This section solicits public comments on proposed draft new American National Standards, including the national adoption of ISO and IEC standards as American National Standards, and on proposals to revise, reaffirm or withdraw approval of existing American National Standards. A draft standard is listed in this section under the ANSI-accredited standards developer (ASD) that sponsors it and from whom a copy may be obtained. Comments in connection with a draft American National Standard must be submitted in writing to the ASD no later than the last day of the comment period specified herein. Such comments shall be specific to the section(s) of the standard under review and include sufficient detail so as to enable the reader to understand the commenter’s position, concerns and suggested alternative language, if appropriate. Please note that the ANSI Executive Standards Council (ExSC) has determined that an ASD has the right to require that interested parties submit public review comments electronically, in accordance with the developer’s procedures.

Ordering Instructions for “Call-for-Comment” Listings
1. Order from the organization indicated for the specific proposal.
2. Use the full identification in your order, including the BSR prefix; for example, Electric Fuses BSR/SAE J554.
3. Include remittance with all orders.
4. BSR proposals will not be available after the deadline of call for comment.

Comments should be addressed to the organization indicated, with a copy to the Board of Standards Review, American National Standards Institute, 25 West 43rd Street, New York, NY 10036. Fax: 212-840-2298; e-mail: psa@ansi.org

* Standard for consumer products
Comment Deadline: February 21, 2016

ADA (American Dental Association)

New National Adoption

BSR/ADA Specification No. 27-201x, Polymer-Based Restorative Materials (national adoption with modifications of ISO 4049:2009)

This standard specifies requirements for dental polymer-based restorative materials supplied in a form suitable for mechanical mixing, hand-mixing, or intra-oral and extra-oral external energy activation, and intended for use primarily for the direct or indirect restoration of cavities in the teeth and for luting. The polymer-based luting materials covered by this standard are intended for use in the cementation or fixation of restorations and appliances such as inlays, onlays, veneers, crowns, and bridges.

[Click here to view these changes in full](http://www.ada.org)

Send comments (with copy to psa@ansi.org) to: Kathy Medic, (312) 440-2533, medick@ada.org

ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.)

New Standard

BSR/ASHRAE/NEMA Standard 201-201x, Facility Smart Grid Information Model (new standard)

The purpose of this standard is to define an abstract, object-oriented information model to enable appliances and control systems in homes, buildings, and industrial facilities to manage electrical loads and generation sources in response to communication with a “smart” electrical grid and to communicate information about those electrical loads to utility and other electrical service providers.

[Click here to view these changes in full](http://www.ashrae.org/standards-research--technology/public-review-drafts)

Send comments (with copy to psa@ansi.org) to: http://www.ashrae.org/standards-research--technology/public-review-drafts

NSF (NSF International)

Revision

BSR/NSF 7-201x (i15r1), Commercial Refrigerators and Freezers (revision of ANSI/NSF 7-2014)

This Standard contains requirements for refrigerators and freezers used to store and/or display cold food. The types of refrigerators and freezers covered by this Standard include, but are not limited to: storage refrigerators (e.g., reach-in, under counter, walk-in, roll-in); storage freezers (e.g., reach-in, under counter, walk-in, roll-in); rapid pull-down refrigerators and freezers; refrigerated transport cabinets; refrigerated buffet units; refrigerated food preparation units; display refrigerators; beverage coolers; and ice cream cabinets.

[Click here to view these changes in full](http://www.nsf.org)

Send comments (with copy to psa@ansi.org) to: Allan Rose, (734) 827-3817, arose@nsf.org

UL (Underwriters Laboratories, Inc.)

Revision

BSR/UL 87A-201x, Standard for Safety for Power-Operated Dispensing Devices for Gasoline and Gasoline/Ethanol Blends with Nominal Ethanol Concentrations up to 85 Percent (E0 - E85) (revision of ANSI/UL 87A-2015)

This proposal is being issued to revise the Moist Ammonia-Air Stress Cracking Test.

[Click here to view these changes in full](http://www.ul.com)

Send comments (with copy to psa@ansi.org) to: Marcia Kawate, (408) 754-6743, Marcia.M.Kawate@ul.com

Revision

BSR/UL 87B-201x, Standard for Safety for Power-Operated Dispensing Devices for Diesel Fuel, Biodiesel Fuel, Diesel/Biodiesel Blends with Nominal Biodiesel Concentrations up to 20 Percent B20), Kerosene, and Fuel Oil (revision of ANSI/UL 87B-2015)

The following topics are being proposed: (1) Revise the Moist Ammonia-Air Stress Cracking Test and (2) Add the Blending Cycling Test.

[Click here to view these changes in full](http://www.ul.com)

Send comments (with copy to psa@ansi.org) to: Marcia Kawate, (408) 754-6743, Marcia.M.Kawate@ul.com

Revision

This proposal includes revisions to add glass requirements for Class I, Division 1 to Section 10.

[Click here to view these changes in full](http://www.ul.com)

Send comments (with copy to psa@ansi.org) to: Vickie Hinton, (919) 549-1851, Vickie.T.Hinton@ul.com

Revision

BSR/UL 870-201x, Wireways, Auxiliary Gutters, and Associated Fittings (revision of ANSI/UL 870-2013)

(1) Protection from sharp edges.

[Click here to view these changes in full](http://www.ul.com)

Send comments (with copy to psa@ansi.org) to: Megan VanHeirseele, (847) 664-2881, Megan.M.VanHeirseele@ul.com

Revision

BSR/UL 1066-201X, Standard for Safety for Low-Voltage AC and DC Power Circuit Breakers Used in Enclosures (revision of ANSI/UL 1066-2013)

[Click here to view these changes in full](http://www.ul.com)

Send comments (with copy to psa@ansi.org) to: Patricia Sena, (919) 549-1636, patricia.a.sena@ul.com

Revision

BSR/UL 6141-201X, Standard for Safety for Wind Turbines Permitting Entry of Personnel (new standard)

Recirculation proposing changes to the proposed first edition of UL 6141, the Standard for Wind Turbines Permitting Entry of Personnel, originally proposed on 9-18-2015.

[Click here to view these changes in full](http://www.ul.com)

Send comments (with copy to psa@ansi.org) to: Paul Lloret, (408) 754-6618, Paul.E.Lloret@ul.com
UL (Underwriters Laboratories, Inc.)

Revision
BSR/UL 1370-201X, Standard for Safety for Unvented Alcohol Fuel Burning Decorative Appliances (revision of ANSI/UL 1370-2014)
This recirculation proposal provides revisions to the UL 1370 proposal dated 9-4-15.
Click here to view these changes in full
Send comments (with copy to psa@ansi.org) to: Nicolette Allen, (919) 549-0973, Nicolette.Allen@ul.com

Comment Deadline: March 7, 2016

ACCA (Air Conditioning Contractors of America)

Revision
BSR/ACCA 9 QIvp-210x, HVAC Quality Installation Verification Protocols (revision of ANSI/ACCA 9 QIvp-2011)
This if the first public review for the revision of the existing American National Standard that contains the verification protocols applicable to installations of HVAC equipment/components, in new and existing residential and commercial buildings, that seek to demonstrate adherence to the requirements of the ANSI/ACCA 5 QI Standard.
Single copy price: Free
Obtain an electronic copy from: www.acca.org/ansi and required response form
Order from: www.acca.org/ansi and required response form
Send comments (with copy to psa@ansi.org) to: Luis Escobar, standards-sec@acca.org

ADA (American Dental Association)

New National Adoption
BSR/ADA No. 46-201x, Dental Patient Chair (identical national adoption of ISO 6875:2011 and revision of ANSI/ADAStandard No. 46-2004 (R2014))
This standard is applicable to all patient chairs, regardless of their construction, and regardless of whether they are operated manually, electrically, or by other means, or as a combination of these. This standard specifies requirements, test methods, manufacturer's information, marking, and packaging.
Single copy price: $75.00
Obtain an electronic copy from: standards@ada.org
Order from: Kathy Medic, (312) 440-2533, medick@ada.org
Send comments (with copy to psa@ansi.org) to: Same

ASABE (American Society of Agricultural and Biological Engineers)

New National Adoption
BSR/ASABE AD3600:2015 MONYEAR, Tractors, machinery for agriculture and forestry, powered lawn and garden equipment - Operator's manuals - Content and format (national adoption with modifications of ISO 3600:2015)
Specifies the content and gives guidance on the format of operator's manuals for tractors, machinery for agriculture and forestry, and powered lawn and garden equipment. It is intended to assist manufacturers of the machinery in the drafting and presentation of these manuals. Manuals intended for use by a service technician are not within the scope of this Standard.
Single copy price: $58.00
Obtain an electronic copy from: vangilder@asabe.org
Order from: Carla VanGilder, (269) 932-7015, vangilder@asabe.org
Send comments (with copy to psa@ansi.org) to: Carla VanGilder, (269) 932-7015, vangilder@asabe.org

ASME (American Society of Mechanical Engineers)

Revision
BSR/ASME BPVC Section VIII-2015, Rules for Construction of Pressure Vessels (revision of ANSI/ASME BPVC Revision-2005)
This Section contains mandatory requirements, specific prohibitions, and nonmandatory guidance for pressure vessel materials, design, fabrication, examination, inspection, testing, certification, and pressure relief. The Code does not address all aspects of these activities, and those aspects that are not specifically addressed should not be considered prohibited.
Single copy price: Free
Obtain an electronic copy from: http://cstools.asme.org/publicreview
Order from: Mayra Santiago, ASME; ansibox@asme.org
Send comments (with copy to psa@ansi.org) to: Steven J. Rossi, rossis@asme.org, (212) 591-8460

ASSE (ASC A10) (American Society of Safety Engineers)

New Standard
BSR/ASSE A10.43-201X, Confined Space Entry for Construction and Demolition Operations (new standard)
Sets forth the minimum elements and activities of a program that defines the duties and responsibilities of construction employers to be followed while entering, exiting, and working in confined spaces at atmospheric pressure.
Single copy price: $70.00
Obtain an electronic copy from: TFisher@ASSE.Org
Order from: Tim Fisher, (847) 768-3411, TFisher@ASSE.Org
Send comments (with copy to psa@ansi.org) to: Same
This guide acquaints the user with the nondestructive examination methods commonly used to examine weldments. It also contains factors and rules for converting from U.S. customary units to SI units and recommendations to industry for managing the transition.

Single copy price: $32.00
Obtain an electronic copy from: steveh@aws.org
Order from: Stephen Hedrick, (305) 443-9353, steveh@aws.org
Send comments (with copy to psa@ansi.org) to: Stephen Hedrick, (305) 443-9353, steveh@aws.org

This standard lists and describes flaws and defects in hot gas, hot gas extrusion, heated tool butt fusion, socket fusion, electrofusion, and flow fusion welded joints in thermoplastics. Its intent is to make possible a generally valid evaluation giving consideration to graded quality requirements. Tables illustrating cracks, voids, solid inclusions, lack of fusion, flaws and defects of shape, and other flaws and defects in thermoplastic welds are included. Flaw and defect features with descriptions and illustrations are compiled into tables to aid in the evaluation of welds.

Single copy price: $32.00
Obtain an electronic copy from: steveh@aws.org
Order from: Stephen Hedrick, (305) 443-9353, steveh@aws.org
Send comments (with copy to psa@ansi.org) to: Stephen Hedrick, (305) 443-9353, steveh@aws.org

This guide contains specifications of the SI base units, derived units, prefixes, and rules for their use in AWS documents and by the welding industry. It also contains factors and rules for converting from U.S.

Single copy price: $54.00
Obtain an electronic copy from: steveh@aws.org
Order from: Stephen Hedrick, (305) 443-9353, steveh@aws.org
Send comments (with copy to psa@ansi.org) to: Stephen Hedrick, (305) 443-9353, steveh@aws.org

This specification establishes standard methods for mechanical testing of welds. The significance of each test, test apparatus, preparation of the test specimens, and the test procedure are described. Example test result sheets are provided. It is beyond the scope of this document to define the required mechanical properties or acceptance criteria for the weld metal.

Single copy price: $32.00
Obtain an electronic copy from: steveh@aws.org
Order from: Stephen Hedrick, (305) 443-9353, steveh@aws.org
Send comments (with copy to psa@ansi.org) to: Stephen Hedrick, (305) 443-9353, steveh@aws.org

The provisions of this code supplement the provisions of AWS D1.1/D1.1M for statically loaded structures shall apply in accordance with the AISC Seismic Provisions for Structural Steel Buildings. All provisions of AWS D1.1/D1.1M for statically loaded structures shall apply to the designated welds, except as specifically modified in this standard.

Single copy price: $70.00
Obtain an electronic copy from: jmolin@aws.org
Order from: Jennifer Molin, (305) 443-9353, jmolin@aws.org
Send comments (with copy to psa@ansi.org) to: Andrew Davis, (305) 443-9353 Ext. 468, adavis@aws.org
AWWA (American Water Works Association)

Revision

BSR/AWWA C903-201x, Polyethylene-Aluminum-Polyethylene (PE-AL-PE) Composite Pressure Pipe, 12 mm (1/2 In.) Through 51 mm (2 In.) for Water Service (revision of ANSI/AWWA C903-2005)

This standard describes the requirements for composite polyethylene-aluminum-polyethylene pipe (PE-AL-PE) in metric nominal inside diameter sizes 12 mm (1/2 inch) through 51 mm (2 inch). The pipe described by this standard is intended to be used for potable cold water supply outside buildings as buried water main and service pipeline.

Single copy price: $20.00
Obtain an electronic copy from: vdavid@awwa.org
Order from: Paul Olson, (303) 347-6178, polson@awwa.org; vdavid@awwa.org
Send comments (with copy to psa@ansi.org) to: Same

HI (Hydraulic Institute)

Revision

BSR/HI 5.1-5.6-201x, Sealless Rotodynamic Pumps for Nomenclature, Definitions, Application, Operation, and Test (revision of ANSI/HI 5.1-5.6 -2010)

This standard covers types and nomenclature, definitions, design and application, installation, operation and maintenance, and test of sealless rotodynamic pumps driven by canned motors or magnetic couplings. Not included are submersible wastewater pumps that do not have external shaft seals and are therefore not susceptible to external shaft leakage. Deep well submersible pumps and circulating pumps are also excluded.

Single copy price: $90.00
Obtain an electronic copy from: dgiordano@pumps.org
Order from: Denielle Giordano, (973) 267-9700 x115, dgiordano@pumps.org
Send comments (with copy to psa@ansi.org) to: Same

HI (Hydraulic Institute)

New Standard

BSR/HI 7.8-201x, Controlled Volume Metering Pump Piping Guideline (new standard)

This guideline applies to controlled volume metering pumps, specifically those with pulsating flows. Types of positive displacement pumps include, but are not limited to, hydraulic-coupled disc diaphragm, hydraulic-coupled tubular diaphragm, mechanical-coupled disc diaphragm, packed piston, and plunger. This document covers typical piping and accessories upstream and downstream from the pump(s).

Single copy price: $60.00
Obtain an electronic copy from: dgiordano@pumps.org
Order from: Denielle Giordano, (973) 267-9700 x115, dgiordano@pumps.org
Send comments (with copy to psa@ansi.org) to: Same

FM (FM Approvals)

Reaffirmation

This test standard provides a procedure for determining the impact resistance performance of roofing materials. The test uses the impact forces of freezer ice balls propelled to develop free-fall kinetic energies of the same size hail.

Single copy price: Free
Obtain an electronic copy from: josephine.mahnken@fmapprovals.com
Order from: Josephine Mahnken, (781) 255-4813, josephine.mahnken@fmapprovals.com
Send comments (with copy to psa@ansi.org) to: Same

MHI (ASC MHC) (Material Handling Industry)

Revision

BSR/MH10.8.2-201X, Data Identifier and Application Identifier Standard (revision of ANSI MH10.8.2-2010)

This standard provides a comprehensive dictionary of MH 10/SC 8 Data Identifiers and GS1 Application Identifiers, provides for the assignment of new Data Identifiers, as required, and provides a document detailing the correlation, or mapping, of Data Identifiers to Application Identifiers, where a correlation exists.

Single copy price: $15.00
Order from: Patrick Davison, (704) 676-1190, pdavison@mhi.org
Send comments (with copy to psa@ansi.org) to: Same

NAAMM (National Association of Architectural Metal Manufacturers)

Revision

BSR/NAAMM HMMA 867-201x, Guide Specification for Commercial Laminated Core Hollow Metal Doors and Frames (revision of ANSI/NAAMM HMMA 867-2006)

This Standard was developed by the HMMA Division of NAAMM to provide guidance on the development of specifications for commercial laminated hollow metal doors and windows.

Single copy price: $25.00
Obtain an electronic copy from: http://www.naamm.organsi/pending.aspx
Order from: Vernon W. Lewis, Jr., NAAMM Technical Consultant, 123 College Place, #1101, Norfolk, VA 23510
Send comments (with copy to psa@ansi.org) to: Same

NEMA (ASC C136) (National Electrical Manufacturers Association)

Revision

BSR/C136.49-201x, Roadway and Area Lighting Equipment - Plasma Lighting (new standard)

This standard defines the electrical and mechanical requirements of plasma-type light sources for use in roadway and area lighting luminaires.

Single copy price: $46.00
Obtain an electronic copy from: karen.willis@nema.org
Order from: Karen Willis, (703) 841-3277, Karen.Willis@nema.org
Send comments (with copy to psa@ansi.org) to: Same
NEMA (ASC C82) (National Electrical Manufacturers Association)

Revision
BSR C82.3-201X, Lamp Ballasts - Reference Ballasts for Fluorescent Lamps (revision of ANSI C82.3-2002 (R2010))

This standard describes the essential design features and operating characteristics of reference ballasts for fluorescent lamps. The items specified are those that have been found necessary to ensure accurate and reproducible results when either lamps or ballasts are being tested. It includes requirements for both line-frequency and high-frequency circuits. The specific values of rated input voltage and impedance for each size of lamp are listed in the applicable ANSI C78 lamp standard.

Single copy price: $80.00
Obtain an electronic copy from: michael.erbesfeld@nema.org
Order from: Michael Erbesfeld, 703-841-3262, Michael.Erbesfeld@nema.org
Send comments (with copy to psa@ansi.org) to: Same

SAAMI (Sporting Arms and Ammunition Manufacturers Institute)

New Standard
BSR/SAAMI Z299.5-201x, Voluntary Industry Performance Standards Criteria for Evaluation of New Firearms Designs under Conditions of Abusive Mishandling for the Use of Commercial Manufacturers (new standard)

This Voluntary Industry Performance Standard provides procedures for evaluating new sporting firearms designs and applies to rifle, shotguns, pistols, and revolvers. In the interest of safety, these tests are structured to demonstrate to the designer of new firearms that the product will be resistant to abusive mishandling. These procedures are specifically understood not to apply to muzzle loading and black powder firearms of any type.

Single copy price: 35.00 (ANSI Members); $45.00 (Non-members)
Obtain an electronic copy from: Brian Osowiecki, SAAMI, bosowiecki@saami.org
Order from: Brian Osowiecki, SAAMI, 11 Mile Hill Road, Newtown, CT, 06470-2359
Send comments (with copy to psa@ansi.org) to: Randy Bimson, Director of Technical Affairs, rbimson@saami.org

SCTE (Society of Cable Telecommunications Engineers)

Revision
BSR/SCTE 02-201x, Specification for “F” Port, Female, Indoor (revision of ANSI/SCTE 02-2006)

The purpose of this document is to specify requirements for female indoor “F” ports that are used in the 75-ohm RF broadband communications industry and that interface with “F” Male connectors, as defined by ANSI/SCTE 123-2011 and ANSI/SCTE 124-2011.

Single copy price: $50.00
Obtain an electronic copy from: standards@scte.org
Send comments (with copy to psa@ansi.org) to: standards@scte.org

UL (Underwriters Laboratories, Inc.)

Reaffirmation
BSR/UL 783-201 (R201x), Standard for Safety for Electric Flashlights and Lanterns for Hazardous Locations (Proposal dated 01-22-16) (reaffirmation of ANSI/UL 783-2003 (R2011))

Order from: comm2000
Send comments (with copy to psa@ansi.org) to: Vickie Hinton, (919) 549-1851, Vickie.T.Hinton@ul.com

UL (Underwriters Laboratories, Inc.)

Revision
BSR/UL 705-201X, Standard for Safety for Power Ventilators (revision of ANSI/UL 705-2011a)

(1) Addition of an allowance to use UL 840 to evaluate clearance and creepage distances. (2) Addition of a new supplement for electronic circuits.
Single copy price: Contact comm2000 for pricing and delivery options
Order from: comm2000
Send comments (with copy to psa@ansi.org) to: Susan Malohn, (847) 664-1725, Susan.P.Malohn@ul.com

UL (Underwriters Laboratories, Inc.)

Revision
BSR/UL 796F-201X, Standard for Safety for Flexible Materials Interconnect Constructions (revision of ANSI/UL 796F-2012a)

The following is a list of the proposed new and revised requirements for UL 796F: (a) Addition of requirements for sample thickness tolerance to table 5.1.1 and paragraphs 5.1.3.4 and 5.1.3.6; (b) Clarification of requirements for the dissimilar material test method specified in section 5.14; and (c) Removal of references to paragraphs in various requirements in UL 796F that are inaccurate.
Single copy price: Contact comm2000 for pricing and delivery options
Order from: comm2000
Send comments (with copy to psa@ansi.org) to: Derrick Martin, (408) 754-6656, Derrick.L.Martin@ul.com
Comment Deadline: March 22, 2016

ASME (American Society of Mechanical Engineers)

Reaffirmation

This standard covers the dimensional limits required for chain interchangeability on sprockets. It does not provide for interconnectability of chains or individual links from different manufacturers.

Single copy price: $35.00
Obtain an electronic copy from: http://www.asme.org/kb/standards
For Reaffirmations and Withdrawn standards, please view our catalog at http://www.asme.org/kb/standards.
Send comments (with copy to psa@ansi.org) to: Remington S. Richmond, richmondr@asme.org, (212) 591-8404

UL (Underwriters Laboratories, Inc.)

Revision

The proposals include the following: (1) Alternative to Drip Proof Test, and (2) Expand scope to include larger Horsepower, IEC design N, Single-phase motors, and motors rated using IP codes of IPX2

Single copy price: Contact comm2000 for pricing and delivery options
Order from: comm2000
Send comments (with copy to psa@ansi.org) to: Jonette Herman, (919) 549-1479, Jonette.A.Herman@ul.com

UL (Underwriters Laboratories, Inc.)

Revision

BSR/UL 1081-201x, Standard for Safety for Swimming Pool Pumps, Filters, and Chlorinators (revision of ANSI/UL 1081-2014)

Proposals to add requirements for electronic circuits, to allow the use of UL 840 to evaluate clearance and creepage distances, and to update requirements for switches.

Single copy price: Contact comm2000 for pricing and delivery options
Order from: comm2000
Send comments (with copy to psa@ansi.org) to: Barbara Davis, (408) 754-6722, Barbara.J.Davis@ul.com

ASME (American Society of Mechanical Engineers)

Revision

BSR/ASME HRT-1-201x, Rules for Hoisting, Rigging, and Transporting Equipment for Nuclear Facilities (revision and partition of ANSI/ASME NQA-1-2008)

This Standard provides requirements for the design and use of hoisting, rigging, and transporting equipment used from the time nuclear plant components are delivered at the point of receipt for the plant until the operating phase of the plant. Such equipment shall be designed in accordance with the guidelines of this Standard, or alternatively, in accordance with accepted industry or consensus standards applicable to the type of handling equipment use. This standard applies to the following types of load handling: (1) Those performed with single-load path handling systems; and (2) Those performed with dual-load path handling systems.

Single copy price: Free
Obtain an electronic copy from: http://cstools.asme.org/publicreview
Order from: Mayra Santiago, ASME; ansibox@asme.org
Send comments (with copy to psa@ansi.org) to: Lauren Powers, powersl@asme.org, (212) 591-7008

Technical Reports Registered with ANSI

Technical Reports Registered with ANSI are not consensus documents. Rather, all material contained in Technical Reports Registered with ANSI is informational in nature. Technical reports may include, for example, reports of technical research, tutorials, factual data obtained from a survey carried out among standards developers and/or national bodies, or information on the "state of the art" in relation to standards of national or international bodies on a particular subject.

Immediately following the end of a 30-day announcement period in Standards Action, the Technical Report will be registered by ANSI. Please submit any comments regarding this registration to the organization indicated, with a copy to the PSA Center, American National Standards Institute, 25 West 43rd Street, New York, NY 10036 or E-Mail to psa@ansi.org.

B11 (B11 Standards, Inc.)

This document provides guidelines for a uniform approach to the control of airborne contaminants generated by stationary machine tools used to cut and form materials. Control shall be through the proper design, installation, use, and maintenance of the machine tool and its support systems (such as, but not limited to, metalworking fluid delivery systems and air cleaning equipment). These guidelines are meant to be used as a whole and should not be considered in part. Inclusions: Cutting operations, machining, grinding, microfinishing, cold forming, transfer machines, part or pallet washer-off stations using coolant. Exclusions: Deburring machines, parts-washing machines, rolling mills, stamping operations, drawing operations, all machining operations that are dry, roll-forming machines, presses.

Single copy price: $25.00
Order from: David Felinski, (832) 446-6999, dfelinski@b11standards.org; Dfelinski@plasticsindustry.org
Send comments (with copy to psa@ansi.org) to: Same
Call for Members (ANS Consensus Bodies)

Directly and materially affected parties who are interested in participating as a member of an ANS consensus body for the standards listed below are requested to contact the sponsoring standards developer directly and in a timely manner.

ASA (ASC S12) (Acoustical Society of America)
Office: 1305 Walt Whitman Rd
 Suite 300
 Melville, NY 11747
Contact: Susan Blaeser
Phone: (631) 390-0215
Fax: (631) 923-2875
E-mail: asastds@acousticalsociety.org

BSR/ASA S12.65-201x, Rating Noise with Respect to Speech Interference (revision of ANSI/ASA S12.65-2006 (R2011))

ISEA (International Safety Equipment Association)
Office: 1901 North Moore Street
 Suite 808
 Arlington, VA 22209
Contact: Cristine Fargo
Phone: (703) 525-1695
Fax: (703) 525-1698
E-mail: cfargo@safetyequipment.org

BSR/ISEA Z89.1-201x, Industrial Head Protection (revision of ANSI/ISEA Z89.1-2014)
BSR/ISEA Z358.1-201x, Emergency Eyewash and Shower Equipment (revision of ANSI/ISEA Z358.1-2014)

NAAMM (National Association of Architectural Metal Manufacturers)
Office: 123 College Place
 #1101
 Norfolk, VA 23510
Contact: Vernon (Wes) Lewis
Phone: (757) 489-0787
E-mail: wlewis7@cox.net

BSR/NAAMM HMMA 867-201x, Guide Specification for Commercial Laminated Core Hollow Metal Doors and Frames (revision of ANSI/NAAMM HMMA 867-2006)
Obtain an electronic copy from: http://www.naamm.org/ansi/pending.aspx

NEMA (ASC C136) (National Electrical Manufacturers Association)
Office: 1300 North 17th Street
 Suite 900
 Rosslyn, VA 22209
Contact: Karen Willis
Phone: (703) 841-3277
Fax: (703) 841-3378
E-mail: Karen.Willis@nema.org

BSR C136.49-201x, Roadway and Area Lighting Equipment - Plasma Lighting (new standard)
BSR C136.52-201x, Standard For Roadway and Area Lighting Equipment - LED Drivers with integral Revenue Grade Energy Measurement Means (new standard)

NEMA (ASC C82) (National Electrical Manufacturers Association)
Office: 1300 N 17th St
 Rosslyn, VA 22209
Contact: Michael Erbesfeld
Phone: 703-841-3262
Fax: 703-841-3362
E-mail: Michael.Erbesfeld@nema.org

BSR C82.3-201X, Lamp ballasts - Reference Ballasts for Fluorescent Lamps (revision of ANSI C82.3-2002 (R2010))
Obtain an electronic copy from: michael.erbesfeld@nema.org

RMA (Rubber Manufacturers Association)
Office: 1400 K Street, NW
 Suite 900
 Washington, DC 20005
Contact: Jesse Levine
Phone: (202) 682-4866
E-mail: JLevine@rma.org

BSR B28.1-201x, Safety Specifications for Mills and Calenders in the Rubber Industry (new standard)
TIA (Telecommunications Industry Association)
Office: 1320 North Courthouse Road
 Suite 200
 Arlington, VA 22201
Contact: Teesha Jenkins
Phone: (703) 907-7706
Fax: (703) 907-7727
E-mail: standards@tiaonline.org
BSR/TIA 568.2-D-201x, Balanced Twisted-Pair Telecommunications
 Cabling and Components Standard (revision and redesignation of
 ANSI/TIA 568-C.2-2009)
BSR/TIA 1183-A-201x, Measurement Methods and Test Fixtures for
 Balun-less Measurements of Balanced Components and Systems
 (revision and redesignation of ANSI/TIA 1183-2012)

UL (Underwriters Laboratories, Inc.)
Office: 455 E Trimble Road
 San Jose, CA 95131-1230
Contact: Barbara Davis
Phone: (408) 754-6722
Fax: (408) 754-6722
E-mail: Barbara.J.Davis@ul.com
BSR/UL 1081-201x, Standard for Safety for Swimming Pool Pumps,
 Filters, and Chlorinators (revision of ANSI/UL 1081-2014)
Final Actions on American National Standards

The standards actions listed below have been approved by the ANSI Board of Standards Review (BSR) or by an ANSI-Audited Designator, as applicable.

CSA (CSA Group)
Reaffirmation

HPVA (Hardwood Plywood & Veneer Association)
Revision

ISEA (International Safety Equipment Association)
Revision
ANSI/ISEA 105-2016, Hand Protection Classification (revision of ANSI/ISEA 105-2011): 1/12/2016

NFPA (National Fire Protection Association)
New Standard

Revision
ANSI/NFPA 105-2015, Standard for the Installation of Smoke Door Assemblies and Other Opening Protectives (revision of ANSI/NFPA 105-2013): 6/15/2015

OPEI (Outdoor Power Equipment Institute)

Revision

TIA (Telecommunications Industry Association)

Addenda

ANSI Procedures require notification of ANSI by ANSI-accredited standards developers (ASD) of the initiation and scope of activities expected to result in new or revised American National Standards (ANS). Early notification of activity intended to reaffirm or withdraw an ANS and in some instances a PINS related to a national adoption is optional. The mechanism by which such notification is given is referred to as the PINS process. For additional information, see clause 2.4 of the ANSI Essential Requirements: Due Process Requirements for American National Standards.

Following is a list of proposed actions and new ANS that have been received recently from ASDs. Please also review the section in Standards Action entitled "American National Standards Maintained Under Continuous Maintenance" for additional or comparable information with regard to standards maintained under the continuous maintenance option. To view information about additional standards for which a PINS has been submitted and to search approved ANS, please visit www.NSSN.org, which is a database of standards information. Note that this database is not exhaustive.

Directly and materially affected interests wishing to receive more information or to submit comments are requested to contact the standards developer directly within 30 days of the publication of this announcement.

ADA (American Dental Association)

Office: 211 E. Chicago Ave
Chicago, IL 60611

Contact: Kathy Medic
Fax: (312) 440-2529
E-mail: medick@ada.org

BSR/ADA No. 117-201x, Fluoride Varnishes (identical national adoption of ISO 17730:2014)
Stakeholders: Consumers, dentists, manufacturers.
This standard specifies requirements and their test methods for total digestible fluoride content in dental varnishes containing fluoride, intended for use in the oral cavity directly on the outer surfaces of teeth and fillings. It also specifies the requirements for their packaging and labeling, including the instructions for use. This International Standard covers fluoride varnishes to be applied by dental health care workers.

Stakeholders: Dentists, manufacturers.
Project Need: An improvement was made to the ISO Standard to use a ASTM test currently being used in addition to the existing test. This is an improvement in the standard.
This standard specifies requirements and test methods for wires to be used in fixed and removable orthodontic appliances. It includes preformed orthodontic archwires but excludes springs and other preformed components. This standard gives detailed requirements concerning the presentation of the physical and mechanical properties of orthodontic wires, the test methods by which they can be determined, and packaging and labeling information.

ASA (ASC S12) (Acoustical Society of America)

Office: 1305 Walt Whitman Rd
Suite 300
Melville, NY 11747

Contact: Susan Blaeser
Fax: (631) 923-2875
E-mail: asastds@acousticalsociety.org

BSR/ASA S12.65-201x, Rating Noise with Respect to Speech Interference (revision of ANSI/ASA S12.65-2006 (R2011))
Stakeholders: Aircraft industry and others.
Project Need: This revision will primarily update normative references and add more current references to the bibliography.
This standard defines a simple numerical method for rating the expected speech-interfering aspects of noise using acoustical measurements of the noise. The relevant acoustical characteristics of the noise are summarized in terms of a single-valued index known as the speech interference level. The application of the measure is intended for natural speech.

ASCE (American Society of Civil Engineers)

Office: 1801 Alexander Bell Dr
Reston, VA 20191

Contact: James Neckel
E-mail: jneckel@asce.org

BSR/ASCE/EWRI xx/yy-201x, Calculation of the Saturated Hydraulic Conductivity of Fine-Grained Soils (new standard)
Stakeholders: Groundwater hydrologists, geotechnical engineers.
Project Need: Practitioners in groundwater hydrology and geotechnical engineering would have a method to correct the hydraulic conductivity over time as it declines due to soil consolidation.
This is a standard guideline for calculating the saturated hydraulic conductivity (K_sat), permeability (k), and porosity (n) of fine-grained, isotropic, and homogeneous soils using (i) strain-stress data from the incremental loading of a soil sample in a standardized consolidometer (step-load test), (ii) 1D vertical consolidation theory relating K_sat to the coefficient of consolidation (C_v), (iii) the relation between K_sat and k, and (iv) the relation between porosity and the void ratio of a soil undergoing primary consolidation.
standards action - january 22, 2016 - page 13 of 50 pages

ASTM (ASTM International)
Office: 100 barr harbor drive
 west conshohocken, PA 19428-2959
Contact: corice leonard
Fax: (610) 834-3683
E-mail: accreditation@astm.org

Stakeholders: Plastic Piping Systems industry.
Project Need: Specification for fittings for use with pipe meeting the requirements of this specification are given in Annex A1.
This specification covers fittings and single and coextruded acrylonitrile-butadiene-styrene (ABS) plastic drain, waste, and vent pipe (DWV) made to Schedule 40 iron pipe sizes (IPS). Plastic that does not meet the material requirements specified in Section 5 is excluded from single layer and all coextruded layers.

Stakeholders: Plastic Piping Systems industry.
Project Need: The text of this specification references notes, footnotes, and appendices which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the specification.
This specification covers requirements and test methods for materials, dimensions and tolerances, pipe stiffness, crush resistance, impact resistance, and solvent cement for poly(vinyl chloride) plastic drain, waste, and vent pipe and fittings. A form of marking is also included. Plastic that does not meet the material requirements specified in Section 5 is excluded. Installation procedures are given in the Appendix.

BSR/ASTM D2774-201x, Standard Practice for Underground Installation of Thermoplastic Pressure Piping (new standard)
Stakeholders: Plastic Piping Systems industry.
Project Need: This practice assumes that over the range of anticipated operating conditions, including maximum external loading and minimum internal pressure, the soil/pipe system will offer sufficient structural stability to resist possible excessive diametrical deformation, or even collapse.
This practice governs procedures and references ASTM specifications for underground installation of thermoplastic pressure piping, 63-in. (1372-mm) nominal size and smaller. It is beyond the scope of this practice to describe these procedures in detail since it is recognized that significant differences exist in their implementation depending on kind and type of pipe material, pipe size and wall thickness, soil conditions, and the specific end use.

Stakeholders: Plastic Piping Systems industry.
Project Need: The components covered by this specification are intended for use in residential and commercial, hot and cold, potable water distribution systems.
This specification covers requirements, test methods, and methods of marking for chlorinated poly(vinyl chloride) plastic hot- and cold-water distribution system components made in one standard dimension ratio and intended for water service up to and including 180°F (82°C). These components comprise pipe and tubing, socket-type fittings, street fittings, plastic-to-metal transition fittings, solvent cements, and adhesives. Requirements and methods of test are included for materials, workmanship, dimensions and tolerances, hydrostatic sustained pressure strength, and thermocycling resistance.

Stakeholders: Plastic Piping Systems industry.
Project Need: The text of this specification references notes, footnotes, and appendices that provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the specification.
This specification covers requirements and test methods for materials, dimensions and tolerances, deflection load, crush resistance, flattening resistance, impact resistance, and solvent cement. A form of marking is also included. Plastic that does not meet the material requirements specified in Section 5 is excluded.

BSR/ASTM D3311-201x, Specification for Drain, Waste, and Vent (DWV) Plastic Fittings Patterns (new standard)
Stakeholders: Plastic Piping Systems industry.
Project Need: Fittings meeting the requirements of this standard specification are designed for use with outside diameter controlled pipe. The inside diameter can vary significantly as the wall thickness and outside diameter varies and therefore is not suitable for use as a fitting socket.
This specification provides standard fitting geometries and laying lengths for plastic fittings intended for use in drain, waste, and vent applications.

BSR/ASTM F409-201x, Specification for Thermoplastic Accessible and Replaceable Plastic Tube and Tubular Fittings (new standard)
Stakeholders: Plastic Piping Systems industry.
Project Need: The text of this specification references notes, footnotes, and appendices which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the specification.
This specification covers requirements and test methods for materials, dimensions and tolerances, hydrostatic pressure, joint integrity, and solvent cement for thermoplastic tube and fittings for accessible and replaceable domestic waste connections.

BSR/ASTM F480-201x, Standard Specification for Thermoplastic Well Casing Pipe and Couplings Made in Standard Dimension Ratios (SDR), SCH 40 and SCH 80 (new standard)
Stakeholders: Plastic Piping Systems industry.
Project Need: Specifications are provided for the application of these materials to water well and ground water monitoring applications. Flush-threaded joint systems are included for screen and casing used primarily in the construction of ground-water monitoring wells.
This specification covers water well casing pipe and couplings made from thermoplastic materials in standard dimension ratios (SDR), SCH 40 and SCH 80.

BSR/ASTM F628-201x, Specification for Acrylonitrile-Butadiene-Styrene (ABS) Schedule 40 Plastic Drain, Waste, and Vent Pipe with a Cellular Core (new standard)
Stakeholders: Plastic Piping Systems industry.
Project Need: Fittings suitable for use with pipe meeting the requirements of this specification are given in Annex A1.
This specification covers coextruded acrylonitrile-butadiene-styrene (ABS) plastic drain, waste, and vent pipe made to Schedule 40 iron pipe sizes (IPS) and produced by the coextrusion process with concentric inner and outer solid ABS layers and the core consisting of closed-cell cellular ABS. Plastic that does not meet the material requirements specified in Section 5 is excluded from single layer and all coextruded layers.
BSR/ASTM F645-201x, Standard Guide for Selection, Design, and Installation of Thermoplastic Water-Pressure Piping Systems (new standard)
Stakeholders: Plastic Piping Systems industry.
Project Need: It is recommended that governing codes and project specifications be consulted prior to the use of this guide. Nothing in this guide should be construed as recommending practices or systems at variance with governing codes and project specifications.
This guide is intended for use in the selection, design, and installation of thermoplastic water systems for use outside buildings. For specific projects, a thorough review of this guide is recommended for the purpose of selecting specific materials, methods of joining, system design factor, and any special procedures deemed necessary to assure a satisfactory system.

BSR/ASTM F877-201x, Specification for Crosslinked Polyethylene (PEX) Hot- and Cold-Water Distribution Systems (new standard)
Stakeholders: Plastic Piping Systems industry.
Project Need: The components covered by this specification are intended for use in residential and commercial, hot and cold, potable water distribution systems or other applications such as municipal water service lines, radiant panel heating systems, hydronic baseboard heating systems, snow- and ice-melting systems, and building services pipe.
This specification covers requirements, test methods, and marking requirements for system components when tested with nominal SDR9 crosslinked polyethylene tubing as a system. Systems are intended for 100 psi (0.69 MPa) water service up to and including a maximum working temperature of 180°F (82°C). Requirements and test methods are included for materials, workmanship, dimensions and tolerances, burst pressure, sustained pressure, excessive temperature and pressure, and thermo-cycling tests.

BSR/ASTM F1412-201x, Specification for Polyolefin Pipe and Fittings for Corrosive Waste Drainage Systems (new standard)
Stakeholders: Plastic Piping Systems industry.
Project Need: The interchangeability of pipe and fittings made by different manufacturers is not addressed in this specification. Transition fittings for joining pipe and fittings of different manufacturers is provided for in this specification.
This specification covers requirements for non-pressure polyolefin pipe and fittings for corrosive waste drainage systems. Pipe is produced in Schedule 40 and 80 IPS sizes in two polyolefins, polyethylene (PE) and polypropylene (PP).

BSR/ASTM F1499-201x, Specification for Coextruded Composite Drain, Waste, and Vent Pipe (DWV) (new standard)
Stakeholders: Plastic Piping Systems industry.
Project Need: The function of this specification is to provide standardization of product, technical data, and serve as a purchasing guide.
This specification covers coextruded composite drain, waste, and vent pipe (DWV). The pipe is produced in Schedule 40 IPS sizes by a coextrusion die system, in which the concentric layers are formed and combined before exiting the die.

Stakeholders: Plastic Piping Systems industry.
Project Need: Plastic pipe refers to thermoplastic and fiberglass pipe. This guide describes installation techniques and considerations for open-cut construction of buried pipe. Although this guide was developed for plastic pipe, the concepts of providing the appropriate soil support, care in handling, correct joining techniques, proper soil compaction methods, and prevention of installation damage may apply to any pipe.

Stakeholders: Plastic Piping Systems industry.
Project Need: This specification is not intended to provide for interchangeability between plastic pipe and fittings from different manufacturers, but it does allow for transition fittings for joining one manufacturer's product to another's product, provided the joining technique used is other than heat fusion.
This specification covers requirements for polyvinylidene fluoride drainage systems for corrosive applications. Requirements for material, pipe, and fittings are included. Polyvinylidene fluoride includes emulsion/suspension polymerization and copolymers of vinylidene fluoride/hexafluoropropylene produced by either method.

BSR/ASTM F1866-201x, Specification for Poly(Vinyl Chloride) (PVC) Plastic Schedule 40 Drainage and DWV Fabricated Fittings (new standard)
Stakeholders: Plastic Piping Systems industry.
Project Need: The requirements of this specification are to provide fabricated PVC fittings suitable for drainage and venting of sanitary waste systems, storm water systems, and certain other liquid wastes. Fittings shall have solvent cement joints, gasket joints, or a combination thereof.
This specification covers requirements and test methods for fabricated poly(vinyl chloride) (PVC) plastic schedule 40 drainage and DWV fittings to be used with piping manufactured in accordance with Specifications D2665 or F891. These fabricated fittings are manufactured from pipe, or from a combination of pipe and injection-molded parts.

BSR/ASTM F1901-201x, Specification for Polyethylene (PE) Pipe and Fittings for Roof Drain Systems (new standard)
Stakeholders: Plastic Piping Systems industry.
Project Need: Pipe is produced in dimensions based on outside diameters of 32 mm (1.250 in.) and larger in accordance with Specification F714.
This specification covers requirements for polyethylene (PE) pipe and fittings for nonpressure roof drain systems. This specification covers pipe and fittings intended for normal residential and commercial uses and is not intended for use in unusual corrosive conditions.

BSR/ASTM F2021-201x, Guide for Design and Installation of Plastic Siphonic Roof Drainage Systems (new standard)
Stakeholders: Plastic Piping Systems industry.
Project Need: The interchangeability of pipe and fittings made by different manufacturers is not addressed in this guide. Transition fittings for joining pipe and fittings of different manufacturers is provided for in the referenced pipe and fitting specification.
This guide covers design and installation considerations for plastic siphonic roof drain systems for industrial, commercial, public, and residential buildings. Requirements for materials, pipe, and fittings are included.

BSR/ASTM F2135-201x, Specification for Molded Drain, Waste, and Vent (DWV) Short- Pattern Plastic Fittings (new standard)
Stakeholders: Plastic Piping Systems industry.
Project Need: Fittings meeting the requirements of this specification are designed for use with outside-diameter controlled pipe. The body inside diameter can vary significantly as the wall thickness and outside diameter varies, and therefore, is not suitable for use as a fitting socket. This specification covers standard fitting geometries for molded short-pattern plastic fittings intended for use in drain, waste, and vent applications.
BSR/ASTM F2389-201x, Specification for Pressure-Rated Polypropylene (PP) Piping Systems (new standard)
Stakeholders: Plastic Piping Systems industry.
Project Need: The components governed by this specification shall be permitted for use in water service lines, hot- and cold-water distribution, hydronic heating, and irrigation systems.

This specification establishes requirements for polypropylene (PP) piping system components made to metric sizes and IPS schedule 80 sizes, and pressure rated for water service and distribution supply (see Appendix X1). Included are criteria for materials, workmanship, dimensions and tolerances, product tests, and marking for polypropylene (PP) piping system components such as pipe, fittings, valves, and manifolds.

BSR/ASTM F2390-201x, Specification for Poly(Vinyl Chloride) (PVC) Plastic Drain, Waste, and Vent (DWV) Pipe and Fittings Having Post-Industrial Recycle Content (new standard)
Stakeholders: Plastic Piping Systems industry.
Project Need: The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.

This specification covers requirements and test methods for materials, dimensions and tolerances, pipe stiffness, crush resistance, impact resistance, hydrostatic burst resistance, and solvent cement for poly (vinyl chloride) plastic drain, waste, and vent (DWV) pipe and fittings.

BSR/ASTM F2536-201x, Guide for Installing Plastic DWV Piping Suspended from On-Grade Slabs (new standard)
Stakeholders: Plastic Piping Systems industry.
Project Need: These procedures are intended to ensure that the DWV piping suspended from the on-grade concrete slabs is not damaged or destroyed by movement of the soil or fill under the slab after the building is completed and occupied.

This guide provides procedures for the installation of DWV piping in buildings that are built where soil conditions require the use of pier- or piling-supported-grade beam construction or in filled ground where the soil compaction is less than 95%.

Stakeholders: Plastic Piping Systems industry.
Project Need: The pressure tests described in this standard are laboratory hydrostatic tests that are intended to verify joint/system integrity. They are not intended for use as field tests of installed systems.

This specification covers the performance requirements of CPVC pipe, fittings, and solvent cements used in chemical waste drainage systems. A system is made up of pipe, fittings, and solvent cement that meet the requirements of this standard.

BSR/ASTM F2806-201x, Specification for Acrylonitrile-Butadiene-Styrene (ABS) Plastic Pipe (Metric SDR-PR) (new standard)
Stakeholders: Plastic Piping Systems industry.
Project Need: The products covered by this specification are intended for use with the distribution of pressurized liquids, which are chemically compatible with the piping materials. Consult with the manufacturer and local building codes before use in other applications.

This specification covers acrylonitrile-butadiene-styrene (ABS) pipe produced by single extrusion in standard thermoplastic pipe dimension ratios and pressure rated for water (see Appendix X1). Included are criteria for classifying ABS plastic pipe materials and ABS plastic pipe, a system of nomenclature for ABS plastic pipe, and requirements and test methods for materials, workmanship, dimensions, sustained pressure, burst pressure, and extrusion quality. Methods of marking are also given.

BSR/ASTM F2829/F2829M-201x, Specification for Metric-Sized Crosslinked Polyethylene (PEX) Pipe Systems (new standard)
Stakeholders: Plastic Piping Systems industry.
Project Need: The metric-sized components covered by this specification are intended for the above-ground and buried pressure-piping applications, such as industrial and general-purpose pipelines, potable water pipelines, and fire-extinguishing pipelines.

This specification covers performance requirements, test methods, and marking requirements for metric-sized system components (electrofusion and mechanical fittings) when joined with metric-sized PEX pipe (Specification F2788) as a system, intended for use up to and including a maximum working temperature of 200°F (93°C).

BSR/ASTM F2855-201x, Specification for Chlorinated Poly(Vinyl Chloride)/Aluminum/Chlorinated Poly(Vinyl Chloride) (CPVC-AL-CPVC) Composite Pressure Tubing (new standard)
Stakeholders: Plastic Piping Systems industry.
Project Need: The components covered by this specification are intended for use in residential and commercial, hot and cold, potable water distribution systems.

This specification covers a Chlorinated Poly(Vinyl Chloride) /Aluminum/Chlorinated Poly(Vinyl Chloride), (CPVC-AL/CPVC), composite pressure tubing with a welded aluminum tube reinforcement between the inner and outer layers.

BSR/ASTM F2929-201x, Specification for Crosslinked Polyethylene (PEX) Tubing of 0.070 In. Wall and Fittings for Radiant Heating Systems Up to 75 Psig (new standard)
Stakeholders: Plastic Piping Systems industry.
Project Need: This tubing does not have an oxygen diffusion barrier layer and shall not be used in systems that require a barrier layer. This tubing is not intended for field bending at temperatures above 120°F (49°C).

This specification covers 0.070 in. wall thickness crosslinked polyethylene (PEX) tubing that is outside diameter controlled, and intended for non-potable radiant heating applications for pressures up to 75 psig in sizes 5/8 NTS (nominal tubing size) and 7/8 NTS. This specification also includes fittings that are specifically designed for this 0.070 in.-wall PEX tubing. Only 75-psig relief valves shall be used with this tubing.

BSR/ASTM F2969-201x, Specification for Acrylonitrile-Butadiene-Styrene (ABS) IPS Dimensioned Pressure Pipe (new standard)
Stakeholders: Plastic Piping Systems industry.
Project Need: The products covered by this specification are intended for use with the distribution of pressurized liquids, which are chemically compatible with the piping materials.

This specification covers acrylonitrile-butadiene-styrene (ABS) IPS dimensioned pressure pipe produced by single extrusion in standard thermoplastic pipe dimension ratios and pressure rated for water (see Appendix X1).

BSR/ASTM F3128-201x, Specification for Poly(Vinyl Chloride) (PVC) Schedule 40 Drain, Waste, and Vent Pipe with a Cellular Core (new standard)
Stakeholders: Plastic Piping Systems industry.
Project Need: Plastic that does not meet the material requirements specified in Section 5 is excluded from single layer and all coextruded layers.

This specification covers coextruded poly(vinyl chloride) (PVC) plastic drain, waste and vent pipe made to Schedule 40 pipe sizes (IPS) and produced by the coextrusion process with concentric inner and outer solid PVC layers and the core consisting of closed-cell cellular PVC.
BSR/ASTM WK38788-201x, Specification for Crosslinked Polyethylene (PEX) OD Controlled Tubing for Hydronic Heating/Cooling Systems (new standard)
Stakeholders: Plastic Piping Systems industry.
Project Need: The key focus of the proposed new standard will be to establish testing and performance requirements for limiting oxygen permeation into the hydronic fluid, which, if left unchecked, can lead to rapid corrosion of ferrous components within the system.
PEX Tubing Systems utilized in non-potable water applications intended primarily for hydronic heating/cooling systems inclusive of barrier layer(s) performance requirements.

BSR/ASTM WK50090-201x, Specification for Crosslinked Polyethylene (PEX) for Hot- and Cold-Water Hydronic Tubing Distribution Systems with Oxygen Barrier (new standard)
Stakeholders: Plastic Piping Systems industry.
Project Need: The components covered by this specification are intended for use in residential and commercial hydronic heating and cooling systems. Requirements for potable water applications are outside the scope of this specification.
This specification covers requirements, test methods, and marking requirements for crosslinked polyethylene (PEX) tubing with oxygen barrier layer(s), made in one standard dimension ratio (SDR 9), and distribution system components intended for hydronic heating and cooling applications up to and including a maximum working temperature of 200°F (93°C).

AWWA (American Water Works Association)
Office: 6666 W. Quincy Ave.
Denver, CO 80235
Contact: Paul Olson
Fax: (303) 795-7603
E-mail: polson@awwa.org; vdavid@awwa.org
BSR/AWWA A100-201x, Water Wells (revision of ANSI/AWWA A100 -2015)
Stakeholders: Drinking water treatment and supply industry, water utilities, consulting engineers, water treatment equipment manufacturers, groundwater professionals, well drillers, etc.
Project Need: This standard describes the minimum requirements for vertical water supply wells.
This standard describes the minimum requirements for vertical water supply wells.

FM (FM Approvals)
Office: 1151 Boston-Providence Turnpike
Norwood, MA 02062
Contact: Josephine Mahnken
Fax: (781) 762-9375
E-mail: josephine.mahnken@fmapprovals.com
BSR/FM 4474-201x, Evaluating the Simulated Wind Uplift Resistance of Roof Assemblies Using Static Positive and/or Negative Differential Pressures (revision of ANSI FM 4474-2004 (R2010))
Stakeholders: Building code officials, roofing manufacturers, architects, consultants, loss prevention engineers, insurance agencies.
Project Need: Roof components, incorporated in complete roof assemblies, are exposed to various wind conditions. This standard presents test methods to evaluate the simulated wind uplift resistance of the completed roof assembly by using static positive and/or negative differential pressures.
This standard presents a test method for determining and categorizing wind uplift resistance of roof assemblies including the structural deck. The objective of this test is to evaluate the comparative resistance of roof assemblies to positive and/or positive and negative pressures. The test evaluates the deck and roof covers including all components for their method of attachment to each other and to their supports.

ISEA (International Safety Equipment Association)
Office: 1901 North Moore Street
Suite 808
Arlington, VA 22209
Contact: Cristine Fargo
Fax: (703) 525-1698
E-mail: cfargo@safetyequipment.org
BSR/ISEA Z89.1-201x, Industrial Head Protection (revision of ANSI/ISEA Z89.1-2014)
Stakeholders: Equipment manufacturers and distributors, testing labs, regulatory agencies, construction, shipbuilding and general industries.
Project Need: Periodic review of standard to update references and test methods to reflect state-of-the-art technologies and intended user applications.
This standard establishes minimum performance and labeling requirements for protective helmets used in industrial and occupational settings and includes testing criteria for optional use assessments. Helmets conforming to the requirements of this standard are designated both by Type (based on location of impact force) and Class (based on electrical insulation) as well as any optional feature.

NEMA (ASC C136) (National Electrical Manufacturers Association)
Office: 1300 North 17th Street
Suite 900
Rosslyn, VA 22209
Contact: Karen Willis
Fax: (703) 841-3378
E-mail: Karen.Willis@nema.org
BSR C136.52-201x, Standard for Roadway and Area Lighting Equipment - LED Drivers with Integral Revenue Grade Energy Measurement Means (new standard)
Stakeholders: Manufacturers, users, specifiers and testing labs.
Project Need: This project is needed to provide a minimum standard for the measurement of energy consumption for outdoor lighting applications using drivers with built-in energy measurement features.
This standard describes methods and requirements for the measurement of energy consumption and the reporting of the consumption for outdoor lighting applications in a standard data format to meet revenue grade requirements using drivers or ballasts with built-in energy measurement and reporting features. This standard does not address the communication of the data captured from the point of measurement. This standard also only addresses power consumed, it does not address two-way metering.
NFPA (National Fire Protection Association)

Office: One Batterymarch Park
Quincy, MA 02169

Contact: Dawn Bellis
E-mail: ccronin@nfpa.org

BSR/NFPA 855-201x, Standard for the Installation of Stationary Energy Storage Systems (new standard)

- **Stakeholders:** Manufacturer, user, installer/maintainer, labor, enforcing authority, insurance, consumer, special experts.
- **Project Need:** Public interest and need.

This document shall address the design, construction, installation, and commissioning of stationary energy storage systems. Requirements will include those necessary for safeguarding life and protecting physical property associated with buildings or facilities that utilize stationary energy storage systems.

RMA (Rubber Manufacturers Association)

Office: 1400 K Street, NW
Suite 900
Washington, DC 20005

Contact: Jesse Levine
E-mail: JLevine@rma.org

BSR B28.1-201x, Safety Specifications for Mills and Calenders in the Rubber Industry (new standard)

- **Stakeholders:** Users of mills and calenders, producers of mills and calenders, and general interest.
- **Project Need:** This standard is intended to present the minimum criteria necessary for the safety of workers at the point of operation of mills and calenders.

This standard covers the safety guarding of mills and calenders in the rubber industry at the point of operation. Installation and maintenance issues necessary for safe operation are also included.

TIA (Telecommunications Industry Association)

Office: 1320 North Courthouse Road
Suite 200
Arlington, VA 22201

Contact: Teesha Jenkins
Fax: (703) 907-7727
E-mail: standards@tiainline.org

BSR/TIA 568.2-D-201x, Balanced Twisted-Pair Telecommunications Cabling and Components Standard (revision and redesignation of ANSI/TIA 568-C.2-2009)

- **Stakeholders:** Cable and connector manufacturers, end users, system developers, installers, consultants, field tester manufacturers and users.
- **Project Need:** Provide updates for an existing standard.

This Standard will supersede ANSI/TIA 568-C.2 and its addenda C.2-1 and C.2-2. It is intended to incorporate and revise as necessary the content of those Standards.

- **Stakeholders:** Cable and connector manufacturers, end users, system developers, installers, consultants, field tester manufacturers and users.
- **Project Need:** Provide updates for an existing standard.

This Standard will supersede ANSI/TIA 1183 and its addendum 1183-1. It is intended to incorporate and revise as necessary the content of those Standards.
American National Standards Maintained Under Continuous Maintenance

The ANSI Essential Requirements: Due Process Requirements for American National Standards provides two options for the maintenance of American National Standards (ANS): periodic maintenance (see clause 4.7.1) and continuous maintenance (see clause 4.7.2). Continuous maintenance is defined as follows:

The standard shall be maintained by an accredited standards developer. A documented program for periodic publication of revisions shall be established by the standards developer. Processing of these revisions shall be in accordance with these procedures. The published standard shall include a clear statement of the intent to consider requests for change and information on the submittal of such requests. Procedures shall be established for timely, documented consensus action on each request for change and no portion of the standard shall be excluded from the revision process. In the event that no revisions are issued for a period of four years, action to reaffirm or withdraw the standard shall be taken in accordance with the procedures contained in the ANSI Essential Requirements.

The Executive Standards Council (ExSC) has determined that for standards maintained under the Continuous Maintenance option, separate PINS announcements are not required. The following ANSI Accredited Standards Developers have formally registered standards under the Continuous Maintenance option.

- AAMI (Association for the Advancement of Medical Instrumentation)
- AAMVA (American Association of Motor Vehicle Administrators)
- AGA (American Gas Association)
- AGSC (Auto Glass Safety Council)
- ASC X9 (Accredited Standards Committee X9, Incorporated)
- ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.)
- ASME (American Society of Mechanical Engineers)
- ASTM (ASTM International)
- GBI (The Green Building Initiative)
- GEIA (Greenguard Environmental Institute)
- HL7 (Health Level Seven)
- IESNA (The Illuminating Engineering Society of North America)
- MHI (ASC MH10) (Material Handling Industry)
- NAHBRC (NAHB Research Center, Inc.)
- NBBPVI (National Board of Boiler and Pressure Vessel Inspectors)
- NCPDP (National Council for Prescription Drug Programs)
- NISO (National Information Standards Organization)
- NSF (NSF International)
- PRCA (Professional Ropes Course Association)
- RESNET (Residential Energy Services Network)
- TIA (Telecommunications Industry Association)
- UL (Underwriters Laboratories, Inc.)

To obtain additional information with regard to these standards, including contact information at the ANSI Accredited Standards Developer, please visit ANSI Online at www.ansi.org/asd; select “Standards Activities,” click on “Public Review and Comment” and “American National Standards Maintained Under Continuous Maintenance.” This information is also available directly at www.ansi.org/publicreview.

Alternatively, you may contact the Procedures & Standards Administration department (PSA) at psa@ansi.org or via fax at 212-840-2298. If you request that information be provided via E-mail, please include your E-mail address; if you request that information be provided via fax, please include your fax number. Thank you.
ANSI-Accredited Standards Developers Contact Information

The addresses listed in this section are to be used in conjunction with standards listed in PINS, Call for Comment and Final Actions. This section is a list of developers who have submitted standards for this issue of Standards Action – it is not intended to be a list of all ANSI-Accredited Standards Developers. Please send all address corrections to Standards Action Editor at standact@ansi.org.

ACCA
Air Conditioning Contractors of America
2800 Shirlington Road
Suite 300
Arlington, VA 22206
Phone: (703) 824-8870
Web: www.acca.org

ADA (Organization)
American Dental Association
211 E. Chicago Ave
Chicago, IL 60611
Phone: (312) 440-2533
Fax: (312) 440-2529
Web: www.ada.org

ASA (ASC S12)
Acoustical Society of America
1305 Walt Whitman Rd
Suite 300
Melville, NY 11747
Phone: (631) 390-0215
Fax: (631) 923-2875
Web: www.acousticalsociety.org

ASABE
American Society of Agricultural and Biological Engineers
2950 Niles Road
St Joseph, MI 49085
Phone: (269) 932-7015
Fax: (269) 429-3852
Web: www.asabe.org

ASCE
American Society of Civil Engineers
1801 Alexander Bell Dr
Reston, VA 20191
Phone: 703-295-6176
Web: www.asce.org

ASHRAE
American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.
1791 Tullie Circle NE
Atlanta, GA 30329
Phone: (678) 539-1175
Fax: (678) 539-2175
Web: www.ashrae.org

ASME
American Society of Mechanical Engineers
Two Park Avenue
New York, NY 10016
Phone: (212) 591-8521
Fax: (212) 591-8501
Web: www.asme.org

ASSE (Safety)
American Society of Safety Engineers
520 N. Northwest Highway
Park Ridge, IL 60068
Phone: (847) 768-3411
Fax: (847) 296-9221
Web: www.asse.org

ASTM
ASTM International
100 Barr Harbor Drive
West Conshohocken, PA 19428-2959
Phone: (610) 832-9744
Fax: (610) 834-3683
Web: www.astm.org

AWS
American Welding Society
8669 NW 36 Street, #130
Miami, FL 33166
Phone: (305) 443-9353
Web: www.aws.org

AWWA
American Water Works Association
6666 W. Quincy Ave.
Denver, CO 80235
Phone: (303) 795-7603
Web: www.awwa.org

B11
B11 Standards, Inc.
PO Box 690905
Houston, TX 77269-0905
Phone: (832) 446-6999

B1
B11 Standards, Inc.
PO Box 690905
Houston, TX 77269-0905
Phone: (832) 446-6999

CSA
CSA Group
8501 East Pleasant Valley Rd.
Cleveland, OH 44131
Phone: (216) 524-4990 x88321
Fax: (216) 520-8979
Web: www.csa-america.org

FM
FM Approvals
1151 Boston-Providence Turnpike
Norwood, MA 02062
Phone: (781) 255-4813
Fax: (781) 762-9375
Web: www.fmglobal.com

HI
Hydraulic Institute
6 Campus Drive
Parsippany, NJ 07054
Phone: (973) 267-9700 x115
Web: www.pumps.org

HPVA
Hardwood Plywood & Veneer Association
1825 Michael Faraday Drive
Reston, VA 20190
Phone: (703) 435-2900
Fax: (703) 435-2537
Web: www.hpva.org

ISEA
International Safety Equipment Association
1901 North Moore Street
Suite 808
Arlington, VA 22209
Phone: (703) 525-1695
Fax: (703) 525-1698
Web: www.safetyequipment.org

MHI (ASC MHC)
Material Handling Industry
8720 Red Oak Blvd., Suite 201
Charlotte, NC 28217
Phone: (704) 676-1190
Fax: (704) 676-1199
Web: www.mhi.org

NAAMM
National Association of Architectural Metal Manufacturers
123 College Place
#1101
Norfolk, VA 23510
Phone: (757) 489-0787
Web: www.naamm.org

NEMA (ASC C136)
National Electrical Manufacturers Association
1300 North 17th Street
Suite 900
Rosslyn, VA 22209
Phone: (703) 841-3277
Fax: (703) 841-3378
Web: www.nema.org

NEMA (ASC C82)
National Electrical Manufacturers Association
1300 N 17th St
Rosslyn, VA 22209
Phone: (703) 841-3262
Fax: (703) 841-3362
Web: www.nema.org

NFPA
National Fire Protection Association
One Batterypark Place
Quincy, MA 02169
Phone: (617) 984-7210
Web: www.nfpa.org

NSF
NSF International
789 N. Dixboro Road
Ann Arbor, MI 48105-9723
Phone: (734) 827-3817
Fax: (734) 827-7875
Web: www.nsf.org

OPEI
Outdoor Power Equipment Institute
341 South Patrick Street
Alexandria, VA 22314
Phone: (703) 549-7600
Fax: (703) 549-7604
Web: www.opei.org

RMA
Rubber Manufacturers Association
1400 K Street, NW
Suite 900
Washington, DC 20005
Phone: (202) 682-4866
Web: www.rma.org

SAAMI
Sporting Arms and Ammunition Manufacturers Institute
11 Mile Hill Road
Newtown, CT 06470-2359
Phone: (203) 610-1435
Fax: (203) 426-3592
Web: www.saami.org

SCTE
Society of Cable Telecommunications Engineers
140 Philips Road
Exton, PA 19341-1318
Phone: (480) 252-2330
Fax: (610) 363-5898
Web: www.scte.org

TIA
Telecommunications Industry Association
1320 North Courthouse Road
Suite 200
Arlington, VA 22201
Phone: (703) 907-7706
Fax: (703) 907-7727
Web: www.tiaonline.org

UL
Underwriters Laboratories, Inc.
333 Pfingsten Road
Northbrook, IL 60062
Phone: (847) 664-3411
Fax: (847) 664-3411
Web: www.ul.com
Newly Published ISO & IEC Standards

Listed here are new and revised standards recently approved and promulgated by ISO - the International Organization for Standardization – and IEC – the International Electrotechnical Commission. Most are available at the ANSI Electronic Standards Store (ESS) at www.ansi.org. All paper copies are available from Standards resellers (http://webstore.ansi.org/faq.aspx#resellers).

ISO Standards

ACOUSTICS (TC 43)
- ISO 6926:2016, Acoustics - Requirements for the performance and calibration of reference sound sources used for the determination of sound power levels, $149.00

CLEANING EQUIPMENT FOR AIR AND OTHER GASES (TC 142)
- ISO 16891-1:2016, Test methods for evaluating degradation of characteristics of cleanable filter media, $200.00

DENTISTRY (TC 106)
- ISO 19905-1:2016, Petroleum and natural gas industries - Site-specific presentation of vibration data, $173.00

DENTISTRY (TC 106)
- ISO 15912:2016, Dentistry - Refractory investment and die material, $149.00
- ISO 18362:2016, Manufacture of cell-based health care products - Sterilization of health care products, $200.00

LABORATORY GLASSWARE AND RELATED APPARATUS (TC 48)
- ISO 11450/Amd1:2016, Equipment for harvesting and conservation - Round balers - Terminology and commercial specifications - Amendment 1, $22.00

LABORATORY GLASSWARE AND RELATED APPARATUS (TC 48)
- ISO 16496:2016, Laboratory glassware - Vacuum-jacketed vessels for heat insulation, $123.00

MATERIALS, EQUIPMENT AND OFFSHORE STRUCTURES FOR PETROLEUM AND NATURAL GAS INDUSTRIES (TC 67)
- ISO 19905-1:2016, Petroleum and natural gas industries - Site-specific assessment of mobile offshore units - Part 1: Jack-ups, $265.00

MECHANICAL VIBRATION AND SHOCK (TC 108)

PAINTS AND VARNISHES (TC 35)
- ISO 4628-1:2016, Paints and varnishes - Evaluation of degradation of coatings - Designation of quantity and size of defects, and of intensity of uniform changes in appearance - Part 1: General introduction and designation system, $51.00
- ISO 4628-2:2016, Paints and varnishes - Evaluation of degradation of coatings - Designation of quantity and size of defects, and of intensity of uniform changes in appearance - Part 2: Assessment of degree of blistering, $123.00

ISO Standards

- ISO 15148/Amd1:2016, Hygrothermal performance of building materials and products - Determination of water absorption coefficient by partial immersion - Amendment 1, $22.00

TRACTORS AND MACHINERY FOR AGRICULTURE AND FORESTRY (TC 23)
- ISO 11450/Amd1:2016, Equipment for harvesting and conservation - Round balers - Terminology and commercial specifications - Amendment 1, $22.00
WELDING AND ALLIED PROCESSES (TC 44)

ISO 8430-1:2016, Resistance spot welding - Electrode holders - Part 1: Taper fixing 1:10, $51.00
ISO 8430-2:2016, Resistance spot welding - Electrode holders - Part 2: Morse taper fixing, $51.00
ISO 8430-3:2016, Resistance spot welding - Electrode holders - Part 3: Parallel shank fixing for end thrust, $51.00

WOOD-BASED PANELS (TC 89)

ISO 12460-4:2016, Wood-based panels - Determination of formaldehyde release - Part 4: Desiccator method, $88.00

ISO/IEC JTC 1, Information Technology

ISO/IEC/IEEE 8802-1AX:2016, Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 1AX: Link aggregation, $265.00

IEC Standards

CAPACITORS AND RESISTORS FOR ELECTRONIC EQUIPMENT (TC 40)

IEC 60384-14-1 Ed. 3.0 b:2016, Fixed capacitors for use in electronic equipment - Part 14-1: Blank detail specification - Fixed capacitors for electromagnetic interference suppression and connection to the supply mains - Assessment level DZ, $73.00

ELECTRIC TRACTION EQUIPMENT (TC 9)

IEC 61377 Ed. 2.0 b:2016, Railway applications - Rolling stock - Combined test method for traction systems, $278.00

ELECTRICAL APPARATUS FOR EXPLOSIVE ATMOSPHERES (TC 31)

IEC 60079-10-1 Ed. 2.0 b:2015, Explosive atmospheres - Part 10-1: Classification of areas - Explosive gas atmospheres, $375.00

ELECTRICAL EQUIPMENT IN MEDICAL PRACTICE (TC 62)

IEC/PAS 63023 Ed. 1.0 en:2016, Medical electrical system - Input interface for haemodialysis equipment for use of external alarming device, $61.00

ELECTRICAL INSTALLATIONS OF BUILDINGS (TC 64)

IEC 61140 Ed. 4.0 en:2016, Protection against electric shock - Common aspects for installation and equipment, $363.00

FIBRE OPTICS (TC 86)

IEC 61978-1 Ed. 3.0 b:2014, Fibre optic interconnecting devices and passive components - Fibre optic passive chromatic dispersion compensators - Part 1: Generic specification, $206.00
IEC 62129-1 Ed. 1.0 b:2016, Calibration of wavelength/optical frequency measurement instruments - Part 1: Optical spectrum analyzers, $303.00
IEC 61754-31 Ed. 1.0 b:2016, Fibre optic interconnecting devices and passive components - Fibre optic connector interfaces - Part 31: Type N-FO connector family, $121.00
IEC 61300-2-28 Ed. 2.0 b:2013, Fibre optic interconnecting devices and passive components - Basic test and measurement procedures - Part 2-28: Tests - Corrosive atmosphere (sulphur dioxide), $31.00
IEC 61300-2-44 Ed. 3.0 b:2013, Fibre optic interconnecting devices and passive components - Basic test and measurement procedures - Part 2-44: Tests - Flexing of the strain relief of fibre optic devices, $43.00

MARITIME NAVIGATION AND RADIOCOMMUNICATION EQUIPMENT AND SYSTEMS (TC 80)

IEC 61108-3 Ed. 1.0 b:2010, Maritime navigation and radiocommunication equipment and systems - Global navigation satellite systems (GNSS) - Part 3: Galileo receiver equipment - Performance requirements, methods of testing and required test results, $303.00
IEC 62287-1 Ed. 2.0 b:2010, Maritime navigation and radiocommunication equipment and systems - Class B shipborne equipment of the automatic identification system (AIS) - Part 1: Carrier-sense time division multiple access (CSTDMA) techniques, $383.00
IEC 62287-1 Amd.1 Ed. 2.0 b:2013, Amendment 1 - Maritime navigation and radiocommunication equipment and systems - Class B shipborne equipment of the automatic identification system (AIS) - Part 1: Carrier-sense time division multiple access (CSTDMA) techniques, $17.00
IEC 62287-1 Ed. 2.1 b:2013, Maritime navigation and radiocommunication equipment and systems - Class B shipborne equipment of the automatic identification system (AIS) - Part 1: Carrier-sense time division multiple access (CSTDMA) techniques, $424.00

PROCESS MANAGEMENT FOR AVIONICS (TC 107)

IEC 62396-1 Ed. 2.0 en:2016, Process management for avionics - Atmospheric radiation effects - Part 1: Accommodation of atmospheric radiation effects via single event effects within avionics electronic equipment, $436.00
IEC 62396-1 Ed. 2.0 en:2016, Process management for avionics - Atmospheric radiation effects - Part 1: Accommodation of atmospheric radiation effects via single event effects within avionics electronic equipment, $363.00

SAFETY OF ELECTRONIC EQUIPMENT WITHIN THE FIELD OF AUDIO/VIDEO, INFORMATION TECHNOLOGY AND COMMUNICATION TECHNOLOGY (TC 108)

IEC 69950-22 Ed. 2.0 en:2016, Information technology equipment - Safety - Part 22: Equipment to be installed outdoors, $276.00
SAFETY OF HOUSEHOLD AND SIMILAR ELECTRICAL APPLIANCES (TC 61)

IEC 60335-2-64 Ed. 3.0 b:2002, Household and similar electrical appliances - Safety - Part 2-64: Particular requirements for commercial electric kitchen machines, $206.00

IEC 60335-2-64 Amd.1 Ed. 3.0 b:2007, Amendment 1 - Household and similar electrical appliances - Safety - Part 2-64: Particular requirements for commercial electric kitchen machines, $17.00

IEC 60335-2-64 Ed. 3.1 b:2008, Household and similar electrical appliances - Safety - Part 2-64: Particular requirements for commercial electric kitchen machines, $266.00

SOLAR PHOTOVOLTAIC ENERGY SYSTEMS (TC 82)

IEC 62446-1 Ed. 1.0 b:2016, Photovoltaic (PV) systems - Requirements for testing, documentation and maintenance - Part 1: Grid connected systems - Documentation, commissioning tests and inspection, $278.00

SUPERCONDUCTIVITY (TC 90)

IEC 61788-4 Ed. 4.0 b:2016, Superconductivity - Residual resistance ratio measurement - Residual resistance ratio of Nb-Ti and Nb3Sn composite superconductors, $230.00

IEC Technical Reports

FIBRE OPTICS (TC 86)

IEC/TR 62627-01 Ed. 2.0 en:2016, Fibre optic interconnecting devices and passive components - Part 01: Fibre optic connector cleaning methods, $182.00

FLUIDS FOR ELECTROTECHNICAL APPLICATIONS (TC 10)

IEC/TR 62874 Ed. 1.0 b:2015, Guidance on the interpretation of carbon dioxide and 2-furfuraldehyde as markers of paper thermal degradation in insulating mineral oil, $182.00
Proposed Foreign Government Regulations

Call for Comment

U.S. manufacturers, exporters, regulatory agencies and standards developing organizations may be interested in proposed foreign technical regulations issued by Member countries of the World Trade Organization (WTO). In accordance with the WTO Agreement on Technical Barriers to Trade (TBT Agreement), Members are required to report proposed technical regulations that may significantly affect trade to the WTO Secretariat in Geneva, Switzerland. In turn, the Secretariat disseminates the information to all WTO Members. The purpose of this requirement is to provide global trading partners with an opportunity to review and comment on the regulations before they become final.

The National Center for Standards and Certification Information (NCSCI) at the National Institute of Standards and Technology (NIST), distributes these proposed foreign technical regulations to U.S. stakeholders via an online service, Notify U.S. Notify U.S. is an e-mail and Web service that allows interested U.S. parties to register, obtain notifications, and read full texts of regulations from countries and for industry sectors of interest to them. To register for Notify U.S., please go to Internet URL: http://www.nist.gov/notifyus/ and click on “Subscribe”.

NCSCI is the WTO TBT Inquiry Point for the U.S. and receives all notifications and full texts of regulations to disseminate to U.S. Industry. For further information, please contact: NCSCI, NIST, 100 Bureau Drive, Gaithersburg, MD 20899-2160; Telephone: (301) 975-4040; Fax: (301) 926-1559; E-mail: ncsci@nist.gov or notifyus@nist.gov.
American National Standards

INCITS Executive Board

ANSI Accredited SDO and US TAG to ISO/IEC JTC 1, Information Technology

The InterNational Committee for Information Technology Standards (INCITS), an ANSI accredited SDO, is the forum of choice for information technology developers, producers and users for the creation and maintenance of formal de jure IT standards. INCITS’ mission is to promote the effective use of Information and Communication Technology through standardization in a way that balances the interests of all stakeholders and increases the global competitiveness of the member organizations.

The INCITS Executive Board serves as the consensus body with its oversight of programs of its 40+ Technical Committees. Additionally, the INCITS Executive Board exercises international leadership in its role as the US Technical Advisory Group (TAG) to ISO/IEC JTC 1, Information Technology.

The INCITS Executive Board has eleven membership categories that can be viewed at http://www.incits.org/participation/membership-info. Membership in all categories is always welcome. INCITS also seeks to broaden its membership base and looks to recruit new participants in the following under-represented membership categories:

- **Producer – Hardware**
 This category primarily produces hardware products for the ITC marketplace.

- **Producer – Software**
 This category primarily produces software products for the ITC marketplace.

- **Distributor**
 This category is for distributors, resellers or retailers of conformant products in the ITC industry.

- **User**
 This category includes entities that primarily reply on standards in the use of a product/service, as opposed to producing or distributing conformant products/services.

- **Consultants**
 This category is for organizations whose principal activity is in providing consulting services to other organizations.

- **Standards Development Organizations and Consortia**
 o “Minor” an SDO or Consortium that (a) holds no TAG assignments; or (b) holds no SC TAG assignments, but does hold one or more Work Group (WG) or other subsidiary TAG assignments.

- **Academic Institution**
 This category is for organizations that include educational institutions, higher education schools or research programs.

- **Other**
 This category includes all organizations who do not meet the criteria defined in one of the other interest categories.

Membership in the INCITS Executive Board is open to all directly and materially affected parties in accordance with INCITS membership rules. To find out more about participating on the INCITS Executive Board, please contact Jennifer Garner at 202-626-5737 or jgarner@itic.org. Visit www.INCITS.org for more information regarding INCITS activities.

Calls for Members

Society of Cable Telecommunications

ANSI Accredited Standards Developer

SCTE, an ANSI-accredited SDO, is the primary organization for the creation and maintenance of standards for the cable telecommunications industry. SCTE’s standards mission is to develop standards that meet the needs of cable system operators, content providers, network and customer premises equipment manufacturers, and all others who have an interest in the industry through a fair, balanced and transparent process.

SCTE is currently seeking to broaden the membership base of its ANSI consensus bodies and is interested in new members in all membership categories to participate in new work in fiber-optic networks, advanced advertising, 3D television, and other important topics. Of particular interest is membership from the content (program and advertising) provider and user communities.

Membership in the SCTE Standards Program is open to all directly and materially affected parties as defined in SCTE’s membership rules and operating procedures. More information is available at www.scte.org or by e-mail from standards@scte.org.

ANS Approval Rescinded

Approval of CGA G-13, Storage and Handling of Silane and Silane Mixtures, 3rd edition (2015), rescinded at the request of CGA

At the request of the Compressed Gas Association (CGA), the approval of CGA G-13 as an American National Standard has been rescinded. A limited revision will be announced for public comment soon. Questions may be directed to: Kristy L. Mastromichalis, 703-788-2728 or kmastromichalis@cganet.com.

ANSI Accredited Standards Developers

Approval of Reaccreditation

ASC Z80 – Ophthalmic Standards

The reaccreditation of Accredited Standards Committee Z80, Ophthalmic Standards, has been approved at the direction of ANSI’s Executive Standards Council under its recently revised operating procedures for documenting consensus on ASC Z80-sponsored American National Standards, effective January 20, 2016. For additional information, please contact the Secretariat of ASC Z80: Ms. Amber Robinson, Senior Manager & Technical Programs, Low Vision Division Liaison, The Vision Council, 225 Reinekers Lane, Suite 700, Alexandria, VA 22314; phone: 703.740.1094; e-mail: arobinson@thevisioncouncil.org.
ANSI Accreditation Program for Third Party Product Certification Agencies

Scope Extension

Timber Products Inspection (TPI)

Comment Deadline: February 22, 2016

Jeremy Williams
Treated Wood Division Manager
Timber Products Inspection (TPI)
41 Sigman Road
Conyers, GA 30012
Phone: 770-922-8000, ext 499
Fax: 770-922-1290
E-mail: jwilliams@tpinspection.com
Web: www.tpinspection.com

Timber Products Inspection (TPI), an ANSI-accredited certification body, has requested an extension of its scope of ANSI accreditation to include the following:

- 13.220.50 Fire resistance of building materials
- 71.100.50 Wood Protecting Chemicals
- 79.020 Treatment – Including logging and wood treatment

Please send your comments by February 22, 2016 to Reinaldo Balbino Figueiredo, Sr. Program Director, Product Certifier Accreditation, American National Standards Institute, 1899 L Street, NW, 11th Floor, Washington, DC 20036, Fax: 202-293-9287 or e-mail: rfigueir@ansi.org, or Nikki Jackson, Sr. Program Manager, Product Certifier Accreditation, American National Standards Institute, 1899 L Street, NW, 11th Floor, Washington, DC 20036, Fax: 202-293-9287 or e-mail: njackson@ansi.org.
8.2.3 Outer pack

The outer pack shall have the following information clearly visible:

a) the manufacturer’s name and address and/or agent responsible for the country of sale;

b) the trade name of the material;

c) recommended conditions of storage;

d) the net mass, in grams, or net volume, in milliliters;

e) the expiry date, expressed in accordance with ISO 8601, for the material if stored under the manufacturer’s recommended conditions [see 8.3 i]);

f) presence of hazardous substances indicated by text or symbol;

g) the legend “polymer-based dental restorative material” or “resin-based dental restorative material” if the product is a restorative material or “polymer-based dental luting material” or “resin-based dental luting material” if the product is a luting material.

h) the word “radio-opaque” if the material complies with the requirements of 5.5;

Furthermore, the following information shall be clearly visible either on the outer pack or in the manufacturer’s instructions (see 8.3) or both:

i) the word “radio-opaque” if the material complies with the requirements of 5.5;

j) in the case of restorative materials, a statement indicating whether or not the material is suitable for the restoration of occlusal surfaces;

k) a statement indicating whether the material is chemically activated, activated by external energy or dual cure, either intra- orally and/or extra- orally;

l) in the case of a luting material, a statement indicating whether the manufacturer claims color stability.
BSR/ASHRAE/NEMA Standard 201P

Second Public Review Draft

Facility Smart Grid Information Model

Second Public Review (January 2016) (Review of Independent Substantive Changes)

This draft has been recommended for public review by the responsible project committee. To submit a comment on this proposed standard, go to the ASHRAE website at www.ashrae.org/standards-research--technology/public-review-drafts and access the online comment database. The draft is subject to modification until it is approved for publication by the Board of Directors and ANSI. Until this time, the current edition of the standard (as modified by any published addenda on the ASHRAE website) remains in effect. The current edition of any standard may be purchased from the ASHRAE Online Store at www.ashrae.org/bookstore or by calling 404-636-8400 or 1-800-727-4723 (for orders in the U.S. or Canada).

The appearance of any technical data or editorial material in this public review document does not constitute endorsement, warranty, or guaranty by ASHRAE of any product, service, process, procedure, or design, and ASHARE expressly disclaims such.

© 2015 ASHRAE. This draft is covered under ASHRAE copyright. Permission to reproduce or redistribute all or any part of this document must be obtained from the ASHRAE Manager of Standards, 1791 Tullie Circle, NE, Atlanta, GA 30329. Phone: 404-636-8400, Ext. 1125. Fax: 404-321-5478. E-mail: standards.section@ashrae.org.

ASHRAE, 1791 Tullie Circle, NE, Atlanta GA 30329-2305
The second public review draft of proposed BSR/ASHRAE/NEMA Standard 201P contains a number of independent substantive changes to the first public review draft that constitute the scope of the review. The clauses containing these changes are enumerated below. Each change is described and then presented with some surrounding context to aid the reader in understanding where the change occurs. The specific changes are highlighted with strike through (deletions) or underline (additions). In the case of diagrams, the changed portion is highlighted with an oval.

Change 5.2 Device

Background: The association between the Device class and the ComponentElement class was changed to enable bi-directional navigation so that a component element can know what device it is part of. This is illustrated in Figure 5.2 (red circle), but the identical change occurs in Figure 5.3 and Figure 7.9 where both Device and ComponentElement appear in a different context. The change also effects the description of the connections in the ComponentElement class.

Figure 5.2 - Device
5.2.3.1 ComponentElement (Abstract Class)
This class is an abstract class representing the top level class of one of the four FSGIM model components or a Collection of these top level classes. Note that the parts of a Collection instance inherit the tag attribute values of its parent collection ComponentElement instance.

Parent Class: FSGIMIdentifiedObject (See Clause 5.2.3.4)

UML Element Location: Model\Device and Model Components\Device\ComponentElement.
This element has the following connections to other elements:

Table 5.1 - Class Connections

<table>
<thead>
<tr>
<th>Connection Type</th>
<th>Role Name</th>
<th>Description</th>
<th>Role Type</th>
<th>Multiplicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composition</td>
<td>partOf</td>
<td>The physical device that houses the functionality of the EM Class, Meter Class, Load Class, and/or Generator Class.</td>
<td>Device</td>
<td>[1]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>See Clause 5.2.3.2</td>
<td></td>
</tr>
<tr>
<td>Association</td>
<td>tags</td>
<td>This attribute may contain a set of strings to be used at the configuration phase of installation such as "hallway", "3rd Floor", "Critical", ... These strings may be optionally qualified with a NameType and NameTypeAuthority.</td>
<td>Name</td>
<td>[0..*]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>See Clause 5.7.5.2.1.14</td>
<td></td>
</tr>
</tbody>
</table>

[Change 5.6.7.4 EMIntervalData (Class)]
Background: The description of “resources” was changed to make it clear that it means only the set of loads, generators, meters and EMs that are directly connected to an EM. This change was made to be consistent with the standard aggregation rules. This change also effects the description of the derived attribute presentResources in the EMPresentData class found in Table 5.36.

5.6.7.4 EMIntervalData (Class)
This class represents data in the domain of concern of an Energy Manager over some complete interval of time. This time interval may be in the past or future.

Parent Class: AttachType (See Clause 5.7.3.2.4)

UML Element Location: Model\Device and Model Components\Energy Manager Component\EMIntervalData.

Table 5.32 - Class Attributes

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Description</th>
<th>Attribute Type</th>
<th>Multiplicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>resources</td>
<td>The set of all of the loads, generators, meters and EMs that are directly or indirectly managed by the energy manager during the interval referenced by the IntervalDataContainer through the attach relation.</td>
<td>AllResourcesInEMDomain</td>
<td>[0..1]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>See Clause 5.6.7.11.2.</td>
<td></td>
</tr>
</tbody>
</table>

Table 5.36 - Class Attributes

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Description</th>
<th>Attribute Type</th>
<th>Multiplicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>presentResources</td>
<td>The set of all of the loads, generators, meters and EMs that are directly or indirectly managed by the energy manager at...</td>
<td>AllResourcesInEMDomain</td>
<td>[1]</td>
</tr>
<tr>
<td>(Derived)</td>
<td></td>
<td>See Clause 5.6.7.11.2</td>
<td></td>
</tr>
</tbody>
</table>
Background: A new attribute, `isVirtual`, was added to the `UsagePoint` class. This attribute appeared in a revision of IEC 61968-9 and serves as a flag to indicate a virtual measurement. This same flag was added to Green Button and will be added to the next release of "NAESB Business Practices and Information Models to Support Priority Action Plan 10 - Standardized Energy Usage Information standards. Revision 1.1 2012."

Because `EMUsagePoint` is derived from `UsagePoint`, the change affects Clause 6.4.2 Measurement Sets (Figure 6.4) and the `EMUsagePoint` Conformance Block (Figure 7.24).

5.7.5.2.1.26 UsagePoint (Class)
Logical point on a network at which consumption or production is either physically measured (e.g. metered) or estimated (e.g. unmetered street lights).

Parent Class: IdentifiedObject (See Clause 5.7.5.2.1.8)

UML Element Location: Model\Model Elements from External Sources\iec_cim_naesb_eui_model_20101111Update_20120802\NAESB PAP10 EUI UsagePoint.

Table 5.307 - Class Attributes

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Description</th>
<th>Attribute Type</th>
<th>Multiplicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>description</td>
<td>A human readable description of the object.</td>
<td>String</td>
<td>[0..1]</td>
</tr>
<tr>
<td><code>isVirtual</code></td>
<td>Is used to indicate that the UsagePoint is virtual (that is, not a real physical measurement). This may be the result of a computation or estimation.</td>
<td>Boolean</td>
<td>[1]</td>
</tr>
<tr>
<td>name</td>
<td>The name is any free human readable and possibly non unique text naming the object.</td>
<td>String</td>
<td>[0..1]</td>
</tr>
<tr>
<td>role Flags</td>
<td>The set of roles pertinent to this UsagePoint</td>
<td>RoleFlags</td>
<td>[1]</td>
</tr>
<tr>
<td>status</td>
<td>Status of this UsagePoint: 0 - Off 1 - On</td>
<td>Integer</td>
<td>[1]</td>
</tr>
</tbody>
</table>
6.4.2 Measurement Sets Diagram

Some concepts in the Facility Smart Grid Information Model, such as aggregation, apply equally to PowerMeasurementSets, EnergyMeasurementSets, and EmissionsMeasurementSets. In these cases, the PowerMeasurementSet, EnergyMeasurementSet, and EmissionsMeasurementSet can be abstracted and referred to as a Measurement Set.

Figure 6.4 - Measurement Sets
7.3.3.2.15 EMUsagePoint Conformance Block Diagram

This diagram depicts the classes and attributes used to define the grid view of the logical point on a network where consumption or generation is either measured or estimated.

![Diagram of EMUsagePoint Conformance Block](image)

Figure 7.24 - EMUsagePoint Conformance Block
Commercial refrigerators and freezers

8 Prefabricated walk-in and roll-in refrigerators and freezers

This section contains requirements for walk-in and roll-in refrigerators and freezers, which shall also meet the requirements of 4 and 5. The food storage compartments shall meet splash zone material requirements of 4 and 8 and food zone design and construction requirements of 5 and 8.

8.1.1 Prefabricated walk-in and roll-in refrigerators and freezers

8.1.1 Zinc-coated materials

In addition to the requirements specified in 4.2:

8.1.1.1 Except as noted in 8.2.3, galvanized and other zinc-alloy-coated materials may only be used on the walls, ceilings, and attached hardware and components of walk-in and roll-in refrigerators and freezers. Unless protected by an additional coating conforming to NSF/ANSI 51, galvanized and other zinc-alloy-coated materials used in this application shall be at least as corrosion resistant as G90 galvanized steel per ASTM A653/A653M and ASTM A924/A924M. Coated materials, including galvanized materials, shall not be used on the floor of a walk-in or roll-in refrigerator or freezer unless it is to be covered with a masonry floor at the time of installation, or as permitted in 8.2.3 for walk-in or roll-in refrigerators and freezers used only for the storage of food in the original sealed package.

Rationale: Changes the cross-reference from 8.2.1 (incorrect) to 8.2.3 (correct). Clarifies the intent that galvanized and other coated materials are not permitted for use on the floors of walk-in and roll-in equipment except as permitted.

8.2.3 Prefabricated floors may be constructed of galvanized and other zinc-alloy-coated materials at least as corrosion resistant as G90 galvanized steel per ASTM A653/A653M and ASTM A924/A924M. If tread plate flooring is to be applied over galvanized floors, it shall be fastened and sealed per the manufacturer’s instructions.
BSR/UL 6141, Standard for Safety for Wind Turbines Permitting Entry of Personnel

Proposed Changes for the Proposed First Edition of UL 6141, Wind Turbines Permitting Entry of Personnel

4 Special Components and Subassemblies of Wind Turbines

4.1 General

4.1.5 Equipment and subassemblies shall be suitably rated for the electrical and environmental location of the component inside or outside the turbine. Internal turbine environmental conditions may include exposure to the dripping of water, corrosive, and other non-corrosive liquids, falling dust, dirt, and other debris that might occur include vaporized oils or oil film. For WTs where oil films or leaks may be expected based on the normal operation or maintenance tasks, enclosures, including gaskets, shall be suitably rated for ingress of the expected type and amount of oil.

4.2 Wiring

4.2.1.3 All wiring within a WT that is accessible to users or service personnel or runs vertically up the tower shall be either in a raceway or be rated for tray cable usage. The following meets the intent of this requirement:

a) Multiconductor cable complying with the Outline of Investigation for Flexible Motor Supply Cable and Wind Turbine Tray Cable, UL 2277, and marked for wind turbine usage;

b) Power-limited circuit cabling complying with the Standard for Power-Limited Circuit Cables, UL 13, suitable for Tray Cable usage (Types CMG, CM, CL2, CL3, PLTC, CMR, CL2R, CL3R, CMP, CL2P, CL3P);

c) Optical fiber circuits complying with the Standard for Optical Fiber Cable, UL 1651;

d) Power cabling complying with the Standard for Thermoplastic-Insulated Wires and Cables, UL 83, or the Standard for Thermoset-Insulated Wires and Cables, UL 44, and additionally marked for cable tray usage (“CT”, “For Cable Tray Use”, “For CT Use”, or “For Use in Cable Trays”) or marked “FT4”;

e) For voltages greater than 2kV, cabling complying with the Standard for Medium Voltage Power Cables, UL 1072, and additionally marked for cable tray usage (“CT”, “For Cable Tray Use”, “For CT Use”, or “For Use in Cable Trays”) or marked “FT4”. The insulation shield on these cables shall contain a metallic component making it compliant with UL 1072;

f) Extra hard usage cord that complies with the Standard for Flexible Cords and Cables, UL 62;

g) Cables that comply with the Standard for Cables for Non-Power-Limited Fire-Alarm Circuits, UL 1425;

h) Metal-clad cables that comply with the Standard for Metal-Clad Cables, UL 1569.

Exception: Wiring within a component need only meet the requirements for the component.
4.2.6.2.1 Colors are coded as follows:

a) Black - all ungrounded control circuit conductors operating at the main operation voltage power circuit conductors;

b) Red - ungrounded ac control circuits operating at a voltage less than the main operation voltage;

c) Blue - ungrounded dc control circuits;

d) Yellow or orange - ungrounded control circuits or other wiring, that remain energized when the main disconnect(s) is in the “off” position;

e) White, gray, or three white stripes on a color other than green, blue, orange, or yellow - grounded ac current-carrying control circuit conductor regardless of voltage;

f) White with blue stripe - grounded dc current-carrying control circuit conductor;

g) White with yellow stripe or white with orange stripe - grounded ac control circuit current carrying conductor that remains energized when main disconnect switch(s) is in the “off” position;

h) Green - Protective conductor.

4.6 Switchgear

4.6.1 Switchgear and switchgear components shall comply with the applicable standard(s) noted below for the specific type of switchgear used:

a) Standard for Metal-Enclosed Low-Voltage Power Circuit Breaker Switchgear, UL 1558;

b) Standard for Low-Voltage Switchgear and Controlgear - Part 1: General Rules, UL 60947-1;

c) Standard for Low-Voltage Switchgear and Controlgear - Part 4-1A: Contactors and Motor-Starters - Electromechanical Contactors and Motor-Starters, UL 60947-4-1A;

d) Standard for Low-Voltage Switchgear and Controlgear - Part 5-2: Control Circuit Devices and Switching Elements - Proximity Switches, UL 60947-5-2;

e) Standard for Low-Voltage Switchgear and Controlgear - Part 7-1: Ancillary Equipment - Terminal Blocks for Copper Conductors, UL 60947-7-1;

f) Standard for Low-Voltage Switchgear and Controlgear - Part 7-2: Ancillary Equipment - Protective Conductor Terminal Blocks for Copper Conductors, UL 60947-7-2;

g) Standard for Low-Voltage Switchgear and Controlgear - Part 7-3: Ancillary Equipment - Safety Requirements for Fuse Terminal Blocks, UL 60947-7-3;

h) IEEE C37.20.2, Standard for Metal Clad Switchgear;

i) IEEE C37.20.3, Standard for Metal-Enclosed Interrupter Switchgear.
j) Standard for Switchboards, UL 891.

Note: IEC switchgear standards are not considered compatible with U.S. requirements at this time.

4.8 Transformers

4.8.7 Autotransformers shall comply with the applicable standard:

a) Standard for Dry-Type General Purpose and Power Transformers, UL 1561;

b) Standard for Low Voltage Transformers - Part 1: General Requirements, UL 5085-1;

c) Standard for Low Voltage Transformers - Part 2: General Purpose Transformers, UL 5085-2;

d) Standard for Industrial Control Equipment, UL 508.

e) IEC 60076-1, Power transformers - Part 1: General; and the applicable IEC 60076 part 2 standards identified in 4.8.6 (c).

4.17 Cable trays and wireways

4.17.1 Cable trays shall comply with Article 392, and wireways shall comply with Article 376 or Article 378 of the National Electrical Code, ANSI/NFPA 70.

Exception: Separation per NEC Article 392.20 is not required if the wiring method complies with 4.2.5.

4.21.1.10 Subassemblies providing uninterruptible power supply functions shall comply with the applicable requirements of:

a) Standard for Uninterruptible Power Supplies, UL 1778, or

b) Standard for Safety of power converters for use in photovoltaic power systems - Part 1: General requirements, UL 62109-1, or

c) IEC 62040-1, Uninterruptible power systems (UPS) - Part 1: General and safety requirements for UPS.

4.22 Disconnect devices

4.22.1 Each supply source of the WT shall be provided with a lockable disconnect that positively prevents the startup and operation of the circuit. Sources typically include the Area EPS or Local EPS and generator.

Note: A rotor lock is considered a suitable means to lockout and de-energize the generator. Some turbine types may require multiple disconnects to de-energize the system and all of its components. Some turbine types may require multiple disconnects to de-energize the system and all of its components.
5 Spacings

5.5 Overvoltage Category IV shall be applied to determine clearance spacings in general locations within a wind turbine unless supplemental surge protection is employed as described in 5.6.

Exception: Use of additional surge suppression protection as specified in 5.6 may be used to reduce the Overvoltage Category below IV.

Note: Direct or nearby lightning strikes can induce high over voltage conditions in EPS circuits and wind turbine circuits throughout the hub, nacelle, and tower. Surge protective devices, if used, shall be installed in close proximity to the equipment being protected.

13 System and Subassembly Components

Figure 13.1
Direct current supply symbol
(IEC Publication 417, Symbol 5031)

Figure 13.2
Alternating current supply symbol
(IEC Publication 417, Symbol 5032)

Figure 13.3
Phase symbol

14 Cautionary Markings

14.8 An external surface of a component or subassembly exposed to contact by users or service persons that exceeds 70°C (158°F) (metal) or 95°C (203°F) (non-metal) shall be legibly marked externally where readily visible after installation with the word "CAUTION" and the following or the equivalent: "Hot surfaces. To reduce the risk of burns do not touch".
A unit surfaces that exceed the external temperature limits specified in Table 43.2, Maximum surface temperatures, of the Standard for Inverters, Converters, Controllers and Interconnection System Equipment for Use With Distributed Energy Resources, UL 1741 Table 14.1 shall be legibly marked externally where readily visible after installation with the word "CAUTION" and the following or the equivalent: "Hot surfaces - To reduce the risk of burns - Do not touch".

(NEW)
Table 14.1
Maximum surface temperatures

<table>
<thead>
<tr>
<th>Location</th>
<th>Metal</th>
<th>Nonmetal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Handles or knobs that are grasped for lifting, carrying or holding</td>
<td>50°C (122°F)</td>
<td>60°C (140°F)</td>
</tr>
<tr>
<td>Handles or knobs that are contacted that do not involve lifting, carrying, or holding; and other surfaces subject to contact and or user maintenance</td>
<td>60°C (140°F)</td>
<td>85°C (185°F)</td>
</tr>
<tr>
<td>Surfaces subject to casual contact</td>
<td>70°C (158°F)</td>
<td>95°C (203°F)</td>
</tr>
</tbody>
</table>

14.10 A removable panel covering a capacitor which is determined to contain a stored energy hazard in accordance with the Standard for Inverters, Converters, Controllers and Interconnection System Equipment for Use With Distributed Energy Resources, UL 1741 shall be marked "CAUTION - Risk of electric shock from energy stored in capacitor" and the following or equivalent wording: "Do not remove cover until ___ minutes after disconnecting all sources of supply." The time indicated in the marking is to be the time required to discharge the capacitor to within the limitations specified in UL 1741 and shall be no more than 5 minutes.

14.11 When a unit is provided with a built-in circuit that discharges a capacitor or capacitors in accordance with the stored energy requirements of the Standard for Inverters, Converters, Controllers and Interconnection System Equipment for Use With Distributed Energy Resources, UL 1741, the unit shall be marked "CAUTION - Risk of electric shock and/or electric energy-high current levels" and the following or equivalent wording: "Disconnect and discharge (identify capacitor) before removing panel as follows." Appropriate instructions shall follow indicating how to discharge the capacitor. The procedure indicated shall be limited to functions such as operating a switch, unplugging a connector, or the equivalent. When the time to discharge the capacitor or capacitor bank is longer than 1 second, the unit shall be additionally marked to indicate the minimum discharge time with the following or the equivalent: "Do not remove cover until ___ minutes after connecting the discharge circuit." The time indicated in this marking shall not exceed 1 minute for momentary type switches and 5 minutes for other means that actuate the discharge circuit.

14.13 For energy storage devices such as batteries and ultra capacitors, the terminals and all parts connected to these terminals which are determined to contain a stored energy hazard in accordance with the Standard for Inverters, Converters, Controllers and Interconnection System Equipment for Use With Distributed Energy Resources, UL 1741, and are insulated to protect against contact by a service person, shall be provided with a marking indicating "CAUTION - Risk of electric shock or electrical energy-high current levels" and the following or the equivalent: "High-energy electric charge is stored in (identify capacitor) and associated circuitry. Test before touching." The marking shall be located on the enclosure cover and internally adjacent to the live parts.
BSR/UL 87A, Standard for Safety for Power-Operated Dispensing Devices for Gasoline and Gasoline/Ethanol Blends with Nominal Ethanol Concentrations up to 85 Percent (E0 - E85)

1. Revise the Moist Ammonia-Air Stress Cracking Test

PROPOSAL

43 10-Day Moist Ammonia-Air Stress Cracking Test

43.1 After being subjected to the conditions described in 43.1 - 43.4, a brass part containing more than 15 percent zinc shall show no evidence of cracking when examined using 25X magnification. After being subjected to the conditions described in 43.2 - 43.3, a pressure-confining brass part containing more than 15 percent zinc shall:

 a) Show no evidence of cracking, delamination, or degradation, or

 b) Perform as intended when tested as described in 43.4.

43.2 Each test sample is to be subjected to the physical stresses normally imposed on or within a part as the result of assembly with other components. Such stresses are to be applied to the sample prior to and maintained during the test. One test sample of each size is to be subjected to the physical stresses normally imposed on or within a part as the result of assembly with other components. Samples with threads, intended to be used for installing the product in the field, are to have the threads engaged and tightened as intended in normal use. Polytetrafluoroethylene (PTFE) tape or pipe compound are not to be used on any threads. Samples with male threads are evaluated as received.

43.3 Three samples are to be degreased and then continuously exposed in a set position for ten days to a moist ammonia-air mixture maintained in a glass chamber approximately 12 x 12 x 12 inches (305 by 305 by 305 mm) having a glass cover. The samples are then to be tested in accordance with Apparatus, Section 6, Reagents and Materials, Section 7, Test Media, Section 8, Test Sample Preparation (9.3 - 9.4), Test Procedure (10.1 - 10.4) of the Standard Test Method for Ammonia Vapor Test for Determining Susceptibility to Stress Corrosion Cracking in Copper Alloys, ASTM B858-06, except the pH level of the test solution shall be High 10.5 ±0.1 and the exposure temperature shall be 25 ±1°C.

43.4 Approximately 600 ml (20.3 ounces) of aqueous ammonia having a specific gravity of 0.94 is to be maintained at the bottom of the glass chamber below the samples. The samples are to be positioned 1-1/2 inches (38.1 mm) above the aqueous ammonia solution and supported by an inert tray. The moist ammonia-air mixture in the chamber is to be maintained at atmospheric pressure and at a temperature of 34 ±2°C (93.2 ±3.6°F). After the exposure period, the samples are to be examined for cracks or other signs of stress corrosion using a microscope having a magnification of 25X. Pressure-confining parts exhibiting degradation as indicated in 43.1 as a result of the test exposure described in 43.2 and 43.3 shall withstand, without rupture, a hydrostatic test pressure of five times the rated pressure of the valve, for 1 minute.
BSR/UL 87B, Standard for Safety for Power-Operated Dispensing Devices for Diesel Fuel, Biodiesel Fuel, Diesel/Biodiesel Blends with Nominal Biodiesel Concentrations up to 20 Percent (B20), Kerosene, and Fuel Oil

1. Revise the Moist Ammonia-Air Stress Cracking Test

PROPOSAL

42 10-Day Moist Ammonia-Air Stress Cracking Test

42.1 After being subjected to the conditions described in 42.2 – 42.4, a brass part containing more than 15% zinc shall show no evidence of cracking when examined using 25X magnification. After being subjected to the conditions described in 42.2 - 42.3, a pressure-confining brass part containing more than 15 percent zinc shall:

a) Show no evidence of cracking, delamination, or degradation or

b) Perform as intended when tested as described in 42.4.

42.2 Each test sample is to be subjected to the physical stresses normally imposed on or within a part as the result of assembly with other components. Such stresses are to be applied to the sample prior to and maintained during the test. One test sample of each size is to be subjected to the physical stresses normally imposed on or within a part as the result of assembly with other components. Samples with threads, intended to be used for installing the product in the field, are to have the threads engaged and tightened as intended in normal use. Polytetrafluoroethylene (PTFE) tape or pipe compound are not to be used on any threads. Samples with male threads are evaluated as received.

42.3 Three samples are to be degreased and then continuously exposed in a set position for ten days to a moist ammonia-air mixture maintained in a glass chamber approximately 12 x 12 x 12 inches (305 by 305 by 305 mm) having a glass cover. The samples are then to be tested in accordance with Apparatus, Section 6, Reagents and Materials, Section 7, Test Media, Section 8, Test Sample Preparation (9.3 - 9.4), Test Procedure (10.1 - 10.4) of the Standard Test Method for Ammonia Vapor Test for Determining Susceptibility to Stress Corrosion Cracking in Copper Alloys, ASTM B858-06, except the pH level of the test solution shall be High 10.5 ±0.1 and the exposure temperature shall be 25 ±1°C.

42.4 Approximately 600 ml (20.3 ounces) of aqueous ammonia having a specific gravity of 0.94 is to be maintained at the bottom of the glass chamber below the samples. The samples are to be positioned 1-1/2 inches (38.1 mm) above the aqueous ammonia solution and supported by an inert tray. The moist ammonia-air mixture in the chamber is to be maintained at atmospheric pressure and at a temperature of 34 ±2°C (93.2 ±3.6°F). After the exposure period, the samples are to be examined for cracks or other signs of stress corrosion using a microscope having a magnification of 25X. Pressure-confining parts exhibiting degradation as indicated in 42.1 as a result of the test exposure described in 42.2 and 42.3 shall withstand, without rupture, a hydrostatic test pressure of five times the rated pressure of the valve, for 1 minute.
2. Addition of the Blending Cycling Test

PROPOSAL

42A Blending Cycling Test

42A.1 One complete sample of the dispenser or subassembly is to be used for this test. The sample shall be fully assembled with all gasket and seal materials in place as intended.

42A.2 The sample shall be provided with closures to seal off inlet and outlet openings. The main inlet and outlet closures shall be provided with a 1/4 inch NPT opening for connection to the test apparatus. All closures shall be installed by the manufacturer and there shall be no further adjustments to these closures during this test.

42A.3 Suitable materials shall be used for the closures in 42A.2.

42A.4 A quick connect device is to be connected to the 1/4 inch NPT connection at the inlet and outlet, and is used to facilitate the filling and draining of the applicable test fluids. A source of pressure may be used to assist in filling and draining the samples, however the pressure shall not exceed the rated pressure of the device under test. Once the samples are filled, they are to be closed off and sealed.

42A.5 The sample is to be filled with the B100a test fluid as described in Supplement SA. Once filled and closed off in accordance with 42A.4, the sample is allowed to remain at rest for 84 ±0.5 hours at an ambient of 23 ±2°C (73 ±4°F). The sample is then drained and immediately refilled with the FB25a test fluid as described in Supplement SA. Once filled, the sample is allowed to remain at rest for 84 ±0.5 hours at an ambient temperature of 23 ±2°C. This constitutes one cycle. The sample shall be subjected to a total of 4 cycles. At the end of each of the first three cycles, the sample shall be subjected to the High Pressure Leakage Test, Section 29, at rated pressure. After the fourth cycle, the sample shall be subjected to the High Pressure Leakage Test, Section 29, at 1.5 times rated pressure. There shall be no leakage after this Leakage Tests or during the exposure periods.

42A.6 At the end of the 4 cycles, the device under test shall be subjected to the Hydrostatic Strength Test, Section 30.
BSR/UL 844, Standard for Safety for *Luminaires for Use in Hazardous (Classified)* Locations

1. Revisions to add Glass Requirements for Class I, Division 1 to Section 10

PROPOSAL

10.1.1.1 Glass

10.1.1.1.1 The thickness of a flat panel of glass, smooth or otherwise, shall not be less than specified in Table 10.3. The thickness of a glass lens, glass that is curved or bent, and glass having other shapes shall also not be less than specified in Table 10.3.

10.1.1.1.2 The minimum thickness of fluted, ribbed, or patterned glass is to be measured from a valley to the other side, or between valleys on opposite sides.
BSR/UL 870, Standard for Wireways, Auxiliary Gutters, and Associated Fittings

1. Protection from Sharp Edges.

2 Glossary

2.1 For the purpose of this standard the following definitions apply.

2.1.1 ACCESSIBLE EDGES - Edges that are subject to contact by persons installing, using or maintaining the product.

6 Design

6.3 The interior of the wireway and associated fittings shall be free from burrs and sharp corners or edges that may abrade the insulation on conductors or otherwise damage wiring or constitute a risk of injury to persons. Screws and bolts, however used, shall not project into the wireway unless sharp ends and threaded sections are covered or otherwise prevented from coming in contact with wires.

Exception: A threaded section of a screw or bolt not having a sharp point need not be prevented from coming in contact with wires provided the screw or bolt does not project more than 1/32 in (0.8 mm) into the wireway.

6.3.1 With reference to 6.3, a metal wireway and the associated metal fittings shall not have accessible edges that are sharp or pointed such that they constitute a risk of injury to persons in normal installation, maintenance and use. When considering sharp edges and points, all stages of the installation process must be considered.

Exception No. 1: This requirement does not apply to accessible edges protected by guards or the use of handles to minimize access to sharp edges of points.

Exception No. 2: This requirement does not apply to an accessible edge or portion of an accessible edge that is required to be sharp in order to perform a working function.

Exception No. 3: If sharp edges are present, but it is possible to avoid the hazard through proper procedures, then signs, labels or the manufacturer’s instructions shall describe the procedure to avoid the hazard during installation, maintenance, and use.

6.3.2 When determining compliance with 6.3.1, the Standard for Tests for Sharpness of Edges on Equipment, UL 1439, shall be used.
BSR/UL 1066, Standard for Safety for Low-Voltage AC and DC Power Circuit Breakers Used in Enclosures

1. Addition of Requirements for Integrally Mounted, Remotely Operated Racking Mechanisms for Use with Low-Voltage Power Circuit Breakers

PROPOSAL

SUPPLEMENT SC - INTEGRALLY MOUNTED, REMOTELY OPERATED RACKING MECHANISMS FOR USE WITH LOW VOLTAGE POWER CIRCUIT BREAKERS

INTRODUCTION

SC1 Scope

SC1.1 These requirements cover integrally mounted, remotely operated racking mechanisms intended to mechanically move (rack) a withdrawable circuit breaker into or out of the connected position, while allowing the operator to stand a distance from the equipment.

SC1.2 The requirements do not cover externally mounted remote racking devices.

SC1.3 These requirements cover control powered, cord-connected, and battery powered remotely operated racking mechanisms with a supply voltage rating of 600 V or less.

SC1.4 These requirements cover equipment intended for use in ordinary locations in accordance with the National Electrical Code, ANSI/NFPA 70.

CONSTRUCTION

SC2 General

SC2.1 Remotely operated racking mechanisms shall comply with the interlock requirements of IEEE C37.20.1.

SC2.2 Remotely operated racking mechanisms shall demonstrate the proper sequential operation for drawout circuit breakers as outlined for Mechanical Endurance Tests in IEEE C37.20.1 (see cycles of operation in IEEE C37.20.1).

SC2.3 Remotely operated racking mechanisms shall have provision for manual operation and shall be located so that when in use the wiring space and live parts are not exposed. Means shall be provided to prevent remote operation from functioning during manual operation.

SC2.4 A remotely operated racking mechanism shall be provided with an acceptable means for grounding all exposed accessible metal parts.
SC2.5 If any part of the remotely operated racking mechanism, when installed, interferes with the intended venting of the circuit breaker or reduces the distance to grounded dead metal, consideration shall be given to the need for interrupting tests to be performed on the circuit breaker with the remotely operated racking mechanism installed.

SC2.6 The time to complete each cycle shall be specified by the manufacturer in the instructions. See 8.6.

SC2.7 A means shall be provided to indicate to the operator the position of the circuit breaker and that the operating command has been completed successfully.

SC3 Control Powered Racking Mechanisms

SC3.1 Racking mechanisms that are powered by the control power of the circuit breaker or switchgear in which the circuit breaker is installed shall comply with SC3.2 through SC3.4.

SC3.2 The control power connection shall be automatically engaged when the circuit breaker is inserted into the disconnect position.

SC3.3 Grounding continuity shall be established when the power connection is engaged.

SC3.4 Control powered remote racking mechanisms shall be marked in accordance with SC8.4.

SC4 Cord-Connected Racking Mechanisms

SC4.1 Racking mechanisms that are cord-connected to the power supply shall be provided with a hard-service or junior hard-service flexible cord, such as Type S, SJ, or the equivalent, that is rated for the temperature and voltage involved or with a rated twist-lock receptacle.

SC4.2 The cord ampacity, as specified in Table SC1, shall not be less than the ampacity required for the racking mechanism.

<table>
<thead>
<tr>
<th>Table SC1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ampacity of flexible cord</td>
</tr>
<tr>
<td>Conductor size, AWG</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>18</td>
</tr>
<tr>
<td>16</td>
</tr>
<tr>
<td>14</td>
</tr>
</tbody>
</table>
SC4.3 The supply cord shall be provided with a standard attachment plug that is rated for the voltage involved and have an ampere rating not less than the required cord ampacity in Table SC1.

SC4.4 Cord-connected equipment provided with a standard attachment plug with an ampere rating exceeding the ampacity of the power-supply cord shall be provided with an integral overcurrent protective device rated not more than the ampacity of the conductors.

SC4.5 Strain relief shall be provided on power-supply cords.

SC4.6 At the point at which the cord passes through the enclosure wall, protection shall be provided to prevent cord abrasion.

SC4.7 If a knot serves as strain relief in an attached flexible cord, any surface that the knot may contact shall be free from projections, sharp edges, burrs, fins and the like, that may cause damage to the insulation jacket or conductors.

SC4.8 Means shall be provided to prevent the supply cord from being pushed into the enclosure through the cord-entry hole when such displacement results in:

a) Subjecting the supply cord or lead to mechanical damage;

b) Exposing the supply cord or lead to a temperature higher than that for which it is rated;

c) Reducing spacings (such as to a metal strain-relief clamp) below the minimum required values; or

d) Damaging internal connections or components.

SC5 Battery Operated Racking Mechanisms

SC5.1 Battery operated equipment shall be supplied with batteries having sufficient energy capacity to operate the intended withdrawable unit(s) for a minimum of 5 operations without replacement or recharging. For the purpose of this requirement, one operation is considered to be the movement of the breaker between the connected, test, disconnected and back to the connected position.
SC5.2 Battery operated equipment shall be provided with a means to prevent starting of a racking operation if there is insufficient energy remaining in the battery to complete the racking operation.

SC5.3 Battery operated equipment shall have provisions for charging in the test and connected positions.

PERFORMANCE

SC6 Mechanical Endurance Tests

SC6.1 The mechanical endurance tests may be conducted on a previously untested sample. Devices rated both 50 and 60 Hz may be tested at either frequency.

SC6.2 All primary power should be disconnected during mechanical tests.

SC6.3 The device shall be subjected to the Mechanical Endurance Tests in accordance with IEEE C37.20.1.

SC6.4 After the mechanical endurance tests, the device shall be subjected to the Dielectric Voltage-Withstand Tests, Section 19, UL 1066.

SC6.5 At the completion of the tests:

a) No maintenance shall have been necessary.

b) All interlocks shall function in the intended manner.

c) The removable element shall be capable of moving from connected to disconnected position by its intended means.

d) The switchgear and circuit breaker shall be structurally intact and in a condition to continue in service.

e) The plating of the primary disconnecting device contacts (silver-surfaced or the equivalent) shall not have worn through to the underlying layer at the surfaces where the primary disconnecting devices make contact when in the connected position.

f) Secondary disconnecting devices, if plated, shall not have worn through to the underlying layer at the surfaces where the secondary disconnecting devices make contact when in the test and connected positions.

g) The cycle time to position the circuit breaker shall not exceed the time claimed by the manufacturer. See SC2.6.

h) The indicator required in SC2.7 shall correctly specify the position of the circuit breaker at the connected, disconnected, and test positions.
SC7 Obstruction Tests

SC7.1 Tests shall be conducted to demonstrate that an obstruction, including damaged contacts of the switchgear or controlgear, in the intended path of the withdrawable element, does not result in an unsafe condition.

SC7.2 Unsafe conditions include, but are not limited to:

a) Misalignment or improper seating of contacts;

b) Incomplete withdrawal or insertion;

c) Damage to the racking mechanism, withdrawable element, or any other parts of the switchgear or controlgear assembly; and

d) Inaccurate indication of the position of the withdrawable element.

MARKINGS

SC8 General

SC8.1 Devices shall comply with the marking requirements of Section 23, UL 1066.

SC8.2 The circuit breaker shall be marked with the electrical ratings of the racking device.

SC8.3 Devices provided with fuses shall be marked with the rating and class of replacement fuse required. If a fuse class is not applicable, the manufacturer, fuse type, and electrical ratings shall be marked on the device.

SC8.4 Control powered racking mechanisms shall be marked to indicate that control power is present on the racking mechanism when the circuit breaker is in the disconnected position. This marking shall be located so as to be visible by an operator facing the front of the withdrawable circuit breaker.

SC8.5 Instructions shall be provided that indicate the step by step method for proper setup, alignment, and operation of the remote racking device.

SC8.6 The time to complete each cycle shall be included in the instructions.
BSR/UL 1370, Standard for Safety for Unvented Alcohol Fuel Burning Decorative Appliances

1. Modifications to the scope

PROPOSAL

7.4.5 The construction of fabricated enclosures shall be in accordance with reasonable concepts of safety, substantiality and durability. Component parts shall be secured against distortion, warpage or other damage and constructed so as to maintain a fixed relationship between essential parts under normal and reasonable conditions of handling and usage. Fabricated enclosures shall comply with the requirements in this section.
BSR/UL 1769, Standard for Safety for Cylinder Valves

1. Add requirements for valves with quick coupling connections

PROPOSAL

17 Endurance Test

17.2 A valve with a handwheel, or quick coupling outlet connection, is to be subjected to 6,000 cycles of opening and closing.

17.4 A valve for use only with LP-Gas, or one for use with either LP-Gas or anhydrous ammonia, is to be tested with the valve outlet plugged, the valve body filled with n-hexane, and the valve inlet subjected to a pressure of 250 psig (1.7 MPa).

Exception: A valve with a quick coupling outlet connection is to be tested with air or nitrogen.