the ANSI Electronic Standards Store (ESS) at www.ansi.org. All paper copies are available from Standards resellers (http://webstore.ansi.org/faq.aspx#resellers).

ISO/IEC JTC 1 Technical Reports

AGRICULTURAL FOOD PRODUCTS (TC 34)

ISO 5492/Amd1:2016, Sensory analysis - Vocabulary - Amendment 1, $51.00

AIRCRAFT AND SPACE VEHICLES (TC 20)

ISO 7718-1:2016, Aircraft - Passenger doors interface requirements for connection of passenger boarding bridge or passenger transfer vehicle - Part 1: Main deck doors, $51.00

ISO 7718-2:2016, Aircraft - Passenger doors interface requirements for connection of passenger boarding bridge or passenger transfer vehicle - Part 2: Upper deck doors, $51.00

DIMENSIONAL AND GEOMETRICAL PRODUCT SPECIFICATIONS AND VERIFICATION (TC 213)

ISO 14405-3:2016, Geometrical product specifications (GPS) - Dimensional tolerancing - Part 3: Angular sizes, $149.00

FINE CERAMICS (TC 206)

ISO 14705:2016, Fine ceramics (advanced ceramics, advanced technical ceramics) - Test method for hardness of monolithic ceramics at room temperature, $149.00

FLOOR COVERINGS (TC 219)

ISO 20251:2016, Textile floor coverings - Water impermeability test, $51.00

INDUSTRIAL AUTOMATION SYSTEMS AND INTEGRATION (TC 184)

IEC 62264-3:2016, Enterprise-control system integration - Part 3: Activity models of manufacturing operations management, $88.00

NATURAL GAS FUELLING STATIONS FOR VEHICLES (TC 252)

ISO 16923:2016, Natural gas fuelling stations - CNG stations for fuelling vehicles, $200.00

PLASTICS (TC 61)

ISO 177:2016, Plastics - Determination of migration of plasticizers, $51.00

ISO 16620-4:2016, Plastics - Biobased content - Part 4: Determination of biobased mass content, $123.00

PLASTICS PIPES, FITTINGS AND VALVES FOR THE TRANSPORT OF FLUIDS (TC 138)

ISO 15493/Amd1:2016, Plastics piping systems for industrial applications - Acrylonitrile-butadiene-styrene (ABS), unplasticized poly(vinyl chloride) (PVC-U) and chlorinated poly(vinyl chloride) (PVC-C) - Specifications for components and the system - Metric series - Amendment 1, $22.00

ISO 10928:2016, Plastics piping systems - Glass-reinforced thermosetting plastics (GRP) pipes and fittings - Methods for regression analysis and their use, $200.00

ROAD VEHICLES (TC 22)

ISO 13296:2016, Diesel engines - High-pressure fuel injection pipe assemblies - General requirements and dimensions, $88.00

ISO 11898-2:2016, Road vehicles - Controller area network (CAN) - Part 2: High-speed medium access unit, $173.00

ISO 17987-7:2016, Road vehicles - Local Interconnect Network (LIN) - Part 7: Electrical Physical Layer (EPL) conformance test specification, $265.00

RUBBER AND RUBBER PRODUCTS (TC 45)

ISO 8033:2016, Rubber and plastics hoses - Determination of adhesion between components, $123.00

ISO 13775-2:2016, Thermoplastic tubing and hoses for automotive use - Part 2: Petroleum-based-fuel applications, $149.00

SHIPS AND MARINE TECHNOLOGY (TC 8)

ISO 19355:2016, Ships and marine technology - Marine cranes - Structural requirements, $88.00

SIEVES, SIEVING AND OTHER SIZING METHODS (TC 24)

ISO 19430:2016, Particle size analysis - Particle tracking analysis (PTA) method, $149.00

WATER RE-USE (TC 282)

ISO 16075-4:2016, Guidelines for treated wastewater use for irrigation projects - Part 4: Monitoring, $149.00
Proposed Foreign Government Regulations

Call for Comment

U.S. manufacturers, exporters, regulatory agencies and standards developing organizations may be interested in proposed foreign technical regulations issued by Member countries of the World Trade Organization (WTO). In accordance with the WTO Agreement on Technical Barriers to Trade (TBT Agreement), Members are required to report proposed technical regulations that may significantly affect trade to the WTO Secretariat in Geneva, Switzerland. In turn, the Secretariat disseminates the information to all WTO Members. The purpose of this requirement is to provide global trading partners with an opportunity to review and comment on the regulations before they become final.

The National Center for Standards and Certification Information (NCSCI) at the National Institute of Standards and Technology (NIST), distributes these proposed foreign technical regulations to U.S. stakeholders via an online service, Notify U.S. Notify U.S. is an e-mail and Web service that allows interested U.S. parties to register, obtain notifications, and read full texts of regulations from countries and for industry sectors of interest to them. To register for Notify U.S., please go to Internet URL: http://www.nist.gov/notifyus/ and click on “Subscribe”.

NCSCI is the WTO TBT Inquiry Point for the U.S. and receives all notifications and full texts of regulations to disseminate to U.S. Industry. For further information, please contact: NCSCI, NIST, 100 Bureau Drive, Gaithersburg, MD 20899-2160; Telephone: (301) 975-4040; Fax: (301) 926-1559; E-mail: ncsclnist or notifyus@nist.gov.
American National Standards

Call for Members

INCITS Executive Board – ANSI Accredited SDO and US TAG to ISO/IEC JTC 1, Information Technology

The InterNational Committee for Information Technology Standards (INCITS), an ANSI accredited SDO, is the forum of choice for information technology developers, producers and users for the creation and maintenance of formal de jure IT standards. INCITS’ mission is to promote the effective use of Information and Communication Technology through standardization in a way that balances the interests of all stakeholders and increases the global competitiveness of the member organizations.

The INCITS Executive Board serves as the consensus body with oversight of its 40+ Technical Committees. Additionally, the INCITS Executive Board has the international leadership role as the US Technical Advisory Group (TAG) to ISO/IEC JTC 1, Information Technology.

Membership in the INCITS Executive Board is open to all directly and materially affected parties in accordance with INCITS membership rules. To find out more about participating on the INCITS Executive Board, contact Jennifer Garner at jgarner@itic.org or visit http://www.incits.org/participation/membership-info for more information.

Membership in all interest categories is always welcome; however, the INCITS Executive Board seeks to broaden its membership base in the following categories:

• Service Providers
• Users
• Standards Development Organizations and Consortia
• Academic Institutions

Society of Cable Telecommunications

ANSI Accredited Standards Developer

SCTE, an ANSI-accredited SDO, is the primary organization for the creation and maintenance of standards for the cable telecommunications industry. SCTE’s standards mission is to develop standards that meet the needs of cable system operators, content providers, network and customer premises equipment manufacturers, and all others who have an interest in the industry through a fair, balanced and transparent process.

SCTE is currently seeking to broaden the membership base of its ANSI consensus bodies and is interested in new members in all membership categories to participate in new work in fiber-optic networks, advanced advertising, 3D television, and other important topics. Of particular interest is membership from the content (program and advertising) provider and user communities.

Membership in the SCTE Standards Program is open to all directly and materially affected parties as defined in SCTE’s membership rules and operating procedures. More information is available at www.scte.org or by e-mail from standards@scte.org.

ANSI Accredited Standards Developers

Approval of Reaccreditation

National Association of Architectural Metal Manufacturers (NAAMM)

The reaccreditation of the National Association of Architectural Metal Manufacturers (NAAMM), an ANSI Member and Accredited Standards Developer, has been approved at the direction of ANSI’s Executive Standards Council under its recently revised operating procedures for documenting consensus on NAAMM-sponsored American National Standards, effective December 21, 2016. For additional information, please contact: Mr. Wes Lewis, Structural Engineer & Technical Consultant, National Association of Architectural Metal Manufacturers, 123 College Place #1101, Norfolk, VA 23510; phone: 757.489.0787; e-mail: wlewis7@cox.net.

ANSI Accreditation Program for Third Party Product Certification Agencies

Initial Accreditation in accordance with ISO/IEC 17065

Acoura Marine Limited

Comment Deadline: January 23, 2017

Ms. Fiona Calder
Group Accreditation Manager
Acoura Marine Limited
6 Redheughs Rigg,
Edinburgh EH12 9DQ, United Kingdom
E-mail: fiona.calder@acoura.com
Web: www.acoura.com

On December 13, 2016, the ANSI Accreditation Committee voted to approve Acoura Marine Limited request for initial accreditation in Accordance to ISO/IEC 17065, as well as the following scopes:

Requirements for Certification Bodies Offering Certification against the Criteria of the Global Aquaculture Alliance Best Aquaculture Practices Standards Issue 14 (10th October 2016)

Finfish & Crustacean Farms
Mussel Farms
Mollusk Farms
Finfish, Crustacean & Mollusk Hatcheries & Nurseries
Feed Mills
Salmon Farms
Seafood Processing & Repacking Plant Standards

Please send your comments by January 23, 2017 to Reinaldo Balbino Figueiredo, Senior Program Director, Product Certifier Accreditation, American National Standards Institute, 1899 L Street, NW, 11th Floor, Washington, DC 20036, Fax: 202-293 9287 or e-mail: rfiguer@ansi.org, or Nikki Jackson, Director, Product Certifier Accreditation, American National Standards Institute, 1899 L Street, NW, 11th Floor, Washington, DC 20036, Fax: 202-293 9287 or e-mail: njackson@ansi.org.
International Organization for Standardization (ISO)

New ISO/IEC Guide

Draft ISO/IEC Guide 14 on Product Information for Consumers

Comment Deadline: January 6, 2017

Please be informed that a working group of ISO’s Policy Committee on Consumer Affairs (COPOLCO) has developed a draft ISO/IEC Guide 14 on Product Information for Consumers, with the following scope statement:

This Guide provides guidance on provision of information concerning products and related services intended for consumers. It outlines general principles and recommendations for contents, methods, formats and design enabling consumers to compare and choose consumer products and related services prior to purchase. This Guide does not deal with conformity assessment.

Anyone wishing to review the draft can request a copy by contacting ANSI’s ISO Team (isot@ansi.org), with a submission of comments to Steve Cornish (scornish@ansi.org) by close of business on Friday, January 6, 2017.

Establishment of ISO Project Committee

ISO/PC 310 – Wheeled Child Conveyances

A new ISO Project Committee, ISO/PC 310 – Wheeled child conveyances, has been formed. The Secretariats has been assigned to France (AFNOR) and China (SAC).

ISO/PC 310 operates under the following scope:

Standardization deliverable in the field of wheeled child conveyances designed for the carriage of one or more children. It covers safety requirements and test methods.

Excluded: toys, shopping trolleys, baby carriers fitted with wheels, wheeled child conveyances propelled by a motor and wheeled child conveyances designed for children with special needs.

Organizations interested in serving as the U.S. TAG Administrator or participating on the U.S. TAG should contact ANSI’s ISO Team (isot@ansi.org).

ISO Proposal for a New Field of ISO Technical Activity

Gold

Comment Deadline: February 10, 2017

SAC, the ISO member body for China, has submitted to ISO a proposal for a new field of ISO technical activity on Gold, with the following scope statement:

The standardization of gold ores, gold concentrates, gold alloys (excluding gold jewelries), gold compounds, gold material and the standardization of the development, recovery and recycling of gold.

Anyone wishing to review the proposal can request a copy by contacting ANSI’s ISO Team (isot@ansi.org), with a submission of comments to Steve Cornish (scornish@ansi.org) by close of business on Friday, February 10, 2017.

New Secretariats

ISO/TC 260 – Human resource management

Comment Deadline: January 6, 2017

The University of Texas Medical Branch (UTMB) has requested ANSI to delegate the responsibilities of the administration of the ISO/TC 260 secretariat to UTMB. The secretariat was previously held by the American National Standards Institute (ANSI) and the secretariat transfer is supported by the U.S. TAG.

ISO/TC 260 operates under the following scope:

Standardization in the field of human resource management.

Organizations wishing to comment on the delegation of the responsibilities should contact ANSI’s ISO Team (isot@ansi.org).
The change presented was made by adding a “nail-head pull through property requirement” to Table 1 properties of Engineered Wood trim in ANSI A135.7-2012. Note, public notice of this limited revision is related to an ANSI audit of the developer’s process for developing A135.7.

TABLE 1
Properties of Engineered Wood Trim

<table>
<thead>
<tr>
<th>PROPERTY</th>
<th>GRADE 1 REQUIREMENT</th>
<th>GRADE 2 REQUIREMENT</th>
<th>TEST METHOD<sup>a,b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Absorption, percent based on weight (max avg. per panel)</td>
<td>12</td>
<td>10</td>
<td>Section 36. Submerge the specimens horizontally under water. Specimen size shall be 3" x 6".</td>
</tr>
<tr>
<td>Thickness Swelling, percent (max avg. per panel)</td>
<td>8</td>
<td>5</td>
<td>Section 36. Use a 19 mm (3/4") anvil on the micrometer. Submerge the specimens horizontally under water. Specimen size shall be 3" x 12".</td>
</tr>
<tr>
<td>Weatherability of Substrate, percent (max percent residual swell)</td>
<td>15</td>
<td>10</td>
<td>4.1. of this Standard. For embossed products, measure the thickness at a spot of no slope or minimal slope.</td>
</tr>
<tr>
<td>Weatherability of Primed Substrate</td>
<td>No checking, erosion, flaking or objectionable fiber raising. Less than 3.2 mm (0.125 in) of coating “picked up”.</td>
<td>Same</td>
<td>4.2 of this Standard.</td>
</tr>
<tr>
<td>Linear Expansion, 30-80% RH(max percent)</td>
<td>0.35</td>
<td>Same</td>
<td>Section 24 and Notes 47 and 48 Specimens shall be cut parallel with the long dimension of the trim.</td>
</tr>
<tr>
<td>Modulus of Rupture, MPa (psi) (min avg. per panel)</td>
<td>9.6(1,400)</td>
<td>Same</td>
<td>Section 33. Test 3 specimens parallel.</td>
</tr>
<tr>
<td>Moisture Content, (percent)<sup>d</sup></td>
<td>4 - 9</td>
<td>Same</td>
<td>Section 37.</td>
</tr>
<tr>
<td>Glue line durability - Following Boil</td>
<td>No complete delamination on any individual specimen.</td>
<td>Same</td>
<td>4.3 of this Standard.</td>
</tr>
<tr>
<td>Nail-head pull-through, N (lb) (min avg per panel)</td>
<td>670 (150)</td>
<td>Same</td>
<td>Section 15 except that specimens shall be tested in the dry condition. Three 6-penny (2.9 mm, 0.113 in wire diameter) common nails shall be used per specimen. The nails shall be driven into the specimen at least 25mm (1in) apart. The holding fixture shall consist of a plate with a 38mm (1-1/2 in) diameter opening centered in it, and the speed of testing shall be at a rate of 3.2-4.5 mm (0.125-0.175 in) per minute. For embossed products, disregard thickness.</td>
</tr>
</tbody>
</table>
Commercial powered food preparation equipment

2 Normative references

The following documents contain provisions that, through reference, constitute provisions of this NSF/ANSI Standard. At the time this Standard was balloted, the editions listed below were valid. All documents are subject to revision, and parties are encouraged to investigate the possibility of applying the recent editions of the documents indicated below. The most recent published edition of the document shall be used for undated references.

40 C.F.R. §180.940 Tolerance exemptions for active and inert ingredients for use in antimicrobial formulations (Food-Contact Surface Sanitizing Solutions)

ANSI/ASSE 1024 – 2004. Dual Check Backflow Preventers

APHA Standards Methods for the Examination of Water and Wastewater, 21st edition 22nd edition

ASSE 1032 – 2004. Dual Check Valve Type Backflow Preventers for Carbonated Beverage Dispensers – Post Mix Type

ASTM D618-08, Standard Practice for Conditioning Plastics for Testing

FDA, Food Code 2009

7 ASTM International, 100 Barr Harbor Drive, West Conshohocken, PA 19428 <www.astm.org>.
8 US Department of Health and Human Services, Public Health Service, Food and Drug Administration, College Park, MD
IAPMO – Uniform Plumbing Code 20092015
ICC – International Plumbing Code 20092015
NSF/ANSI 51. Food equipment materials
NSF/ANSI 170. Glossary of food equipment terminology
UL 157 – 2007. Gaskets and Seals
UL 197 – 2010. Standard for Commercial Electrical Cooking Appliances
UL 471 – 2010. Commercial Refrigerators and Freezers

Rationale: Normative reference update.

5.22 Casters, rollers, and gliders

If used, casters, rollers, and gliders shall be easily cleanable and shall conform to NSF/ANSI 2.

Rationale: Language updated to match boilerplate language in NSF/ANSI 2 – 2015. The term “rollers” is not used in NSF/ANSI 2 and is not defined in NSF/ANSI 170 – 2015.

5.24.4 Backflow prevention

5.24.4.1 Units intended to be connected to a water supply system under pressure shall have one of the following:

- an air gap at least twice the diameter of the water supply inlet but not less than 1.0 in (25 mm); or

9 International Association of Plumbing and Mechanical Officials (IAPMO), 5001 E. Philadelphia St., Ontario, CA 91761 <www.iapmo.org>.
10 International Code Council (ICC), 5203 Leesburg Pike, Suite 600; Falls Church, VA 22041 <www.iccsafe.org>.
11 ASTM International, 100 Barr Harbor Dr., West Conshohocken, PA 19428 <www.astm.org>.
12 UL LLC Underwriters Laboratories, Inc., 333 Pfingsten Road, Northbrook, IL 60062 <www.ul.com>.
a vacuum breaker that conforms to ANSI/ASSE 10015, *Atmospheric Type Vacuum Breakers* (for intermittent pressure conditions); or

a vacuum breaker that conforms to ANSI/ASSE 10205, *Pressure Vacuum Breaker Assembly* (for continuous pressure conditions); or

a backflow prevention device that conforms to ANSI/ASSE 10225, *Backflow Preventer for Beverage Dispensing Equipment*; or

a backflow prevention device that conforms to ANSI/ASSE 10245, *Dual Check Backflow Preventers*; or

a backflow prevention device that conforms to ASSE 10325, *Performance Requirements for Dual Check Valve Type Backflow Preventers for Carbonated Beverage Dispensers – Post Mix Type*; or

a statement in the installation instruction and on a label permanently affixed to the equipment that clearly indicates that the equipment is to be installed with adequate backflow protection to comply with applicable federal, state, and local codes.

Rationale: Language updated to match boilerplate language in NSF/ANSI 2 – 2015, section 5.56.4.1
9 Quality assurance

<table>
<thead>
<tr>
<th>Test</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threaded-Joint Test</td>
<td>Annually</td>
</tr>
<tr>
<td>Reactivity Test</td>
<td>Annually</td>
</tr>
</tbody>
</table>

Table 36 – Thread Sealants

Table 37 – PEX Geothermal Pipe and Fittings Frequency Table

<table>
<thead>
<tr>
<th>Test</th>
<th>Pipe¹</th>
<th>Fittings²</th>
<th>U-bends</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrostatic Pressure Test</td>
<td></td>
<td></td>
<td>Annually</td>
</tr>
<tr>
<td>Chemical Resistance</td>
<td>Annually</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermocyclic</td>
<td>Annually</td>
<td>Annually</td>
<td></td>
</tr>
<tr>
<td>Pressure test</td>
<td>Annually</td>
<td>Annually</td>
<td></td>
</tr>
<tr>
<td>Constant Tensile Load Joint Test</td>
<td>Annually</td>
<td>Annually</td>
<td></td>
</tr>
</tbody>
</table>

1. PEX pipe shall conform to ASTM F876 or CSA B137.5 and follow the respective QC requirements
N.2.3.2 Chlorine/Bromine

N.2.3.2.1 Monitor display accuracy
a) Calibrate a spectrophotometer using standard solutions following Standard Methods 4500-Cl G, such that the instrument is capable of measuring available chlorine levels in the range of 0-10 ppm, or for bromine using HACH Method 8016 for available bromine levels in the range of 0 – 20 ppm.

b) Weigh 0.20 g of 5% sodium hypochlorite solution a solution having 5% free chlorine derived from either sodium hypochlorite or calcium hypochlorite. Quantitatively transfer to a 1 L volumetric flask and dilute to volume using de-ionized water. The resulting stock solution should contain approximately 10 ppm available chlorine. For preparing an aqueous bromine solution obtain a 0.1N Bromine Standard Solution. Perform serial dilutions (e.g. 1/10; 1/10; 1/4; 1/2) so that the resulting stock solution contains approximately 20 ppm available bromine.

c) Using the appropriate analytical method from part a), measure the available chlorine level for the stock sodium hypochlorite or calcium hypochlorite solution, or the bromine level for the stock bromine standard solution.

d) Volumetrically dilute the stock sodium hypochlorite or calcium hypochlorite solution by the appropriate proportions to give four solutions between 0 and 10 ppm available chlorine. For example, diluting the stock to 1/5, 1/2, and 4/5 would provide the approximate concentrations of 2 ppm, 5 ppm, and 8 ppm; these dilutions along with the stock solution would give four solutions in the required concentration range. Using the spectrophotometer, measure the available chlorine level for each sodium hypochlorite solution. For bromine volumetrically dilute the stock bromine solution by the appropriate proportions to give four solutions between 0 and 20 ppm available chlorine...

N.2.3.2.2 Controller output accuracy
a) Using sodium hypochlorite or calcium hypochlorite and aqueous bromine stock solutions described in 2.3.2.1 prepare test solutions with a free available chlorine concentration of 2 mg/L as Cl2 (ppm), or 4 mg/L as Br2 (ppm).

b) Attach the sensor under test to the automated controller per manufacturer’s instructions.

c) When testing for chlorine, set the controller to a set point of 3.0 ppm free available chlorine or 6.0 ppm free bromine.

d) Attach two indicators sized for the appropriate voltage into each output terminal of the automated controller.

e) Place the sensor, or influent tube, under test in the 2 ppm sodium hypochlorite solution, or the 4 ppm bromine solution.

f) Record the chlorine, or bromine level indicated on the display (in ppm) of the automated controller. Record the operation status of the automated controller.
g) Slowly add 1 N sodium hypochlorite or calcium hypochlorite solution (or 0.1 N aqueous bromine) until the controller de-actuates. Record the chlorine or bromine ppm on the controller display.

h) Slowly add 1 N sodium thiosulphate solution until the controller actuates. Record the chlorine or bromine ppm on the controller display.

N.2.3.3 ORP

N.2.3.3.1 Monitor display accuracy

When testing the ORP probe, the alkalinity should be in the range of 80 – 120 ppm and a pH of 7.5 ± 0.2 throughout all tests. The temperature should remain constant (room temperature) throughout the duration of all of the tests ± 3 °F.

b) Weigh 0.20 g of 5% sodium hypochlorite solution having 5% free chlorine derived from either sodium hypochlorite or calcium hypochlorite. Quantitatively transfer to a 1 L volumetric flask and dilute to volume using de-ionized water. The resulting stock solution should contain approximately 10 ppm available chlorine.

b) Volumetrically dilute the stock sodium hypochlorite or calcium hypochlorite solution by the appropriate proportions to give the following four solutions: 1 ppm, 3 ppm, 5 ppm, and 7 ppm chlorine.

c) Place three ORP sensors in the solution in b) and connect them to the displays/automated controllers, or place the influent tubes from three controllers in the solution, (actual samples under test, so that there will be three independent sensor/display setups. Calibrate them per the manufacturer’s instructions.

d) At each concentration record the readings of the three ORP sensors. Calculate the average of the readings at each concentration.

N.2.3.3.2 Controller output accuracy

a) Using sodium hypochlorite or calcium hypochlorite, prepare a test solution with a chlorine concentration of 2 mg/L as Cl2 (ppm).

b) Attach the sensor under test to the automated controller per manufacturer’s instructions.

c) Attach two indicators sized for the appropriate voltage into each output terminal of the automated controller.

D) Place the sensor under test, or the influent tube of the controller, in the 2 ppm sodium hypochlorite solution.

e) Set the automated controller set point to just activate controlled output, verify output. Reduce set point to just deactivate controller output, verify output. Record ORP reading at set point.

f) Slowly add 1 N sodium hypochlorite or calcium hypochlorite solution until the controller de-actuates. Record the ORP display on the controller.

g) Slowly add 1 N sodium thiosulfate solution until the controller actuates. Record the ORP display on the controller.
Changes to draft PDS-01 incorporated into draft PDS-02 of BSR/RESNET/ICC 301-2014, Addendum D-201x

The excerpt from Table 4.2.2(1) is provided for context. Table Note (m) in draft PDS-01 is changed in draft PDS-02 to add an exception.

Note: The strike/underline text in red indicate changes to the first public review draft PDS-01. Only those changes are open for public comment.

| Thermal distribution systems: | Thermal distribution system efficiency (DSE) of 0.80 shall be applied to both the heating and cooling system efficiencies. | For forced air distribution systems: Tested in accordance with requirements equivalent to ANSI/RESNET/ICC Standard 380-2016 Section 803 of the Mortgage Industry National Home Energy Rating Systems Standards (m) and then either calculated through hourly simulation or calculated in accordance with ASHRAE Standard 152-2004 with the ducts located and insulated as in the Rated Home. For ductless distribution systems: DSE=1.0 For hydronic distribution systems: DSE=1.00 |

(m) Tested duct leakage shall be determined and documented by an Approved Tester using the protocols equivalent to those specified in ANSI/RESNET/ICC Standard 380-2016 or equivalent Section 803 of the Mortgage Industry National Home Energy Rating Systems Standards by an Approved Tester.

Exception: The requirement to test for duct leakage to the outside shall be waived, and the ducts shall be assigned 0 (zero) leakage to the outside, if both of the following conditions are visually verified by an Approved Tester at the final stage of construction:

- All ductwork and the air handler unit are completely within the Infiltration Volume of the home.
• All ductwork is visible

15 Informational Note: The impacts of the duct location and insulation shall still be accounted for within the Approved Software Rating Tool. For example, if ducts are located within an unvented attic such that the ducts are within the Infiltration Volume but not Conditioned Space Volume, then the duct leakage may be assigned to zero, but the duct location and duct insulation level shall be modeled to account for conductive heat losses.
BSR/UL 1322, Standard for Safety for Fabricated Scaffold Planks and Stages

PROPOSALS

1. Revision to Add Multiple Suspension Points

1. Scope

1.1 These requirements cover the following;

a) Wood, metal, or a combination of wood and metal fabricated planks;
b) Fabricated platforms for use with suspended, fixed, or rolling scaffold;
c) Modular suspended platforms;
d) Scaffold decks;
e) Mobile work stands; and
f) Work cages (baskets), and
g) Platforms with one, two, or multiple points.

3.11A MULTI-POINT SUSPENDED PLATFORM (MPSP) - A suspended platform that is supported from at least three separately spaced points and is more than 2.5 ft. (0.75 m) in width. MPSPs range from large area platforms, used for bridge repair and restoration work, to small platforms used for access and inspection applications. (Also known as a multi-point suspended scaffold or a multi-point bridge platform.)

4.13 A multipoint suspended platform (MPSP), independent of shape, shall be designed, constructed, and maintained in such a way that a failure of the support means shall not cause any part of the platform to collapse or fail under the most adverse loading condition as determined by the design of the platform. As an extra safety option, each stirrup can have two independent support lines. Testing shall be performed in the most adverse position.

7.1.4 The load applied to a two - or three -more person fabricated platform is to be equally applied by means of two blocks each located 18 inches (457 mm) from the center line of the platform to the center of the block. One block is to be located on each side of the center line of the product being tested.

7.2.2 The product is to be placed in a horizontal position and supported 12 inches (305 mm) from the ends of the side rail, or the stirrups in the case of modular stage platforms and modular suspended platforms with cantilevered sections. The supports on one end are to be raised so that one end of the product is 6 inches (152 mm) higher than the other end, and one side rail is to be raised so that the decking is at an angle of 15 degrees to the horizontal. The load is to be applied to the most adverse position of the platform.
8.4 For cantilevered sections used with the modular stage platform and modular suspended platform or multiple suspended platforms with a cantilever section, the load is to be applied as described in 7.1.5 and 7.1.6. The maximum deflection, measured at the outside edge of the cantilevered section, shall not exceed the values in Table 8.1.

9.2 The side rail deflection is to be measured with the product in a flat, horizontal position supported 12 inches (305 mm) from each end at the stirrups attachment point, in the case of modular stage platforms or multiple suspended platforms and modular suspended platforms with cantilevered sections, or by the end hooks for scaffold decks.

2. Anchoring Directly to the Platform

10.2 The decking strength is to be determined with the test unit in a flat, horizontal position, supported 12 inches (305 mm) from each end at the stirrups attachment point in the case of modular stage platforms, multiple suspended platforms, and modular suspended platforms with cantilevered sections or by the end hooks for scaffold decks. The test load is to be applied to the decking as specified in Table 10.1. If decking is provided with trapdoors the test is also conducted on the center of the trapdoor.

12.1 A modular stage platform or modular suspended platform or multiple suspended platform with cantilevered sections, when subjected to a test load of two times the working load, shall not lift from the support at the platform end opposite the location where the test load is applied.

12.3 A load of 100 lbs. (45 kg), simulating the stirrup, hoist, and other accessories, shall be applied equally to the side rails by means of a nominal 4-inch (102-mm) wide block, located directly over the support at the platform end opposite where the test load is applied.

Exception: This requirement does not apply if the platform is provided with hoist mounting.

13. Stirrup Strength Test

13.5 For a multiple suspended platform with a cantilever section, a load of two times the rated load plus one-half the platform weight is to be applied to a single stirrup.

21. Instructions

21.2 The instructions shall contain only information that applies to the specific type of product and shall include those items in the following list that are applicable to the product.

Items (a) – (v) have not been changed

w) When using a multiple suspended platform, always remember to level all stirrups to 0 degrees before operating the platform.
BSR/UL 8750, Standard for Safety for Light Emitting Diode (LED) Equipment for Use in Lighting Products

1. Add Supplement SF - Requirements for LED Equipment with Wired Control Circuits

SF1.1 These requirements apply to LED equipment with wired control circuits that are either isolated (as defined in 3.9) or Class 2 circuits (as defined in 3.3).

SF2.1 CONTROL CIRCUIT TYPES (SOURCE & SINK) – Control circuits may either be a source (powered from the equipment under test) or a sink (powered from an external supply) of the controlling voltage or current:

 a) A control circuit that supplies an external component (i.e., resistor, sensor) is a source, since the LED equipment provides the supply.

 b) A control circuit that is supplied from an external device is a sink, since the source of supply is external to the equipment under test.

SF2.2 LED EQUIPMENT – In this supplement, LED equipment refers to LED controllers, LED drivers, and LED modules.

SF2.3 WIRED CONTROL CIRCUITS - Circuits integral to LED equipment that are intended to remotely manage power, light output characteristics, transmission of operational/performance data, and the like, also identified as the control circuits in this supplement (see Figure SF2.1). Some designs may not include both of the primary and secondary circuits depicted.

SF3.1 When the control circuit is a sink, it shall be spaced or isolated from all other circuits of the LED equipment as follows:

 a) Control circuit lead wires, terminals, and wire connectors shall comply with the requirements for Separation of Circuits, Section 7.5, as applicable.

 b) PWB spacings between the control circuits and other circuits of the LED equipment shall comply with 7.8.2.

 c) Components that bridge between the control circuits and other circuits of the LED equipment shall comply with 7.9.2 and.

 d) Isolation transformers located between the control circuits and other circuits of the LED equipment shall comply with the requirements for Coil Insulation, Section 7.11.

Exception: The requirements in SF3.1 do not apply when:

 a) The control circuit does not exit the lighting equipment (i.e. the control circuit is internal to a fire/electrical enclosure).
b) Risks of fire and shock concerns due to interposed circuits between different components of the lighting equipment are addressed by circuit analysis, component abnormal tests, or both.

c) The required isolation for Isolated, Class 2, or LVLE power circuits is not compromised.

d) The control circuit is marked per SF8.4, and

e) The installation instructions include related information described in SF8.5.

SF3.2 When the control circuit is a source, it shall be isolated from all non-isolated circuits of the LED equipment.

a) Control circuit lead wires, terminals, and wire connectors shall comply with the requirements for Separation of Circuits, Section 7.5, as applicable.

b) PWB spacings between non-isolated circuits and control circuits of the LED equipment shall comply with 7.8.2.

c) Components that bridge between control circuits and non-isolated circuits of the LED equipment shall comply with 7.9.2.

d) Isolation transformers located between non-isolated circuits and control circuits of the LED equipment shall comply with the requirements for Coil Insulation, Section 7.11.

SF4.1 Control circuit lead wires and terminals shall comply with 7.4.4 as applicable.

SF4.2 Control circuit lead wires shall be a color other than white, green, or green with yellow stripe. When a control circuit lead wire is grey based on industry or proprietary control circuit protocols, the LED equipment branch circuit grounded conductor (common or neutral) shall be white.

SF5.1 When the control circuit is a source supplies power (to other equipment), the characteristics (V, A, W) of the supply power source shall be measured to confirm compliance with rated circuit characteristics as designated by the manufacturer. Additionally, if the power source is designated as Class 2, it shall comply with 7.12.

SF5.2 When the control circuit is a source that is designated as Class 2, it shall comply with the requirements for Class 2 Output Circuits, Section 7.12.

SF7.1 Control circuits are subject to the requirements in Dielectric Voltage Withstand Test, Section 8.6, based on the required levels for isolated circuits as identified in SF3.1 and SF3.2 Separation of Circuits, Section SF3.
SF8.1 LED equipment with control circuits shall be marked to identify:

a) The terminals or lead wires for control circuits, and

b) The intended industry or proprietary control circuit protocols as applicable.

SF8.2 Electrical ratings for a control circuit shall be marked on the LED equipment.

Exception: This information may be identified in the accompanying documents.

SF8.3 A Class 2 LED equipment with control circuits that is a source shall comply with the requirements for Class 2 Output Circuits, Section 7.12, and be marked Class 2 when:

a) The circuit has been evaluated as a Class 2 circuit, or

b) The circuit is intended for connection to an external Class 2 supply.

SF8.3.1 LED equipment with a control circuit that is intended for connection to an external supply (other than Class 2) shall be marked "CAUTION: More than one power supply present" or equivalent.

SF8.4 A Class 2 control circuit that is a sink and intended for connection to a Class 2 supply shall be marked "Suitable for Class 2 wiring" or equivalent.

SF8.4 LED equipment that leverage the Exception to SF3.1 shall be marked adjacent to the terminals or lead wires: "Notice: This control circuit is not isolated - see installation instructions" or equivalent.

SF8.5 LED equipment installation and user guides instructions shall include:

a) A description of the electrical characteristics of the control circuit,

b) The intended function of the control circuit,

c) Details of product markings described in Markings, Section SF8, and

d) The manufacturer's recommendations for its proper installation and use of the control circuit (e.g., acceptable system wiring configurations, considerations for load distribution, cumulative control circuits leakage currents, acceptability of the control circuit to exit the luminaire, acceptable control and sense devices that can be integrated with the control circuit, etc.).

SF8.6 Product markings specified in SF8.1, SF8.3, and SF8.4 may be included in the installation instructions if the LED equipment is intended to be integrated inside the lighting equipment.
<table>
<thead>
<tr>
<th>ISSUE</th>
<th>SUBMIT START</th>
<th>*SUBMIT END 5PM</th>
<th>SA PUBLISHED</th>
<th>30-DAY PR END</th>
<th>45-DAY PR END</th>
<th>60-DAY PR END</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12/20/2016</td>
<td>12/26/2016</td>
<td>Jan-6</td>
<td>2/5/2017</td>
<td>2/20/2017</td>
<td>3/7/2017</td>
</tr>
<tr>
<td>7</td>
<td>1/31/2017</td>
<td>2/6/2017</td>
<td>Feb-17</td>
<td>3/19/2017</td>
<td>4/3/2017</td>
<td>4/18/2017</td>
</tr>
<tr>
<td>9</td>
<td>2/14/2017</td>
<td>2/20/2017</td>
<td>Mar-3</td>
<td>4/2/2017</td>
<td>4/17/2017</td>
<td>5/2/2017</td>
</tr>
<tr>
<td>20</td>
<td>5/2/2017</td>
<td>5/8/2017</td>
<td>May-19</td>
<td>6/18/2017</td>
<td>7/3/2017</td>
<td>7/18/2017</td>
</tr>
<tr>
<td>22</td>
<td>5/16/2017</td>
<td>5/22/2017</td>
<td>Jun-2</td>
<td>7/2/2017</td>
<td>7/17/2017</td>
<td>8/1/2017</td>
</tr>
<tr>
<td>24</td>
<td>5/30/2017</td>
<td>6/5/2017</td>
<td>Jun-16</td>
<td>7/16/2017</td>
<td>7/31/2017</td>
<td>8/15/2017</td>
</tr>
<tr>
<td>26</td>
<td>6/13/2017</td>
<td>6/19/2017</td>
<td>Jun-30</td>
<td>7/30/2017</td>
<td>8/14/2017</td>
<td>8/29/2017</td>
</tr>
</tbody>
</table>
Standards Action Publishing Schedule for 2017, Volume No. 48

*The “Submit End” deadline applies to forms received by Monday, 5:00 PM ET

<table>
<thead>
<tr>
<th>ISSUE</th>
<th>SUBMIT START</th>
<th>*SUBMIT END 5PM</th>
<th>SA PUBLISHED</th>
<th>30-DAY PR END</th>
<th>45-DAY PR END</th>
<th>60-DAY PR END</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>8/1/2017</td>
<td>8/7/2017</td>
<td>Aug-18</td>
<td>9/17/2017</td>
<td>10/2/2017</td>
<td>10/17/2017</td>
</tr>
<tr>
<td>34</td>
<td>8/8/2017</td>
<td>8/14/2017</td>
<td>Aug-25</td>
<td>9/24/2017</td>
<td>10/9/2017</td>
<td>10/24/2017</td>
</tr>
<tr>
<td>35</td>
<td>8/15/2017</td>
<td>8/21/2017</td>
<td>Sep-1</td>
<td>10/1/2017</td>
<td>10/16/2017</td>
<td>10/31/2017</td>
</tr>
<tr>
<td>37</td>
<td>8/29/2017</td>
<td>9/4/2017</td>
<td>Sep-15</td>
<td>10/15/2017</td>
<td>10/30/2017</td>
<td>11/14/2017</td>
</tr>
<tr>
<td>45</td>
<td>10/24/2017</td>
<td>10/30/2017</td>
<td>Nov-10</td>
<td>12/10/2017</td>
<td>12/25/2017</td>
<td>1/9/2018</td>
</tr>
<tr>
<td>46</td>
<td>10/31/2017</td>
<td>11/6/2017</td>
<td>Nov-17</td>
<td>12/17/2017</td>
<td>1/1/2018</td>
<td>1/16/2018</td>
</tr>
<tr>
<td>48</td>
<td>11/14/2017</td>
<td>11/20/2017</td>
<td>Dec-1</td>
<td>12/31/2017</td>
<td>1/15/2018</td>
<td>1/30/2018</td>
</tr>
<tr>
<td>49</td>
<td>11/21/2017</td>
<td>11/27/2017</td>
<td>Dec-8</td>
<td>1/7/2018</td>
<td>1/22/2018</td>
<td>2/6/2018</td>
</tr>
<tr>
<td>52</td>
<td>12/12/2017</td>
<td>12/18/2017</td>
<td>Dec-29</td>
<td>1/28/2018</td>
<td>2/12/2018</td>
<td>2/27/2018</td>
</tr>
</tbody>
</table>