Call for Comment on Standards Proposals

This section solicits public comments on proposed draft new American National Standards, including the national adoption of ISO and IEC standards as American National Standards, and on proposals to revise, reaffirm or withdraw approval of existing American National Standards. A draft standard is listed in this section under the ANSI-accredited standards developer (ASD) that sponsors it and from whom a copy may be obtained. Comments in connection with a draft American National Standard must be submitted in writing to the ASD no later than the last day of the comment period specified herein. Such comments shall be specific to the section(s) of the standard under review and include sufficient detail so as to enable the reader to understand the commenter's position, concerns and suggested alternative language, if appropriate. Please note that the ANSI Executive Standards Council (ExSC) has determined that an ASD has the right to require that interested parties submit public review comments electronically, in accordance with the developer’s procedures.

Ordering Instructions for "Call-for-Comment" Listings

1. Order from the organization indicated for the specific proposal.
2. Use the full identification in your order, including the BSR prefix; for example, Electric Fuses BSR/SAE J554.
3. Include remittance with all orders.
4. BSR proposals will not be available after the deadline of call for comment.

Comments should be addressed to the organization indicated, with a copy to the Board of Standards Review, American National Standards Institute, 25 West 43rd Street, New York, NY 10036. Fax: 212-840-2298; e-mail: psa@ansi.org

* Standard for consumer products
BSR/AGMA 9006-AXX-201x, Flexible Couplings - Basis for Rating (new standard)
This standard presents criteria and guidelines for the establishment of the basis for ratings of standard flexible couplings. Due to the diversity of coupling types, details of design such as formulas and analysis used to derive the stresses, etc. are often considered proprietary and are not considered in this standard. This standard is of importance to coupling manufacturers, users, and equipment designers for the proper selection, comparison, and application of flexible couplings.

Send comments (with copy to psa@ansi.org) to: Amir Aboutaleb, (703) 684-0211, tech@AGMA.org

BSR/NSF 62-201x (i27), Drinking Water Distillation Systems (revision of ANSI/NSF 62-2014)
This standard establishes minimum materials, design and construction, and performance of residential cation exchange water softeners. This Standard also specifies the minimum product literature that manufacturers shall supply to authorized representatives and owners, as well as the minimum service-related obligations that manufacturers shall extend to owners.

Send comments (with copy to psa@ansi.org) to: Monica Leslie, (734) 827-5643, mleslie@nsf.org

BSR/NSF 53-201x (i100), Drinking Water Treatment Systems - Health Effects (revision of ANSI/NSF 53-2014)
The purpose of this Standard is to establish minimum requirements for materials, design and construction, and performance of residential cation exchange water softeners. This Standard also specifies the minimum product literature that manufacturers shall supply to authorized representatives and owners, as well as the minimum service-related obligations that manufacturers shall extend to owners.

Send comments (with copy to psa@ansi.org) to: Monica Leslie, (734) 827-5643, mleslie@nsf.org

BSR/NSF 44-201x (i39), Residential Cation Exchange Water Softeners (revision of ANSI/NSF 44-2014)
The purpose of this Standard is to establish minimum requirements for materials, design and construction, and performance of residential cation exchange water softeners. This Standard also specifies the minimum product literature that manufacturers shall supply to authorized representatives and owners, as well as the minimum service-related obligations that manufacturers shall extend to owners.

Send comments (with copy to psa@ansi.org) to: Monica Leslie, (734) 827-5643, mleslie@nsf.org

BSR/NSF 58-201x (i70), Reverse Osmosis Drinking Water Treatment Systems (revision of ANSI/NSF 58-2014)
The purpose of this Standard is to establish minimum requirements for materials, design and construction, and performance of reverse osmosis drinking water treatment systems. This Standard also specifies the minimum product literature that manufacturers shall supply to authorized representatives and owners, as well as the minimum service-related obligations that manufacturers shall extend to system owners.

Send comments (with copy to psa@ansi.org) to: Monica Leslie, (734) 827-5643, mleslie@nsf.org

BSR/NSF 42-201x (i84), Drinking Water Treatment Systems - Aesthetic Effects (revision of ANSI/NSF 42-2014)
It is the purpose of this Standard to establish minimum requirements for materials, design, and construction, and performance of drinking water treatment systems that are designed to reduce specific aesthetic-related (non-health effects) contaminants in public or private water supplies. This Standard also specifies the minimum product literature and labeling information that a manufacturer shall supply to authorized representatives and system owners as well as the minimum service-related obligations that the manufacturer shall extend to system owners.

Send comments (with copy to psa@ansi.org) to: Monica Leslie, (734) 827-5643, mleslie@nsf.org

BSR/NSF 100 [E0A1]-201x, Specification for Sealless Horizontal End Suction Centrifugal Pumps for Chemical Process (revision of ANSI/ASME B73.3-2003 (R2008))
This Standard is a design and specification standard that covers metallic- and plastic-lined sealless centrifugal pumps of horizontal, end-suction single-stage, centerline discharge design. This Standard includes dimensional interchangeability requirements and certain design features to facilitate installation and maintenance and enhance reliability and safety of B73.3 pumps.

Send comments (with copy to psa@ansi.org) to: Calvin Gomez, (212) 591-7021, gomezcc@ame.org

BSR/ASME B73.3-20xx, Procedure for Determining Fenestration U-factors (thermal transmittance).
This Standard is a design and specification standard that covers metallic- and plastic-lined sealless centrifugal pumps of horizontal, end-suction single-stage, centerline discharge design. This Standard includes dimensional interchangeability requirements and certain design features to facilitate installation and maintenance and enhance reliability and safety of B73.3 pumps.

Send comments (with copy to psa@ansi.org) to: Robin Merrifield, (240) 821-9513, rmerrifield@nfrc.org

BSR/ASME B73.3-2003 (R2008))
This Standard is a design and specification standard that covers metallic- and plastic-lined sealless centrifugal pumps of horizontal, end-suction single-stage, centerline discharge design. This Standard includes dimensional interchangeability requirements and certain design features to facilitate installation and maintenance and enhance reliability and safety of B73.3 pumps.

Send comments (with copy to psa@ansi.org) to: Robin Merrifield, (240) 821-9513, rmerrifield@nfrc.org

BSR/AMGA 9006-XX-201x, Flexible Couplings - Basis for Rating (new standard)
This standard presents criteria and guidelines for the establishment of the basis for ratings of standard flexible couplings. Due to the diversity of coupling types, details of design such as formulas and analysis used to derive the stresses, etc. are often considered proprietary and are not considered in this standard. This standard is of importance to coupling manufacturers, users, and equipment designers for the proper selection, comparison, and application of flexible couplings.

Send comments (with copy to psa@ansi.org) to: Monica Leslie, (734) 827-5643, mleslie@nsf.org
Standards Action - September 18, 2015 - Page 3 of 45 Pages

NSF (NSF International)
Revision
BSR/NSF 330-201x (iB), Glossary of Drinking Water Treatment Unit Terminology (revision of ANSI/NSF 330-2014)
This Standard establishes definitions for drinking water treatment units and related components.
Click here to view these changes in full
Send comments (with copy to psa@ansi.org) to: Monica Leslie, (734) 827-5643, mleslie@nsf.org

SPRI (Single Ply Roofing Institute)
Revision
BSR/SPRI WD-1-201x, Wind Design Standard Practice for Roofing Assemblies (revision of ANSI/SPRI WD-1-2012)
This Wind Design Standard Practice provides general building design considerations as well as recommendations for installing the roof system to resist design wind loads including a methodology for enhancing field attachment requirements to resist the increased design wind loads at the perimeter and corner of the building. Information is also included for selecting an appropriate roofing system assembly to meet those pressures. This Standard Practice is appropriate for non-ballasted Built-Up, Modified Bitumen, and Single-Ply roofing system assemblies installed over any type of roof deck.
Click here to view these changes in full
Send comments (with copy to psa@ansi.org) to: Linda King, info@spri.org

TIA (Telecommunications Industry Association)
Revision
BSR/TIA 4953-A-201x, Telecommunications - Communications Products - Amplified Telephone Measurement Procedures and Performance Requirements (revision and redesignation of ANSI/TIA 4953-2012)
This revision project is proposed to make the following changes to the existing standard: (1) Add requirements for digital interface telephones, (2) Add requirements for sidetone, (3) Add requirements for distortion for any volume control setting and any input level, (4) Remove the "Maximum Usable Gain" measurement clause, (5) Add requirements for testing send level during conversation simulation, and (6) Revise the requirements for the "Mild" criteria to align with the volume control requirements for regular telephones. These revisions are necessary to improve the applications for this standard.
Click here to view these changes in full
Send comments (with copy to psa@ansi.org) to: standards@tiaonline.org

UL (Underwriters Laboratories, Inc.)
Revision
Document dated 9/18/2015 recirculates changes to original UL 217 proposal dated 7-24-2015. Proposal dated 7-24-15 proposes new cooking nuisance and polyurethane flaming and smoldering tests to the seventh edition of UL 217, which covers electrically operated single- and multiple-station smoke alarms intended for open area protection in indoor locations and portable smoke alarms used as "travel" alarms in accordance with NFPA 72, NFPA 302, and NFPA 501C.
Click here to view these changes in full
Send comments (with copy to psa@ansi.org) to: Paul Lloret, (408) 754-6618, Paul.E.Lloret@ul.com

Comment Deadline: November 2, 2015

AGA (ASC Z380) (American Gas Association)
Addenda
Increasing MAOP. Revise GM for 192.620 due to PHMSA Amendment 192-111 published on November 30, 2009 (74 FR 65204). The Standard provides guidance to operators of natural-gas and LP pipeline systems regulated under U.S. CFR 49, Parts 191 and 192. Previous Public Review was conducted; comments limited to revised material as highlighted.
Single copy price: Free
Obtain an electronic copy from: www.agagptc.org
Order from: Michael Bellman, (202) 824-7183, mbellman@aga.org
Send comments (with copy to psa@ansi.org) to: Same

AGA (ASC Z380) (American Gas Association)
Addenda
Marking New Facilities. Revised GM as appropriate based on new CGA Best Practice 4-22 for marking newly installed facilities. The Standard provides guidance to operators of natural gas and LP pipeline systems regulated under U.S. CFR 49, Parts 191 and 192. Previous Public Review was conducted; comments limited to revised material as highlighted.
Single copy price: Free
Obtain an electronic copy from: www.agagptc.org
Order from: Michael Bellman, (202) 824-7183, mbellman@aga.org
Send comments (with copy to psa@ansi.org) to: Same

AGA (ASC Z380) (American Gas Association)
Addenda
Single copy price: Free
Obtain an electronic copy from: www.agagptc.org
Order from: Michael Bellman, (202) 824-7183, mbellman@aga.org
Send comments (with copy to psa@ansi.org) to: Same
Standards Action - September 18, 2015 - Page 4 of 45 Pages

AGA (ASC Z380) (American Gas Association)

Addenda

IMP Program Evaluation. Revise Guide Material based upon PHMSA Advisory Bulletin (ADB-2014-02). The Standard provides guidance to operators of natural-gas and LP pipeline systems regulated under U.S. CFR 49, Parts 191 and 192. Previous Public Review was conducted; comments limited to revised material as highlighted.

Single copy price: Free
Obtain an electronic copy from: www.aga.org/gptc
Order from: Michael Bellman, (202) 824-7183, mbellman@aga.org
Send comments (with copy to psa@ansi.org) to: Same

AGA (ASC Z380) (American Gas Association)

Addenda

Acceptable Guidance Language Regarding Threats to Pipeline Integrity. GM was reviewed to either revise the text or provide an explanation/source. The Standard provides guidance to operators of natural-gas and LP pipeline systems regulated under U.S. CFR 49, Parts 191 and 192.

Single copy price: Free
Obtain an electronic copy from: www.aga.org/gptc
Order from: Michael Bellman, (202) 824-7183, mbellman@aga.org
Send comments (with copy to psa@ansi.org) to: Same

AGA (ASC Z380) (American Gas Association)

Addenda

Flexibility and Stress Intensification Factors. Update Stress Intensification Factor tables to include in- and out-of-plane SIF’s and add fittings not covered currently, perhaps by using B31.3 Appendix D in place of current Appendix G-192-3. The Standard provides guidance to operators of natural-gas and LP pipeline systems regulated under U.S. CFR 49, Parts 191 and 192.

Single copy price: Free
Obtain an electronic copy from: www.aga.org/gptc
Order from: Michael Bellman, (202) 824-7183, mbellman@aga.org
Send comments (with copy to psa@ansi.org) to: Same

ASABE (American Society of Agricultural and Biological Engineers)

New Standard

BSR/ASABE EP585 MONYEAR-201x, Animal Mortality Composting (new standard)

This Engineering Practice provides guidelines for biosecure, environmentally acceptable, and economically sustainable disposal of livestock and poultry carcasses and carcass parts via composting. It covers planning, construction, operation, and maintenance of mortality composting operations using naturally vented, static pile bin or window systems of the type typically used for routine or emergency mortality management on farms or ranches. Guidelines for in-vessel or mechanically ventilated composting systems are not covered.

Single copy price: $58.00
Obtain an electronic copy from: vangilder@asabe.org
Order from: Carla VanGilder, (269) 932-7015, vangilder@asabe.org
Send comments (with copy to psa@ansi.org) to: Same

AGA (ASC Z380) (American Gas Association)

Addenda

Single copy price: Free
Obtain an electronic copy from: www.aga.org/gptc
Order from: Michael Bellman, (202) 824-7183, mbellman@aga.org
Send comments (with copy to psa@ansi.org) to: Same
AWWA (American Water Works Association)

New Standard

BSR/AWWA C751-201x, Magnetic Inductive Flowmeters (new standard)

Magnetic inductive flowmeters or electromagnetic flowmeters are commonly called magmeters. The flowmeter referenced in this standard will be called a magmeter or magnetic flowmeters interchangeably. Magmeters are available in wafer style and threaded and flanged end connection designs. These spool/tube design flowmeters are most commonly used in the water industry. This standard will focus on magmeters of this design.

Single copy price: $20.00

Obtain an electronic copy from: v david@awwa.org

Order from: Paul Olson, (303) 347-6178, polson@awwa.org; v david@awwa.org

Send comments (with copy to psa@ansi.org) to: Same

ATCC (American Type Culture Collection)

New Standard

BSR/ASN 0003-201x, Species-Level Identification of Animal Cells through Mitochondrial Cytochrome c Oxidase Subunit 1 (CO1) DNA Barcodes (new standard)

DNA barcoding (CO1 analysis) can successfully identify a wide range of species from various animal taxa, even discriminating between species of the same genus. The technique is easily replicated among laboratories and, because the reference databases contain verified sequences derived from morphological voucher (reference) specimens, it provides a reliable means of validating a putative species identification of a sample.

Single copy price: $0 be determined

Obtain an electronic copy from: calston-roberts@atcc.org

Order from: Christine Alston-Roberts, (703) 365-2802, calston-roberts@atcc.org

Send comments (with copy to psa@ansi.org) to: Same

HL7 (Health Level Seven)

Revision

This implementation guide supports electronic submission of Healthcare Associated Infection data to the National Healthcare Safety Network (NHSN). It includes an informative appendix that covers only the subset of the NHSN HAI CDA IG relevant to specific event types. The CDC provided NHSN developers, vocabulary experts, and CDA experts to support this project.

Single copy price: Free to HL7 members; free to non-members 90 days following ANSI approval and publication by HL7

Obtain an electronic copy from: Karenvan@HL7.org

Order from: Karen Van Hentenryck, (734) 677-7777, Karenvan@HL7.org

Send comments (with copy to psa@ansi.org) to: Same

IEST (Institute of Environmental Sciences and Technology)

New National Adoption

BSR/FDIS 14644-1-201x, Cleanrooms and associated controlled environments - Part 1: Classification of air cleanliness by particle concentration (identical national adoption of ISO 14644-1:20XX and revision of ANSI/IEST ISO 14644-1-1999)

ISO 14644-1 establishes the classification of air cleanliness in terms of concentration of airborne particles in cleanrooms and clean zones; and separative devices as defined in ISO 14644-7:2004. Only particle populations having cumulative distributions based on threshold particle sizes ranging from 0.1 μm to 5 μm are considered for classification purposes. The use of light scattering (discrete) airborne particle counters is the basis for determination of the concentration of airborne particles at designated sampling locations.

Single copy price: $64.00/80.00

Obtain an electronic copy from: jsklena@iest.org; iestservices@iest.org

Order from: Jennifer Sklena, (847) 981-0100, jsklena@iest.org; iestservices@iest.org

Send comments (with copy to psa@ansi.org) to: Same

AWWA (American Water Works Association)

Revision

BSR/ASAE S422.1 MONYEAR-201x, Mapping Symbols and Nomenclature for Erosion and Sediment Control Plans for Land Disturbing Activities (revision and redesignation of ANSI/ASAE S422-MAR95 (R2009))

Establish list of standard descriptive elements for use in erosion and sediment control plan development. Facilitates use and review of such plans by contractors and other professionals. Does not restrict creation of additional descriptive elements as required for practices not included here. Does not imply that these practices are suitable for erosion or sediment control in any or all applications. Descriptive elements are intended only to facilitate communications. Information within this Standard is not intended to be used in lieu of other construction information and details.

Single copy price: $20.00

Obtain an electronic copy from: v david@awwa.org

Order from: Paul Olson, (303) 347-6178, polson@awwa.org; v david@awwa.org

Send comments (with copy to psa@ansi.org) to: Same

AWWA (American Water Works Association)

New Standard

BSR/AWWA C671-201x, Online Turbidimeter Operation and Maintenance (new standard)

This standard describes online turbidimeter operation and maintenance (O & M) when the online turbidimeters are used in the treatment and monitoring of potable water, reclaimed water, or wastewater effluent.

Single copy price: $20.00

Obtain an electronic copy from: v david@awwa.org

Order from: Paul Olson, (303) 347-6178, polson@awwa.org; v david@awwa.org

Send comments (with copy to psa@ansi.org) to: Same

ASABE (American Society of Agricultural and Biological Engineers)

Revision

BSR/ASAE S422.1 MONYEAR-201x, Mapping Symbols and Nomenclature for Erosion and Sediment Control Plans for Land Disturbing Activities (revision and redesignation of ANSI/ASAE S422-MAR95 (R2009))

Establish list of standard descriptive elements for use in erosion and sediment control plan development. Facilitates use and review of such plans by contractors and other professionals. Does not restrict creation of additional descriptive elements as required for practices not included here. Does not imply that these practices are suitable for erosion or sediment control in any or all applications. Descriptive elements are intended only to facilitate communications. Information within this Standard is not intended to be used in lieu of other construction information and details.

Single copy price: $20.00

Obtain an electronic copy from: v david@awwa.org

Order from: Paul Olson, (303) 347-6178, polson@awwa.org; v david@awwa.org

Send comments (with copy to psa@ansi.org) to: Same
New National Adoption

NISO (National Information Standards Organization)

Revision

JATS: Journal Article Tag Suite (1.0), achieved through Continuous Maintenance procedure. Includes changes submitted through February, 2015, approved by NISO JATS Standing Committee and NISO Content and Collection Management Topic Committee.

Single copy price: Free

Obtain an electronic copy from: nisohq@niso.org

Send comments (with copy to psa@ansi.org) to: nisohq@niso.org

Revision

BSR/ITSDF B56.6-201X, Safety Standard for Rough Terrain Forklift Trucks (revision of ANSI/ITSDF B56.6-2011)

This Standard defines the safety requirements relating to the elements of design, operation, and maintenance of rough-terrain forklift trucks. These trucks are intended for operation on unimproved natural terrain as well as the disturbed terrain of construction sites.

Single copy price: Free

Obtain an electronic copy from: itsdf@earthlink.net

Order from: Chris Merther, (202) 296-9880, itsdf@earthlink.net

Send comments (with copy to psa@ansi.org) to: Same

Revision

BSR/NISO 60-201x (i69), Drinking Water Treatment Chemicals: Health Effects (revision of ANSI/NSF 60-2014a)

This Standard establishes minimum health effects requirements for the chemicals, the chemical contaminants, and the impurities that are directly added to drinking water from drinking water treatment chemicals. This Standard does not establish performance or taste and odor requirements for drinking water treatment chemicals.

Single copy price: Free

Order from: Monica Leslie, (734) 827-5643, mleslie@nsf.org

Send comments (with copy to psa@ansi.org) to: Same

Revision

BSR/NISO 61-201x (i126), Drinking Water System Components: Health Effects (revision of ANSI/NSF 61-2014a)

This Standard establishes minimum health effects requirements for the chemical contaminants and impurities that are indirectly imparted to drinking water from products, components, and materials used in drinking water systems. This Standard does not establish performance, taste and odor, or microbial growth support requirements for drinking water system products, components, or materials.

Single copy price: Free

Order from: Monica Leslie, (734) 827-5643, mleslie@nsf.org

Send comments (with copy to psa@ansi.org) to: Same

New Standard

BSR/TAPPI T 435 om-201x, Hydrogen ion concentration (pH) of paper extracts (hot extraction method) (new standard)

This method measures the hydrogen ion concentration, expressed in terms of pH, of an aqueous extract of paper obtained by hot extraction (unfiltered and extracted by boiling water for one hour).

Single copy price: Free

Obtain an electronic copy from: standards@tappi.org

Order from: Laurence Womack, (770) 209-7277, standards@tappi.org

Send comments (with copy to psa@ansi.org) to: Same

Reaffirmation

BSR/TAPPI T 465 sp-2010 (R201x), Static creasing of paper for water vapor transmission tests (reaffirmation of ANSI/TAPPI T 465 sp-2010)

This standard practice is used for the creasing of paper and other thin sheet materials to provide reproducibly creased specimens for testing water vapor transmission. It is not applicable to paperboard.

Single copy price: Free

Obtain an electronic copy from: standards@tappi.org

Order from: Laurence Womack, (770) 209-7277, standards@tappi.org

Send comments (with copy to psa@ansi.org) to: Same
UL (Underwriters Laboratories, Inc.)

New Standard
BSR/UL 6141-201X, Standard for Safety for Wind Turbines Permitting Entry of Personnel (new standard)

Document dated 9-18-15 proposes the first edition of UL 6141, the Standard for Wind Turbines Permitting Entry of Personnel. This proposed standard consists of requirements for large wind turbines (WT) that are equipped with electrical subassemblies and permit the entry of personnel. With respect to this standard, these are WT where a user or service person may, or is intended to, enter the turbine to operate it or perform maintenance. These WT are intended for use in utility-interactive, grid-tied applications that operate in parallel with an electric power system (EPS) to supply power to common or stand-alone loads.

Single copy price: Contact comm2000 for pricing and delivery options
Order from: comm2000
Send comments (with copy to psa@ansi.org) to: Paul Lloret, (408) 754-6618, Paul.E.Lloret@ul.com

UL (Underwriters Laboratories, Inc.)

Reaffirmation
BSR/UL 1322-2010 (R201x), Standard for Safety for Fabricated Scaffold Planks and Stages (reaffirmation of ANSI/UL 1322-2010)

This standard covers requirements for the following: (a) Wood, metal, or a combination of wood and metal fabricated planks; (b) Fabricated platforms for use with suspended, fixed, or rolling scaffold; (c) Modular suspended platforms; (d) Scaffold decks; (e) Mobile work stands; and (f) Work cages (baskets).

Single copy price: Contact comm2000 for pricing and delivery options
Order from: comm2000
Send comments (with copy to psa@ansi.org) to: Marcia Kawate, (408) 754-6743, Marcia.M.Kawate@ul.com

UL (Underwriters Laboratories, Inc.)

Revision
BSR/UL 96-201x, Standard for Safety for Lightning Protection Components (revision of ANSI/UL 96-2010)

(1) The proposed Sixth Edition of the Standard for Lightning Protection Components, UL 96, incorporating requirements applicable for Canada; (2) Copper alloys and content.

Single copy price: Contact comm2000 for pricing and delivery options
Obtain an electronic copy from: www.comm-2000.com
Order from: comm2000
Send comments (with copy to psa@ansi.org) to: Mitchell Gold, (847) 664-2850, Mitchell.Gold@ul.com

 Withdrawal of ANS by API

In accordance with clause 4.2.1.3.2 of the ANSI Essential Requirements, Withdrawal by ANSI-Accredited Standards Developer, the following American National Standard has been withdrawn as an American National Standard (ANS):

Questions may be directed to: Katie Burkle, (202) 682-8507, burklek@api.org.
Call for Members (ANS Consensus Bodies)

Directly and materially affected parties who are interested in participating as a member of an ANS consensus body for the standards listed below are requested to contact the sponsoring standards developer directly and in a timely manner.

AAMI (Association for the Advancement of Medical Instrumentation)
Office: 4301 N Fairfax Drive
 Suite 301
 Arlington, VA 22203-1633
Contact: Colleen Elliott
Phone: (703) 276-0793
Fax: (703) 267-0793
E-mail: celliott@aami.org

BSR/AAMI/ISO 18250-20-201x, Connectors for Reservoir Delivery Systems for Healthcare Applications - Part 20: Common Test Methods (identical national adoption of ISO 18250-20)

BSR/AAMI/ISO 18520-1-201x, Connectors for Reservoir Delivery Systems for Healthcare Applications - Part 1: General Requirements (identical national adoption of ISO 18250-1)

ASA (ASC S12) (Acoustical Society of America)
Office: 1305 Walt Whitman Rd
 Suite 300
 Melville, NY 11747
Contact: Susan Blaeser
Phone: (631) 390-0215
Fax: (631) 923-2875
E-mail: asastds@acousticalsociety.org

BSR ASA S12.18-201x, Procedures for Outdoor Measurement of Sound Pressure Level (revision of ANSI/ASA S12.18-1994 (R2009))

ATCC (American Type Culture Collection)
Office: 10801 University Boulevard
 Manassas, VA 20110
Contact: Christine Alston-Roberts
Phone: (703) 365-2802
Fax: (703) 334-2944
E-mail: calston-roberts@atcc.org

BSR/ASN 0003-201x, Species-Level Identification of Animal Cells through Mitochondrial Cytochrome c Oxidase Subunit 1 (CO1) DNA Barcodes (new standard)
Obtain an electronic copy from: calston-roberts@atcc.org

BSR/ASN 0004-201x, Species-Level Identification and Cross-Contamination screening in Animal Cells by Multiplex (new standard)

GBI (Green Building Initiative)
Office: 5410 SW Macadam Ave, Suite 150
 Portland, OR 97239
Contact: Maria Woodbury
Phone: (207) 807-8666
E-mail: maria@thegbi.org

BSR/GBI 01-201x, Green Building Assessment Protocol for Commercial Buildings (revision of ANSI/GBI 01-2010)
Obtain an electronic copy from: http://www.thegbi.org/ansi

NFRC (National Fenestration Rating Council)
Office: 6305 Ivy Lane
 Suite 140
 Greenbelt, MD 20770
Contact: Robin Merrifield
Phone: (240) 821-9513
Fax: (301) 589-3884
E-mail: rmerrifield@nfrc.org

BSR/NFRC 100 [EOA1]-201x, Procedure for Determining Fenestration Product U-Factors (revision and redesignation of ANSI/NFRC 100 -2014)
Obtain an electronic copy from: https://nfrccommunity.site-ym.com/group/ANS

TAPPI (Technical Association of the Pulp and Paper Industry)
Office: 15 Technology Parkway South
 Peachtree Corners, GA 30092
Contact: Laurence Womack
Phone: (770) 209-7277
Fax: (770) 446-6947
E-mail: standards@tappi.org

BSR/TAPPI T 519 om-201x, Diffuse opacity of paper (d/0 paper backing) (revision and redesignation of ANSI/TAPPI T 519 om-2011)
TIA (Telecommunications Industry Association)

Office: 1320 North Courthouse Road
 Suite 200
 Arlington, VA 22201

Contact: Teesha Jenkins
Phone: (703) 907-7706
Fax: (703) 907-7727
E-mail: standards@tiaonline.org

BSR/TIA 4953-A-201x, Telecommunications - Communications
 Products - Amplified Telephone Measurement Procedures and
 Performance Requirements (revision and redesignation of ANSI/TIA
 4953-2012)
Obtain an electronic copy from: TIA

UL (Underwriters Laboratories, Inc.)

Office: 455 E. Trimble Rd.
 San Jose, CA 95131-1230

Contact: Marcia Kawate
Phone: (408) 754-6743
Fax: (408) 754-6743
E-mail: Marcia.M.Kawate@ul.com

BSR/UL 1322-2010 (R201x), Standard for Safety for Fabricated Scaffold
 Planks and Stages (reaffirmation of ANSI/UL 1322-2010)

BSR/UL 1558-201x, Standard for Safety for Metal-Enclosed Low-
 Voltage Power Circuit Breaker Switchgear (new standard)
Obtain an electronic copy from: www.comm-2000.com
Call for Nominations

The ATCC Standards Development Organization (SDO) is requesting nominations to serve as workgroup members for the development of the Standard described below:

Standard: *Species-Level Identification and Cross-Contamination Screening in Animal Cells by Multiplex PCR*

Workgroup Chairs: Jason Katz Cooper, Biology Professor Community College of Beaver County
-Ray Nims, PhD, Senior Consultant, RMC Pharmaceutical Solutions, Inc.

Standard/Project Intent: A multiplex PCR-based approach to rapidly identify species of cultured animal cells and to detect inter-species cell line cross-contamination.

Standard/Project Need: The multiplex PCR assay is designed to be simple, inexpensive, high-throughput and extremely rapid. Works with the mitochondrial cytochrome c oxidase subunit I (CO1) and cytochrome B genes, as a two-pronged approach, and serves as an update of traditional methods, such as isoenzymology and karyotyping.

Applicable Stakeholders:
- Lifescience
- Basic science
- Tissue cuturists
- Cell banks
- Animal testing (regulatory)

Scope Summary or Abstract of Project:
Researchers rely on cell lines as model systems for basic research, standards, and controls. It is therefore essential that cell lines are correctly identified and free of cross-contaminating cells. Short tandem repeat profiling offers a solution for providing donor-level identity of cell lines derived from a limited number of species, primarily human and mouse. However, this approach is currently not practical for establishing the species-level identity of the wide range of species commonly held by culture collections, cell banks, and organizations conducting research or regulated biologics manufacture and testing. Traditional isoenzymological identification methods have been useful for this purpose, but are no longer able to be used due to reagent availability issues. A multiplex PCR-based approach can be used to rapidly identify species of cells and can detect inter-species cell line cross-contaminations.

The multiplex PCR assay is designed to be simple, inexpensive, high-throughput and extremely rapid. The primers in the multiplex PCR target the mitochondrial cytochrome c oxidase subunit I (CO1) and cytochrome B genes. Both genes show great conservation within a species but vary considerably between one species and another. Primers in the multiplex are designed to produce amplicons only when the target species is present in the culture. Further the resulting amplicons vary in size in a species-specific manner. In this way, an analyst can
quickly screen a large number of cultures and identify species by simple visualization of band size. For identification of species not covered by the multiplex PCR, COI barcode sequencing is recommended.

Specific Expertise/Work Experience Needed (one or more of the below):

- Polymerase Chain Reaction (PCR) using a multiplex reaction.
- Vertebrate and invertebrate animal cell culture.
- Experience in regulated testing spaces

The deadline to submit notification of interest in serving on the workgroup with curriculum vitae is **November 20, 2015**. Upon receipt of your statement of interest in serving on the subcommittee a disclosure of interests form will be sent to you for completion. Send to Christine Alston-Roberts, ATCC Standards and Certification Specialist, at calston-roberts@atcc.org, or mail to ATCC, PO Box 1549, Manassas, VA 20108, or via Fax at 703.334-2944.
Final Actions on American National Standards

The standards actions listed below have been approved by the ANSI Board of Standards Review (BSR) or by an ANSI-Audited Designator, as applicable.

ASABE (American Society of Agricultural and Biomedical Engineers)

New National Adoption

ASME (American Society of Mechanical Engineers)

New Standard

Revision

ASQ (ASC Z1) (American Society for Quality)

New National Adoption

ASTM (ASTM International)

Revision

B11 (B11 Standards, Inc.)

Reaffirmation

ANSI B11.9-2010 (R2015), Safety Requirements for Grinding Machines (reaffirmation of ANSI B11.9-2010): 9/10/2015

HL7 (Health Level Seven)

Reaffirmation

Revision

NECA (National Electrical Contractors Association)

Revision

TIA (Telecommunications Industry Association)

Revision

UL (Underwriters Laboratories, Inc.)

New Standard

Revision

Correction

Incorrect Project Intent

ANSI/IEEE 4-2013

In the Final Actions section of the August 21, 2015 issue of Standards Action, the project intent of ANSI/IEEE 4-2013 was listed as "(revision of ANSI/IEEE 4-1995)". Since the 1995 version of the standard had been administratively withdrawn, the project intent of ANSI/IEEE 4-2013 is now "(new standard)".
Project Initiation Notification System (PINS)

ANSI Procedures require notification of ANSI by ANSI-accredited standards developers (ASD) of the initiation and scope of activities expected to result in new or revised American National Standards (ANS). Early notification of activity intended to reaffirm or withdraw an ANS and in some instances a PINS related to a national adoption is optional. The mechanism by which such notification is given is referred to as the PINS process. For additional information, see clause 2.4 of the ANSI Essential Requirements: Due Process Requirements for American National Standards.

Following is a list of proposed actions and new ANS that have been received recently from ASDs. Please also review the section in Standards Action entitled "American National Standards Maintained Under Continuous Maintenance" for additional or comparable information with regard to standards maintained under the continuous maintenance option. To view information about additional standards for which a PINS has been submitted and to search approved ANS, please visit www.NSSN.org, which is a database of standards information. Note that this database is not exhaustive.

Directly and materially affected interests wishing to receive more information or to submit comments are requested to contact the standards developer directly within 30 days of the publication of this announcement.

AAMI (Association for the Advancement of Medical Instrumentation)
Office: 4301 N Fairfax Drive
 Suite 301
 Arlington, VA 22203-1633
Contact: Colleen Elliott
Fax: (703) 276-0793
E-mail: celliot@aami.org

BSR/AAMI/ISO 18250-20-201x, Connectors for Reservoir Delivery Systems for Healthcare Applications - Part 20: Common Test Methods (identical national adoption of ISO 18250-20)
Stakeholders: Connectors manufacturers, clinicians, pharmacists.
Project Need: Standardization of testing for connectors for reservoir delivery systems for healthcare applications.
Specifies the test methods to support the functional requirements for connectors for reservoir delivery systems intended to be used for connections of medical devices and related accessories.

BSR/AAMI/ISO 18520-1-201x, Connectors for Reservoir Delivery Systems for Healthcare Applications - Part 1: General Requirements (identical national adoption of ISO 18250-1)
Stakeholders: Connectors manufacturers, clinicians, pharmacists.
Project Need: Standardization of connectors for reservoir delivery systems for healthcare applications.
Specifies general requirements for reservoir connectors, which convey liquids in healthcare applications. These reservoir connectors are used in medical devices or accessories intended for use with a patient.

ASA (ASC S12) (Acoustical Society of America)
Office: 1305 Walt Whitman Rd
 Suite 300
 Melville, NY 11747
Contact: Susan Blaeser
Fax: (631) 923-2875
E-mail: asastds@acousticalsociety.org

BSR ASA S12.18-201x, Procedures for Outdoor Measurement of Sound Pressure Level (revision of ANSI/ASA S12.18-1994 (R2009))
Stakeholders: Members of the acoustics community engaged in measurement of sound levels outdoors, particularly in research capacities, as this standard provides a high-precision method for measurement.
Project Need: The current document was published in 1994. It needs to be updated and at a minimum make reference to current standards. A general review of the standard with regards to current practice, equipment, and new technology will be undertaken. The annex A on propagation will be updated.
This standard describes methods for measuring sound pressure levels in the outdoor environment, taking into account the effects of refraction due to wind and temperature gradients, the effects of atmospheric turbulence, variable ground impedance, and wind noise. It prescribes selected meteorological conditions under which sound pressure level measurements shall be made. Sound pressure levels measured for determining the sound power radiated by a source are not covered by this standard.

ATCC (American Type Culture Collection)
Office: 10801 University Boulevard
 Manassas, VA 20110
Contact: Christine Alston-Roberts
Fax: (703) 334-2944
E-mail: calston-roberts@atcc.org

BSR/ASN 0004-201x, Species-Level Identification and Cross-Contamination screening in Animal Cells by Multiplex (new standard)
Stakeholders: Lifescience, basic science, tissue cuturists, cell banks, and animal testing (regulatory).
Project Need: A multiplex PCR-based approach to rapidly identify species of cells and can detect inter-species cell line cross-contaminations.
The multiplex PCR assay is designed to be simple, inexpensive, high-throughput and extremely rapid. Works with the mitochondrial cytochrome c oxidase subunit I (COI) and cytochrome B genes, as a two-prong approach, and replaces traditional isoenzymological identification methods that can no longer be used.
AWS (American Welding Society)
Office: 8669 NW 36th Street, Suite 130
Miami, FL 33166

Contact: Andre Naumann
Fax: (305) 443-5951
E-mail: anaumann@aws.org

BSR/AWS C4.7/C4.7M-201x, Recommended Practices for the Safe Oxyacetylene Welding of Steel (new standard)

Stakeholders: Welders, welding instructors, manufacturers, educational institutions.

Project Need: Need for a standard that describes the equipment, applications, and safe practices for oxyacetylene gas welding operations which can be also be used as a teaching/training tool by a welder and/or instructor.

These recommended practices for oxyacetylene welding include the latest procedures to be used in conjunction with oxyacetylene equipment and the latest safety recommendations. Complete lists of equipment are available from individual manufacturers.

AWS (American Welding Society)
Office: 8669 Doral Blvd.
Suite 130
Doral, FL 33166

Contact: Andrew Davis
Fax: (305) 443-5951
E-mail: adavis@aws.org

BSR/AWS D10.10/D10.10M-201x, Recommended Practices for Local Heating of Welds in Piping and Tubing (revision of ANSI/AWS D10.10M-2009)

Stakeholders: Pipe and tube system manufacturers, fabricators, installers, and those involved in repair activities.

Project Need: This recommended practice is intended to supply useful information to those with a need to apply heat to welds in piping and tubing under circumstances that do not permit placing the entire component in a furnace or oven.

This standard provides information on recommended practices, equipment, temperature control, insulation, and advantages and disadvantages for the methods presently available for local heating of welding joints in pipe and tubing.

IAPMO (International Association of Plumbing & Mechanical Officials)
Office: 4755 E. Philadelphia Street
Ontario, CA 91761

Contact: Gabriella Davis
Fax: (909) 472-4241
E-mail: gaby.davis@iapmo.org

Stakeholders: Manufacturers, users, installers and maintainers, labor, research/standards/testing laboratories, enforcing authorities, consumers, and special experts.

Project Need: Designation of the UMC as an ANS has provided the built industry with uniform mechanical standards resulting in a reduction in training costs, product development costs, and in price reduction for consumers. This ANS provides consumers with safe mechanical systems while allowing latitude for innovation and new technologies. This project is intended to keep the code current.

This code provides minimum standards to safeguard life or limb, health, property and public welfare by regulating and controlling the design, construction, installation, quality of materials, location, operation and maintenance or use of heating, ventilating, cooling, refrigeration systems, incinerators and other miscellaneous heat-producing appliances. The provisions of this code apply to the erection, installation, alteration, repair, relocation, replacement, addition to, use or maintenance of mechanical systems.

Stakeholders: Manufacturers, users, installers and maintainers, labor, research/standards/testing laboratories, enforcing authorities, consumers, and special experts.

Project Need: Designation of the UPC as an ANS has provided the built industry with uniform plumbing standards resulting in a reduction in training costs, product development costs, and in price reduction for consumers. This ANS provides consumers with safe and sanitary plumbing systems while allowing latitude for innovation and new technologies. This project is intended to keep the code current.

This code provides minimum standards and requirements to safeguard life or limb, health, property and public welfare by regulating and controlling the design, construction, installation, quality of materials, location, operation and maintenance or use of plumbing systems. The provisions of this code apply to the erection, installation, alteration, repair, relocation, addition to, use, or maintenance of plumbing systems.
Standards Action - September 18, 2015 - Page 15 of 45 Pages

BSR S120-201x, Technical Retro-Commissioning of Existing Buildings Standard (new standard)

Stakeholders: Private and government building owners and building operators, commissioners, and testing firms.

Project Need: Owners require a standard for the performance of existing technical systems beyond the basic energy audit standards. The industry is in need of a standard that details how technical retro-commissioning and system testing are utilized to optimize building performance.

This standard describes the technical retro-commissioning procedures utilized for existing building technical systems for the improvement and optimization of Indoor Environmental Quality and Comfort and Energy and Water utility usage reduction. It defines the technical work procedures, testing and system adjustments that are required to improve system performance by optimizing existing systems. This standard may be utilized in tandem with existing energy audit standards as a technical performance standard.

TAPPI (Technical Association of the Pulp and Paper Industry)

Office: 15 Technology Parkway South
Peachtree Corners, GA 30092

Contact: Laurence Womack

Fax: (770) 446-6947

E-mail: standards@tappi.org

BSR/TAPPI T 519 om-201x, Diffuse opacity of paper (d/0 paper backing) (revision and redesignation of ANSI/TAPPI T 519 om-2011)

Stakeholders: Manufacturers of pulp, paper, packaging, or related products, consumers or converters of such products, and suppliers of equipment, supplies, or raw materials for the manufacture of such products.

Project Need: To conduct required five-year review of an existing TAPPI/ANSI standard in order to revise if needed to address new technology or correct errors.

This method provides a measure of diffuse opacity (paper backing) of white and near-white papers, previously known as “printing opacity.” The method may be employed for colored papers on condition that their reflectance (paper backing) is greater than 20% and their diffuse opacity (paper backing) is greater than 45%.

BSR/ITSDF B56.8-201x, Safety Standard for Personnel and Burden Carriers (revision of ANSI/ITSDF B56.8-2011)

Stakeholders: Manufacturers and users of personnel and burden carriers.

Project Need: To update using the latest information available.

This Standard defines safety requirements relating to the elements of design, operation, and maintenance of powered, not mechanically restrained, unmanned automatic guided industrial vehicles and the system of which the vehicles are a part. It also applies to vehicles originally designed to operate exclusively in a manned mode but which are subsequently modified to operate in an unmanned, automatic mode, or in a semiautomatic, manual, or maintenance mode.

NEBB (National Environmental Balancing Bureau)

Office: 8575 Grovemont Circle
Gaithersburg, MD 20877

Contact: Tiffany

E-mail: tiffany@nebb.org

BSR S110-201x, Whole Building Technical Commissioning Standard (new standard)

Stakeholders: Private and government building owners and building operators, general contractors, subcontractors, commissioners, and testing firms.

Project Need: Existing industry commissioning standards explain what basic processes are required and what paper documents are required for commissioning. The industry is in need of a standard that details how technical commissioning inspections and testing are to be performed and how the technical work processes are performed to actually improve the functionality and performance of commissioned systems.

This standard defines the technical work procedures and technical testing processes that are required to facilitate fully functional systems. The standard covers all technical building systems such as Enclosure, HVAC, Controls, Plumbing, Fire Protection, Electrical, Specialty Electrical Systems and Communications. It defines the commissioning inspection and testing technical processes and provides sample guidelines for attaining optimal system performance and functionality, for those systems commissioned that conforms to design, specification, and industry-accepted codes and standards.
American National Standards Maintained Under Continuous Maintenance

The ANSI Essential Requirements: Due Process Requirements for American National Standards provides two options for the maintenance of American National Standards (ANS): periodic maintenance (see clause 4.7.1) and continuous maintenance (see clause 4.7.2). Continuous maintenance is defined as follows:

The standard shall be maintained by an accredited standards developer. A documented program for periodic publication of revisions shall be established by the standards developer. Processing of these revisions shall be in accordance with these procedures. The published standard shall include a clear statement of the intent to consider requests for change and information on the submittal of such requests. Procedures shall be established for timely, documented consensus action on each request for change and no portion of the standard shall be excluded from the revision process. In the event that no revisions are issued for a period of four years, action to reaffirm or withdraw the standard shall be taken in accordance with the procedures contained in the ANSI Essential Requirements.

The Executive Standards Council (ExSC) has determined that for standards maintained under the Continuous Maintenance option, separate PINS announcements are not required. The following ANSI Accredited Standards Developers have formally registered standards under the Continuous Maintenance option.

- AAMI (Association for the Advancement of Medical Instrumentation)
- AAMVA (American Association of Motor Vehicle Administrators)
- AGA (American Gas Association)
- AGSC (Auto Glass Safety Council)
- ASC X9 (Accredited Standards Committee X9, Incorporated)
- ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.)
- ASME (American Society of Mechanical Engineers)
- ASTM (ASTM International)
- GBI (The Green Building Initiative)
- GEIA (Greenguard Environmental Institute)
- HL7 (Health Level Seven)
- IESNA (The Illuminating Engineering Society of North America)
- MHI (ASC MH10) (Material Handling Industry)
- NAHBRC (NAHB Research Center, Inc.)
- NBBPVI (National Board of Boiler and Pressure Vessel Inspectors)
- NCPDP (National Council for Prescription Drug Programs)
- NISO (National Information Standards Organization)
- NSF (NSF International)
- PRCA (Professional Ropes Course Association)
- RESNET (Residential Energy Services Network)
- TIA (Telecommunications Industry Association)
- UL (Underwriters Laboratories, Inc.)

To obtain additional information with regard to these standards, including contact information at the ANSI Accredited Standards Developer, please visit ANSI Online at www.ansi.org/asd; select “Standards Activities,” click on “Public Review and Comment” and “American National Standards Maintained Under Continuous Maintenance.” This information is also available directly at www.ansi.org/publicreview.

Alternatively, you may contact the Procedures & Standards Administration department (PSA) at psa@ansi.org or via fax at 212-840-2298. If you request that information be provided via E-mail, please include your E-mail address; if you request that information be provided via fax, please include your fax number. Thank you.
ANSI-Accredited Standards Developers Contact Information

The addresses listed in this section are to be used in conjunction with standards listed in PINS, Call for Comment and Final Actions. This section is a list of developers who have submitted standards for this issue of Standards Action — it is not intended to be a list of all ANSI-Accredited Standards Developers. Please send all address corrections to Standards Action Editor at standact@ansi.org.

<table>
<thead>
<tr>
<th>AAMI</th>
<th>Association for the Advancement of Medical Instrumentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGA (ASC 2380)</td>
<td>American Gas Association</td>
</tr>
<tr>
<td>AGMA</td>
<td>American Gear Manufacturers Association</td>
</tr>
<tr>
<td>ASA (ASC 512)</td>
<td>Acoustical Society of America</td>
</tr>
<tr>
<td>ASABE</td>
<td>American Society of Agricultural and Biological Engineers</td>
</tr>
<tr>
<td>ATCC</td>
<td>American Type Culture Collection</td>
</tr>
<tr>
<td>IAPMO</td>
<td>International Association of Plumbing and Mechanical Officials</td>
</tr>
<tr>
<td>IEST</td>
<td>Institute of Environmental Sciences and Technology</td>
</tr>
<tr>
<td>ITDF</td>
<td>Industrial Truck Standards Development Foundation, Inc.</td>
</tr>
<tr>
<td>NBB</td>
<td>National Environmental Balancing Bureau</td>
</tr>
<tr>
<td>NECA</td>
<td>National Electrical Contractors Association</td>
</tr>
<tr>
<td>NFRC</td>
<td>National Fenestration Rating Council</td>
</tr>
<tr>
<td>NISO</td>
<td>National Information Standards Organization</td>
</tr>
<tr>
<td>SPR</td>
<td>Single Ply Roofing Institute</td>
</tr>
<tr>
<td>TAPPI</td>
<td>Technical Association of the Pulp and Paper Industry</td>
</tr>
<tr>
<td>TIA</td>
<td>Telecommunications Industry Association</td>
</tr>
<tr>
<td>UL</td>
<td>Underwriters Laboratories, Inc.</td>
</tr>
</tbody>
</table>

AAMI
Association for the Advancement of Medical Instrumentation
4301 N Fairfax Drive
Suite 301
Arlington, VA 22203-1633
Phone: (703) 253-8261
Fax: (703) 276-0793
Web: www.aami.org

AGA (ASC 2380)
American Gas Association
400 North Capitol Street, NW
Washington, DC 20001
Phone: (202) 824-7183
Web: www.aga.org

AGMA
American Gear Manufacturers Association
1001 N Fairfax Street, 5th Floor
Alexandria, VA 22314-1587
Phone: (703) 684-0211
Web: wwwAGMA.org

ASA (ASC 512)
Acoustical Society of America
1305 Walt Whitman Rd
Suite 300
Melville, NY 11747
Phone: (631) 390-0215
Fax: (631) 923-2875
Web: www.acousticalsociety.org

ASABE
American Society of Agricultural and Biological Engineers
2950 Niles Road
St Joseph, MI 49085
Phone: (269) 932-7015
Fax: (269) 429-3852
Web: www.asabe.org

ASME
American Society of Mechanical Engineers
Two Park Avenue
New York, NY 10016
Phone: (212) 591-8521
Fax: (212) 591-8501
Web: www.asme.org

ASQ (ASC 21)
American Society for Quality
600 N Plankinton Ave
Milwaukee, WI 53203
Phone: (414) 272-8575
Web: www.asq.org

ATCC
American Type Culture Collection
10801 University Boulevard
Manassas, VA 20110
Phone: (703) 365-2802
Fax: (703) 334-2944
Web: www.atcc.org

AWS
American Welding Society
8669 NW 36th Street, Suite 130
Miami, FL 33166
Phone: (305) 443-9353
Fax: (305) 443-5951
Web: www.aws.org

AWWA
American Water Works Association
6666 W. Quincy Ave.
Denver, CO 80235
Phone: (303) 347-6178
Fax: (303) 795-7603
Web: www.awwa.org

B11
B11 Standards, Inc.
PO Box 690905
Houston, TX 77269-0905
Phone: (832) 446-6999

HL7
Health Level Seven
3300 Washtenaw Avenue
Suite 227
Ann Arbor, MI 48104
Phone: (734) 677-7777
Fax: (734) 677-6622
Web: www.hl7.org

IAPMO
International Association of Plumbing and Mechanical Officials
4755 E. Philadelphia Street
Ontario, CA 91761
Phone: (909) 472-4203
Fax: (909) 472-4241
Web: www.iapmo.org

IEST
Institute of Environmental Sciences and Technology
2430 S. Arlington Heights Road
Suite 620
Arlington Heights, IL 60005
Phone: (847) 981-0100
Fax: (847) 981-4130
Web: www.iest.org

ITDF
Industrial Truck Standards Development Foundation, Inc.
1750 K Street NW
Suite 460
Washington, DC 20006
Phone: (202) 296-9880
Fax: (202) 296-9884
Web: www.indtrk.org

NEBB
National Environmental Balancing Bureau
8575 Grovemont Circle
Gatherburg, MD 20877
Phone: (301) 591-0484
Web: www.nebb.org

NECA
National Electrical Contractors Association
3 Bethesda Metro Center Suite 1100
Bethesda, MD 20814
Phone: (301) 215-4549
Fax: (301) 215-4500
Web: www.neca-neis.org

NFRC
National Fenestration Rating Council
6305 Ivy Lane
Suite 140
Greenbelt, MD 20770
Phone: (240) 821-9513
Fax: (301) 589-3884
Web: www.nfrc.org

NISO
National Information Standards Organization
3600 Clapper Mill Road
Suite 302
Baltimore, MD 21211
Phone: (301) 654-2512
Fax: (410) 685-5278
Web: www.niso.org

NSF
NSF International
789 N. Dixboro Road
Ann Arbor, MI 48105-9723
Phone: (734) 827-5643
Fax: (734) 827-7880
Web: www.nsf.org

SPR
Single Ply Roofing Institute
411 Waverley Oaks Road
Suite 3318
Waltham, MA 02452
Phone: (781) 647-7026
Fax: (781) 647-7222
Web: www.spr.org

TAPPI
Technical Association of the Pulp and Paper Industry
15 Technology Parkway South
Peachtree Corners, GA 30092
Phone: (770) 209-7277
Fax: (770) 446-6947
Web: www.tappi.org

TIA
Telecommunications Industry Association
1320 North Courthouse Road Suite 200
Arlington, VA 22201
Phone: (703) 907-7706
Fax: (703) 907-7727
Web: www.tiaonline.org

UL
Underwriters Laboratories, Inc.
12 Laboratory Drive
Research Triangle Park, NC 27709
Phone: (919) 549-0921
Fax: (919) 549-0921
Web: www.ul.com
This section lists proposed standards that the International Organization for Standardization (ISO) and the International Electrotechnical Commission (IEC) are considering for approval. The proposals have received substantial support within the technical committees or subcommittees that developed them and are now being circulated to ISO and IEC members for comment and vote. Standards Action readers interested in reviewing and commenting on these documents should order copies from ANSI.

Comments
Comments regarding ISO documents should be sent to ANSI’s ISO Team (isot@ansi.org); those regarding IEC documents should be sent to Charles T. Zegers, General Secretary of the USNC (czegers@ansi.org). The final date for offering comments is listed after each draft.

ISO Standards

ANAESTHETIC AND RESPIRATORY EQUIPMENT (TC 121)
ISO/DIS 18562-1, Biocompatibility evaluation of breathing gas pathways in healthcare applications - Part 1: Evaluation and testing within a risk management process - 12/14/2015, $93.00
ISO/DIS 18562-2, Biocompatibility evaluation of breathing gas pathways in healthcare applications - Part 2: Tests for emissions of particulate matter - 12/14/2015, $71.00
ISO/DIS 18562-3, Biocompatibility evaluation of breathing gas pathways in healthcare applications - Part 3: Tests for emissions of volatile organic compounds (VOCs) - 12/14/2015, FREE
ISO/DIS 18562-4, Biocompatibility evaluation of breathing gas pathways in healthcare applications - Part 4: Tests for leachables in condensate - 12/14/2015, $62.00

PAINTS AND VARNISHES (TC 35)
ISO/DIS 19403-1, Paints and varnishes - Wettability - Part 1: Terminology and general principles - 12/14/2015, $53.00
ISO/DIS 19403-2, Paints and varnishes - Wettability - Part 2: Determination of the surface free energy of solid surfaces by measuring the contact angle - 12/14/2015, $67.00
ISO/DIS 19403-3, Paints and varnishes - Wettability - Part 3: Determination of the surface tension of liquids using the pendant drop method - 12/14/2015, $62.00
ISO/DIS 19403-4, Paints and varnishes - Wettability - Part 4: Determination of the polar and dispersive fractions of the surface tension of liquids from an interfacial tension - 12/14/2015, $46.00
ISO/DIS 19403-5, Paints and varnishes - Wettability - Part 5: Determination of the polar and dispersive fractions of the surface tension of liquids from contact angles measurements on a solid with only a disperse contribution to its surface energy - 12/14/2015, $40.00
ISO/DIS 19403-7, Paints and varnishes - Wettability - Part 7: Measurement of the contact angle on a tilt stage (roll-off angle) - 12/14/2015, $62.00

PLASTICS (TC 61)
ISO/DIS 17880, Cellular plastic - Self-supporting metal faced sandwich panels - Complementary element - 12/14/2015, $165.00

IEC Standards

ROAD VEHICLES (TC 22)
ISO/IEC DIS 15118-6, Road vehicles - Vehicle to grid communication interface - Part 6: General information and use-case definition for wireless communication - 10/12/2015, $88.00

SUSTAINABLE PROCUREMENT (TC 277)
ISO/DIS 20400, Sustainable procurement - Guidance - 12/14/2015, $125.00

TECHNICAL SYSTEMS AND AIDS FOR DISABLED OR HANDICAPPED PERSONS (TC 173)
ISO/DIS 12505-2, Skin barrier for ostomy aids - Test methods - Part 2: Wet-integrity and adhesive strength - 10/12/2015, $58.00

ISO/IEC JTC 1, Information Technology
ISO/IEC DIS 18305, Information technology - Real time locating systems - Test and evaluation of localization and tracking systems - 10/11/2015, $134.00
ISO/IEC DIS 11770-6, Information technology - Security techniques - Key management - Part 6: Key derivation - 10/8/2015, $88.00

IEC Standards

23E/917/CD, IEC 62955 Ed.1: Residual direct current monitoring device to be used for mode 3 charging of electric vehicle, 01/15/2016
34C/1168/CD, Amendment 1 to IEC 61347-1 Ed.3: Lamp controlgear - Part 1: General and safety requirements, 12/11/2015
46/572/FDIS, IEC 62153-4-7 Ed. 2.0: Metallic Communication cable test methods - Part 4-7: Electromagnetic compatibility (EMC) Test method for measuring of transfer impedance ZT and screening attenuation aS or coupling attenuation aC of connectors and assemblies, 11/13/2015
46/573/FDIS, IEC 62153-4-15/Ed 1: Metallic Communication Cable test methods - Part 4-15: Electromagnetic compatibility (EMC) - Test method for measuring transfer impedance and screening attenuation - or coupling attenuation with triaxial cell, 11/13/2015
46/574/FDIS, IEC 61935-1 Ed. 4.0: Specification for the testing of balanced and coaxial information technology cabling - Part 1: Installed balanced cabling as specified in ISO/IEC 11801 and related standards, 11/13/2015

51/1111/CD, IEC 60205 Ed 4: Calculation of the effective parameters of magnetic piece parts, 12/11/2015

62C/626/FDIS, Amendment 1 to IEC 60601-2-8: Medical electrical equipment - Part 2-8: Particular requirements for basic safety and essential performance of therapeutic X-ray equipment operating in the range 10 kV to 1 MV, 11/13/2015

65E/479/FDIS, Enterprise-Control System Integration Part 4: Objects and attributes for manufacturing operations management integration, 11/13/2015

69/385/CDV, ISO 15118-6: Road vehicles - Vehicle to grid communication interface - Part 6: General information and use-case definition for wireless communication, 12/11/2015

77A/909/CD, IEC TR 61000-4-40: Electromagnetic compatibility (EMC) - Part 4-40: Testing and measurement techniques - Digital methods for the measurement of power quantities under non-stationary conditions, 12/11/2015

82/1017A/CD, IEC 62788-2 Ed 1.1: Measurement procedures for materials used in photovoltaic modules - Part 2: Polymeric materials used for front sheets and back sheets, 11/20/2015

82/1025/CD, IEC 62979 Ed 1: Photovoltaic module bypass diode thermal runaway test, 12/11/2015

82/1026/CD, IEC 62788-7-2 TS Ed.1: Measurement procedures for materials used in photovoltaic modules - Part 7-2: Environmental exposures - Accelerated weathering tests of polymeric materials, 12/11/2015

87/584/CD, Amendment 2 to IEC 62127-2: Ultrasonics - Hydrophones - Part 2: Calibration for ultrasonic fields up to 40 MHz, 12/11/2015

105/541/CDV, IEC 62282-3-400 Ed 1.1: Fuel cell technologies - Part 3-400: Stationary fuel cell power systems - Small stationary fuel cell power system with combined heat and power output, 12/11/2015

Newly Published ISO & IEC Standards

ISO Standards

AGRICULTURAL FOOD PRODUCTS (TC 34)
ISO 18743:2015, Microbiology of the food chain - Detection of Trichinella larvae in meat by artificial digestion method, $123.00

AIR QUALITY (TC 146)
ISO 17621:2015, Workplace atmospheres - Short term detector tube measurement systems - Requirements and test methods, $149.00

CERAMIC TILE (TC 189)
ISO 10545-14:2015, Ceramic tiles - Part 14: Determination of resistance to stains, $88.00

CHAINS AND CHAIN WHEELS FOR POWER TRANSMISSION AND CONVEYORS (TC 100)
ISO 15654:2015, Fatigue test method for transmission precision roller chains and leaf chains, $200.00

CRYOGENIC VESSELS (TC 220)
ISO 21029-2:2015, Cryogenic vessels - Transportable vacuum insulated vessels of not more than 1,000 litres volume - Part 2: Operational requirements, $123.00

DENTISTRY (TC 106)
ISO 17937:2015, Dentistry - Osteotome, $88.00

FLOOR COVERINGS (TC 219)
ISO 12951:2015, Textile floor coverings - Determination of mass loss, fibre bind and stair nosing appearance change using the Lisson Tretrad machine, $88.00

FLUID POWER SYSTEMS (TC 131)
ISO 4393:2015, Fluid power systems and components - Cylinders - Basic series of piston strokes, $51.00

IMPLANTS FOR SURGERY (TC 150)
ISO 5840-1:2015, Cardiovascular implants - Cardiac valve prostheses - Part 1: General requirements, $240.00
ISO 5840-2:2015, Cardiovascular implants - Cardiac valve prostheses - Part 2: Surgically implanted heart valve substitutes, $240.00

MECHANICAL TESTING OF METALS (TC 164)
ISO 14456:2015, Metallic materials - Charpy V-notch pendulum impact test - Instrumented test method, $149.00
ISO 18338:2015, Metallic materials - Torsion test at ambient temperature, $123.00
ISO 16859-1:2015, Metallic materials - Leeb hardness test - Part 1: Test method, $149.00
ISO 16859-2:2015, Metallic materials - Leeb hardness test - Part 2: Verification and calibration of the testing devices, $88.00
ISO 16859-3:2015, Metallic materials - Leeb hardness test - Part 3: Calibration of reference test blocks, $123.00

NUCLEAR ENERGY (TC 85)
ISO 12749-3:2015, Nuclear energy, nuclear technologies, and radiological protection - Vocabulary - Part 3: Nuclear fuel cycle, $200.00

OTHER

PERSONAL SAFETY - PROTECTIVE CLOTHING AND EQUIPMENT (TC 94)
ISO 12312-1/Amd1:2015, Eye and face protection - Sunglasses and related eyewear - Part 1: Sunglasses for general use - Amendment 1, $22.00

ROAD VEHICLES (TC 22)
ISO 8820-3:2015, Road vehicles - Fuse-links - Part 3: Fuse-links with tabs (blade type) Type C (medium), Type E (high current) and Type F (miniature), $123.00

ROLLING BEARINGS (TC 4)
ISO 104:2015, Rolling bearings - Thrust bearings - Boundary dimensions, general plan, $149.00

SMALL CRAFT (TC 188)
ISO 19009:2015, Small craft - Electric navigation lights - Performance of LED lights, $123.00

SPORTS AND RECREATIONAL EQUIPMENT (TC 83)
ISO 9838:2015, Alpine and touring ski-bindings - Test soles for ski-binding tests, $88.00

STEEL (TC 17)
ISO 4990:2015, Steel castings - General technical delivery requirements, $123.00
ISO 4993:2015, Steel and iron castings - Radiographic testing, $123.00
ISO 9477:2015, High strength cast steels for general engineering and applications, $88.00
ISO 11972:2015, Corrosion-resistant cast steels for general applications, $51.00
ISO 11973:2015, Heat-resistant cast steels and alloys for general applications, $51.00
ISO 19960:2015, Cast steels and alloys with special physical properties, $88.00
ISO 13583-1:2015, Centrifugally cast steel and alloy products - Part 1: General testing and tolerances, $88.00

SUSTAINABILITY CRITERIA FOR BIOENERGY (TC 248)
ISO 13065:2015, Sustainability criteria for bioenergy, $240.00
TECHNICAL SYSTEMS AND AIDS FOR DISABLED OR HANDICAPPED PERSONS (TC 173)

ISO 10865-2:2015, Wheelchair containment and occupant retention systems for accessible transport vehicles designed for use by both sitting and standing passengers - Part 2: Systems for forward-facing wheelchair-seated passengers, $173.00

TRACTORS AND MACHINERY FOR AGRICULTURE AND FORESTRY (TC 23)

ISO 16230-1:2015, Agricultural machinery and tractors - Safety of higher voltage electrical and electronic components and systems - Part 1: General requirements, $123.00

ISO 16231-2:2015, Self-propelled agricultural machinery - Assessment of stability - Part 2: Determination of static stability and test procedures, $149.00

ISO 11783-10:2015, Tractors and machinery for agriculture and forestry - Serial control and communications data network - Part 10: Task controller and management information system data interchange, $265.00

WELDING AND ALLIED PROCESSES (TC 44)

ISO 14172:2015, Welding consumables - Covered electrodes for manual metal arc welding of nickel and nickel alloys - Classification, $149.00

ISO 17643:2015, Non-destructive testing of welds - Eddy current testing of welds by complex-plane analysis, $123.00

ISO Technical Specifications

HEALTH INFORMATICS (TC 215)

ISO/TS 13972:2015, Health informatics - Detailed clinical models, characteristics and processes, $240.00

ISO/IEC JTC 1, Information Technology

ISO/IEC 14543-4-3:2015, Information technology - Home Electronic Systems (HES) architecture - Part 4-3: Application layer interface to lower communications layers for network enhanced control devices of HES Class 1, $173.00

ISO/IEC 14776-326:2015, Information technology - Small Computer System Interface (SCSI) - Part 326: Reduced Block Commands (RBC), $200.00

IEC Standards

AUDIO, VIDEO AND MULTIMEDIA SYSTEMS AND EQUIPMENT (TC 100)

IEC 62842 Ed. 1.0 en:2015, Multimedia home server systems - File allocation system with minimized reallocation, $182.00

IEC 62680-1-1 Ed. 1.0 en:2015, Universal serial bus interfaces for data and power - Part 1-1: Common components - USB Battery Charging Specification, Revision 1.2, $339.00

IEC 62680-2-2 Ed. 1.0 en:2015, Universal serial bus interfaces for data and power - Part 2-2: Micro-USB Cables and Connectors Specification, Revision 1.01, $278.00

IEC 62680-2-3 Ed. 1.0 en:2015, Universal serial bus interfaces for data and power - Part 2-3: Universal Serial Bus Cables and Connectors Class Document Revision 2.0, $278.00
Proposed Foreign Government Regulations

Call for Comment

U.S. manufacturers, exporters, regulatory agencies and standards developing organizations may be interested in proposed foreign technical regulations issued by Member countries of the World Trade Organization (WTO). In accordance with the WTO Agreement on Technical Barriers to Trade (TBT Agreement), Members are required to report proposed technical regulations that may significantly affect trade to the WTO Secretariat in Geneva, Switzerland. In turn, the Secretariat disseminates the information to all WTO Members. The purpose of this requirement is to provide global trading partners with an opportunity to review and comment on the regulations before they become final.

The National Center for Standards and Certification Information (NCSCI) at the National Institute of Standards and Technology (NIST), distributes these proposed foreign technical regulations to U.S. stakeholders via an online service, Notify U.S. Notify U.S. is an e-mail and Web service that allows interested U.S. parties to register, obtain notifications, and read full texts of regulations from countries and for industry sectors of interest to them. To register for Notify U.S., please go to Internet URL: http://www.nist.gov/notifyus/ and click on “Subscribe”.

NCSCI is the WTO TBT Inquiry Point for the U.S. and receives all notifications and full texts of regulations to disseminate to U.S. Industry. For further information, please contact: NCSCI, NIST, 100 Bureau Drive, Gaithersburg, MD 20899-2160; Telephone: (301) 975-4040; Fax: (301) 926-1559; E-mail: ncsci@nist.gov or notifyus@nist.gov.
American National Standards

INCITS Executive Board

ANSI Accredited SDO and US TAG to ISO/IEC JTC 1, Information Technology

The InterNational Committee for Information Technology Standards (INCITS), an ANSI accredited SDO, is the forum of choice for information technology developers, producers and users for the creation and maintenance of formal de jure IT standards. INCITS’ mission is to promote the effective use of Information and Communication Technology through standardization in a way that balances the interests of all stakeholders and increases the global competitiveness of the member organizations.

The INCITS Executive Board serves as the consensus body with its oversight of programs of its 40+ Technical Committees. Additionally, the INCITS Executive Board exercises international leadership in its role as the US Technical Advisory Group (TAG) to ISO/IEC JTC 1, Information Technology.

The INCITS Executive Board has eleven membership categories that can be viewed at http://www.incits.org/participation/membership-info. Membership in all categories is always welcome. INCITS also seeks to broaden its membership base and looks to recruit new participants in the following under-represented membership categories:

- **Producer – Hardware**
 This category primarily produces hardware products for the ITC marketplace.

- **Producer – Software**
 This category primarily produces software products for the ITC marketplace.

- **Distributor**
 This category is for distributors, resellers or retailers of conformant products in the ITC industry.

- **User**
 This category includes entities that primarily reply on standards in the use of a products/service, as opposed to producing or distributing conformant products/services.

- **Consultants**
 This category is for organizations whose principal activity is in providing consulting services to other organizations.

- **Standards Development Organizations and Consortia**
 - “Minor” an SDO or Consortia that (a) holds no TAG assignments; or (b) holds no SC TAG assignments, but does hold one or more Work Group (WG) or other subsidiary TAG assignments.

- **Academic Institution**
 This category is for organizations that include educational institutions, higher education schools or research programs.

- **Other**
 This category includes all organizations who do not meet the criteria defined in one of the other interest categories.

Membership in the INCITS Executive Board is open to all directly and materially affected parties in accordance with INCITS membership rules. To find out more about participating on the INCITS Executive Board, please contact Jennifer Garner at 202-626-5737 or jgarner@ilitc.org. Visit www.incits.org for more information regarding INCITS activities.

Calls for Members

Society of Cable Telecommunications

ANSI Accredited Standards Developer

SCTE, an ANSI-accredited SDO, is the primary organization for the creation and maintenance of standards for the cable telecommunications industry. SCTE’s standards mission is to develop standards that meet the needs of cable system operators, content providers, network and customer premises equipment manufacturers, and all others who have an interest in the industry through a fair, balanced and transparent process.

SCTE is currently seeking to broaden the membership base of its ANSI consensus bodies and is interested in new members in all membership categories to participate in new work in fiber-optic networks, advanced advertising, 3D television, and other important topics. Of particular interest is membership from the content (program and advertising) provider and user communities.

Membership in the SCTE Standards Program is open to all directly and materially affected parties as defined in SCTE’s membership rules and operating procedures. More information is available at www.scte.org or by e-mail from standards@scte.org.

ANSI Accredited Standards Developers

Approval of Reaccreditation

ASC O5 – Safety Requirements for Woodworking

At the direction of ANSI’s Executive Standards Council (ExSC), the reaccreditation of Accredited Standards Committee O1, Safety Requirements for Woodworking has been approved under its recently revised operating procedures for documenting consensus on ASC O1-sponsored American National Standards, effective September 14, 2015. For additional information, please contact the Secretariat of ASC O1: Ms. Jennifer Miller, Associate Director, Woodworking Machinery Manufacturers of America, 9 Newport Drive, Suite 200, Forest Hill, MD 21050; phone: 443.640.1052, ext. 127; e-mail: jennifer@wmma.org.
ANSI Accreditation Program for Third Party Certification Agencies

Accreditation in Accordance with ISO/IEC 17065

Automotive Lift Institute, Inc.

Comment Deadline: October 19, 2015

Mr. Robert O’Gorman
President
Automotive Lift Institute, Inc.
80 Wheeler Avenue
Cortland, NY 13045
Phone: 607-756-7775
Fax: 607-756-0888
E-mail: bob@autolift.org
Web: www.autolift.org

On September 14, 2015, Automotive Lift Institute, Inc. was granted Accreditation in accordance with ISO/IEC 17065 for the following new scope:

Lift Inspector Certification Program

Please send your comments by October 19, 2015 to Reinaldo Balbino Figueiredo, Senior Program Director, Product Certifier Accreditation, American National Standards Institute, 1899 L Street, NW, 11th Floor, Washington, DC 20036, Fax: 202-293-9287 or e-mail: rfigueir@ansi.org, or Nikki Jackson, Senior Program Manager, Product Certifier Accreditation, American National Standards Institute, 1899 L Street, NW, 11th Floor, Washington, DC 20036, Fax: 202-293-9287 or e-mail: njackson@ansi.org.

International Organization for Standardization (ISO)

International Workshop Agreement Proposal and New Work Item Proposal

Sustainable non-sewered sanitation systems

Comment Deadline: October 16, 2015

ANSI, working with the Bill and Melinda Gates Foundation, intends to submit to ISO an International Workshop Agreement Proposal and New Work Item Proposal on the subject of Sustainable non-sewered sanitation systems, with the following scope statement:

The international standard will define criteria to qualify sanitation systems sufficiently especially in terms of safety, functionality, reliability, maintainability, usability, and that the discharge (treated effluent) are compliant with leading practices. The aim of the standard is to ensure safety aspects related to the operation of the sanitation systems in the intended areas of use and that the treated discharged products pose no user, operator health or environment risks. The standard is applicable to individual and community sanitation systems which are self-contained, meet defined discharge requirements, and aim for sustainability regardless of the on-site treatment technology.

Anyone wishing to review either proposal can request a copy by contacting ANSI’s ISO Team via e-mail: isot@ansi.org with submission of comments to Steve Cornish (scornish@ansi.org) by close of business on October 16, 2015.

International Electrotechnical Commission (IEC)

Looking for USNC TAG Members for the new USNC Technical Advisory Group (TAG)

US Technical Advisory Group (USTAG) for IEC/SC 61B – Safety of Microwave Appliances for Household and Commercial Use

After a period of Non-Member status for the USNC on IEC/SC 61B, several stakeholders expressed interest in establishing a USNC TAG and having the USNC become a Participating Member of the SC. Underwriters Laboratories (UL) has just indicated interest in becoming the TAG Administrator for IEC/SC 61B and we are now inviting any other entities are who might be interested in being considered for assignment as TAG Administrator to contact Tony Zertuche, USNC Deputy General Secretary at the E-Mail provided below.

IEC/SC 61B Scope

To prepare international safety standards for microwave appliances for household and commercial use.

Also, any individuals that are interested in this activity and in the possibility of participating as members in the USNC TAG for IEC/SC 61B are similarly invited to contact Mr. Zertuche via the following information:

Tony Zertuche
Senior Manager, International Policy
Deputy General Secretary, USNC/IEC
tzertuche@ansi.org
(212) 642-4892
ANSI
25 W, 43rd St
New York, NY 10036

Meeting Notices

AHRI Meetings

The Air-Conditioning, Heating, and Refrigeration Institute (AHRI) will be holding a face-to-face meeting at AHRI headquarters in Arlington, Va., on October 6-7. If you are interested in participating in the meeting or providing comments on the standard, please contact AHRI staff member Mary Opalka at mopalka@ahrinet.org.

Revision of AHRI Standards 550/590 (I-P) and 551/591 (SI)-2011, Performance Rating of Water-Chilling and Heat Pump Water-Heating Packages Using the Vapor Compression Cycle

The Air-Conditioning, Heating, and Refrigeration Institute (AHRI) will be holding a face-to-face meeting at AHRI headquarters in Arlington, Va., on October 6-7. If you are interested in participating in the meeting or providing comments on the standard, please contact AHRI staff member Rupal Choksi at rchoksi@ahrinet.org.
American Gear Manufacturers Association –

Flexible Couplings – Basis for Rating

1 Scope

This standard presents criteria and guidelines for the basis of flexible coupling ratings. It is not a comprehensive rating method that can be applied to a specific product or manufacturer. Due to the diversity of coupling types, this standard presents generally accepted practices rather than rigorous engineering analysis. This standard is of importance to coupling manufacturers, users and equipment designers for the proper selection and application of flexible couplings.

1.1 Applicability

This standard is applicable to Standard couplings as defined by ANSI/AGMA 9009.

1.2 Exclusions

Details of design, such as formulas and analysis used to derive the stresses, are often considered proprietary and are not considered in this standard.

It does not address special couplings that are engineered and manufactured specifically to meet the operating conditions of the equipment train in which they will be installed.

Additionally, flexible shafts, quill shafts, universal joints, magnetic couplings, or devices which exhibit slip such as clutches, fluid couplings, or torque converters are also excluded.

2 Normative references

The following standards contain provisions which, through reference in this text, constitute provisions of this American National Standard. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on the American National Standard are encouraged to investigate the possibility of applying the most recent editions of the standards listed.

ANSI/AGMA 9000, Flexible Couplings – Potential Unbalance Classification

ANSI/AGMA 9001, Flexible Couplings – Lubrication

ANSI/AGMA 9004, Flexible Couplings – Mass Elastic Properties and Other Characteristics

ANSI/AGMA 9009, Flexible Couplings – Nomenclature for Flexible Couplings

ANSI/AGMA 9110, Flexible Couplings – Potential Unbalance Classification (Metric Edition)

3 Symbols and definitions

The terms used in this document are defined in Table 1.

NOTE: These definitions may differ from those in other AGMA publications. The user should not assume that familiar terms can be used without a careful study of their definitions.
Table 1 – Symbols, terms and definitions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Units</th>
<th>Where first used</th>
</tr>
</thead>
<tbody>
<tr>
<td>(FS)</td>
<td>Factor of safety</td>
<td>- -</td>
<td>Clause 11</td>
</tr>
<tr>
<td>(K_f)</td>
<td>Stress concentration factor</td>
<td>--</td>
<td>Eq. 2</td>
</tr>
<tr>
<td>(K_{fs})</td>
<td>Shear stress concentration factor</td>
<td>--</td>
<td>Eq. 3</td>
</tr>
<tr>
<td>(S_e)</td>
<td>Full reversal endurance limit in bending</td>
<td>--</td>
<td>Eq. 2</td>
</tr>
<tr>
<td>(S_{se})</td>
<td>Full reversal endurance limit in shear</td>
<td>--</td>
<td>Eq. 3</td>
</tr>
<tr>
<td>(S_y)</td>
<td>Shear yield strength</td>
<td>--</td>
<td>Eq. 3</td>
</tr>
<tr>
<td>(S_{UT})</td>
<td>Ultimate tensile strength of the material</td>
<td>--</td>
<td>Eq. 5</td>
</tr>
<tr>
<td>(S_{UC})</td>
<td>Ultimate compressive strength of the material</td>
<td>--</td>
<td>Eq. 5</td>
</tr>
<tr>
<td>(S_y)</td>
<td>Tensile yield strength</td>
<td>--</td>
<td>Eq. 2</td>
</tr>
<tr>
<td>(\sigma)</td>
<td>Mohr’s circle normal stress axis</td>
<td></td>
<td>Fig. 2</td>
</tr>
<tr>
<td>(\sigma_1)</td>
<td>Maximum principle stress</td>
<td></td>
<td>Eq. 2</td>
</tr>
<tr>
<td>(\sigma_3)</td>
<td>Minimum principle stress</td>
<td></td>
<td>Eq. 2</td>
</tr>
<tr>
<td>(\sigma_{av})</td>
<td>Mean component of stresses (\sigma_x, \sigma_y, \sigma_z)</td>
<td>--</td>
<td>Eq. 5</td>
</tr>
<tr>
<td>(\sigma_a)</td>
<td>Stress in simple tension that is equivalent to the three dimensional loading</td>
<td>--</td>
<td>Eq. 1</td>
</tr>
<tr>
<td>(\sigma_{equiv})</td>
<td>Equivalent static stress by the Soderberg method</td>
<td>--</td>
<td>Eq. 1</td>
</tr>
<tr>
<td>(\sigma_{vib})</td>
<td>Vibratory component of stresses (\sigma_x, \sigma_y, \sigma_z)</td>
<td>--</td>
<td>Eq. 1</td>
</tr>
<tr>
<td>(\sigma_x)</td>
<td>Stress in the x direction</td>
<td>--</td>
<td>Eq. 1</td>
</tr>
<tr>
<td>(\sigma_y)</td>
<td>Stress in the y direction</td>
<td>--</td>
<td>Eq. 1</td>
</tr>
<tr>
<td>(\sigma_z)</td>
<td>Stress in the z direction</td>
<td>--</td>
<td>Eq. 1</td>
</tr>
<tr>
<td>(\tau)</td>
<td>Mohr’s circle shear stress axis</td>
<td></td>
<td>Fig. 2</td>
</tr>
<tr>
<td>(\tau_{av})</td>
<td>Mean component of shear stresses (\tau_{xy}, \tau_{yz} and \tau_{zx})</td>
<td>--</td>
<td>Eq. 1</td>
</tr>
<tr>
<td>(\tau_{equiv})</td>
<td>Equivalent static shear stress by the Soderberg method</td>
<td></td>
<td>Eq. 2</td>
</tr>
<tr>
<td>(\tau_{vib})</td>
<td>Vibratory component of shear stresses (\tau_{xy}, \tau_{yz} and \tau_{zx})</td>
<td></td>
<td>Eq. 2</td>
</tr>
<tr>
<td>(\tau_{xy})</td>
<td>Shear stress on the plane perpendicular to the x axis and in the y direction</td>
<td>--</td>
<td>Eq. 1</td>
</tr>
<tr>
<td>(\tau_{yz})</td>
<td>Shear stress on the plane perpendicular to the y axis and in the z direction</td>
<td>--</td>
<td>Eq. 1</td>
</tr>
<tr>
<td>(\tau_{zx})</td>
<td>Shear stress on the plane perpendicular to the z axis and in the x direction</td>
<td>--</td>
<td>Eq. 1</td>
</tr>
</tbody>
</table>

4 Torque rating

4.1 Nominal torque rating

The nominal torque rating is established by the manufacturer for a stated combination of speed, misalignment, axial displacement and temperature. This may also be referred to as normal torque or continuous torque rating. This rating is based on a uniform operating condition with no additional service factors applied. See Clause 9 for a definition of service factor.

4.2 Peak torque rating

The peak torque rating is the coupling manufacturer’s rating that accounts for occasional, higher than normal torques that exceed the nominal torque rating. Peak torque rating is based on:

- material strength;
- number of cycles as established by the manufacturer;
- maximum continuous misalignment;
NOTE: For certain types of couplings, particularly those with elastomeric elements or inserts, the coupling peak torque ratings may also be a function of the operating temperature.

4.3 Application specific torque limits

4.3.1 Momentary torque limit

The momentary torque limit is that which corresponds to a factor of safety of 1.0 with respect to the component's material yield strength utilizing a combination of speed, misalignment and axial displacement. The coupling will experience damage at this limit.

4.3.2 Vibratory torque rating

The vibratory torque rating of the coupling is the torque amplitude of the permissible periodic torque fluctuation with a frequency of 10 Hz up to the nominal torque rating of the coupling.

5 Speed ratings

5.1 Rated speed

The rated speed is the maximum rotational speed (rpm) at which the coupling is capable of transmitting the nominal rated torque while simultaneously subjected to the maximum continuous misalignment.

5.2 Additional speed considerations

Speed ratings may be influenced by bursting speed, mounting type/bore to shaft fit, lateral critical speed, balance class, thermal considerations or other factors.

5.2.1 Bursting speed

The bursting speed is the rotational speed at which the centrifugal stress of the coupling exceeds the yield strength of the material.

5.2.2 Lateral critical speed

The lateral critical speed is that speed which matches the lateral natural frequency of the rotating component(s). See ANSI/AGMA 9004 and ANSI/AGMA 9104 for further discussion, calculations and analysis methods.

5.2.3 AGMA balance class rated speed

The AGMA balance class rated speed is the allowable operating speed determined by the AGMA balance class defined in ANSI/AGMA 9000 and ANSI/AGMA 9110.

6 Misalignment ratings

The misalignment ratings consider combination of axial displacement, parallel offset and angular misalignment that the coupling is able to accommodate without damage as specified by the coupling manufacturer. For definitions, see ANSI/AGMA 9009. Refer to Annex A for a discussion about the interaction between parallel offset and angular misalignment in flexible couplings.

7 Temperature ratings

Temperature ratings of couplings are based on material characteristics from which it is manufactured. Limiting factors may include seals, lubricants, composites, coatings, and elastomers. The continuous operating temperature is the temperature range where performance can be predicted based on application factors. Maximum and minimum temperature ranges are absolute limits based on the material properties.
8 Life expectancy of flexible couplings

Life expectancy of a coupling is based on a number of variables including material properties, operating conditions (i.e., loads, misalignments, starts/stops, duty cycles and critical frequencies), maintenance practices and environmental factors (i.e., temperature, humidity, ultraviolet light exposure, air quality and chemical exposure).

8.1 Sliding or rolling element couplings

Gear, grid and chain couplings are examples with sliding or rolling elements. While correct lubrication and regular inspection/preventative maintenance will greatly extend life expectancy, sliding or rolling components do wear down over time, giving this coupling group a finite life. Specific coupling life depends on proper lubrication and the conditions at which the coupling operates (misalignment, starts and stops, peak loads). Operating a coupling outside specified conditions not only shortens life through peak loads, but also can cause excessive heat build-up, which can lead to lubrication break-down and even faster component erosion. Refer to the coupling manufacturer and ANSI/AGMA 9001 for additional lubrication discussion.

8.2 Elastomeric element couplings

Tire, jaw, rubber block and sleeve style couplings are examples with elastomeric elements. Elastomeric element couplings are limited to a maximum life expectancy of the elastomer. Since elastomers have a defined recommended use life based on the molded date, the user should be aware of the manufacturer’s recommended life limits. Most elastomeric materials exhibit non-linear properties, which make estimating life difficult. Finite element analysis (FEA) and extensive physical testing are often the most reliable ways to understand the performance of an elastomer. In addition, environmental storage factors, such as ultraviolet rays, ozone or oil, can further reduce the life expectancy. As the elastomer is generally the primary wearing element of a coupling, metal hubs (and other metallic elements of an elastomeric coupling) can often be reused – giving them a much longer component life expectancy. Deflecting element couplings

8.3 Deflecting element couplings

Contoured diaphragm, convoluted diaphragm, disc, spring, and bellows couplings are examples with deflecting elements. Unlike the aging of elastomeric couplings or lubricated sliding or rolling couplings, deflecting element couplings are generally considered to have theoretical infinite life (assuming the coupling operates within catalog specified torque and misalignment limits). This is due to no wearing parts, with misalignment being accommodated by a flexing element that never exceeds the material’s endurance limit. Similar to other coupling types, exceeding rated conditions can greatly reduce life expectancy and could cause immediate failure.

9 Service factors

Service factors, also known as application factors or experience factors, are based on the applications and are applied to the customer specified or normal operating torque. These factors are used in the selection of couplings and take into account the prime mover and the driven equipment. This factor accounts for torque loads beyond the nominal conditions that are recurring, unknown conditions that affect operation such as compressor fouling, changes in molecular weight, temperature, etc.

NOTE: This should not be confused with factors of safety (see Clause 10).

10 Factor of safety, FS

Factor of safety is the ratio of the appropriate material strength divided by the calculated stress and is used in the design of the coupling, see Equation 4. Factor of safety covers uncertainties in a coupling design such as analytical assumptions made, material unknowns and manufacturing tolerances.

NOTE: This should not be confused with service factors (see Clause 9).
11 Coupling stress analysis and theories of failure

Coupling components are generally made from various materials that exhibit ductile or brittle qualities. Ductile materials are classified as materials that have 5% or more elongation in tension (ex. mild steel, aluminum, brass); while brittle materials are classified as having little or no yielding before fracture (ex. gray iron).

Coupling components should be designed to operate without failure. However, failure theory for these two materials classifies failure differently, and it is important to classify the material as ductile or brittle prior to observing the following failure theories.

11.1 Ductile failure theory

Failure of ductile materials is normally specified by the initiation of yielding. There are several theories of failure which could be used for ductile materials. They are maximum normal stress, maximum shear stress and distortion-energy (Von Mises) theory. These theories can be found in numerous textbooks. Tests have shown that the Distortion-Energy theory of failure can be modeled as shown in Equation 1 and Figure 1. In many cases, work hardening due to local yielding may increase the yield of the material and failure may not occur contributing to a more conservative result.

\[
\sigma_e^2 = \frac{1}{2} \left[(\sigma_x - \sigma_y)^2 + (\sigma_y - \sigma_z)^2 + (\sigma_z - \sigma_x)^2 + 6(\tau_{xy}^2 + \tau_{yz}^2 + \tau_{zx}^2) \right]
\]

(1)

where

- \(\sigma_e\) stress in simple tension that is equivalent to the three dimensional loading;
- \(\sigma_x\) stress in the x direction;
- \(\sigma_y\) stress in the y direction;
- \(\sigma_z\) stress in the z direction;
- \(\tau_{xy}\) shear stress on the various face;
- \(\tau_{yz}\) shear stress on the various face;
- \(\tau_{zx}\) shear stress on the various face.

Many coupling components are subjected to both mean and vibratory loadings, such as a constant torque and a fluctuating bending moment while rotating. Stresses that contain both a mean and vibratory component can be modified to an equivalent static stress by the Soderberg method as defined in Equations 2 and 3.

For stresses \(\sigma_x\), \(\sigma_y\) and \(\sigma_z\):

\[
\sigma_{\text{equiv}} = \sigma_{\text{av}} + K_f \left(\frac{S_y}{S_e} \right) \sigma_{\text{vib}}
\]

(2)

where

- \(\sigma_{\text{equiv}}\) equivalent stress;
- \(\sigma_{\text{av}}\) mean components of stresses \(\sigma_x\), \(\sigma_y\), and \(\sigma_z\);
This August 2015 Draft consists of the previously approved November 2014 Draft and the following additions which were inadvertently omitted from the original draft submitted to the B73 Main Committee for approval.

The two added paragraphs (paras. 5.11.2 and 5.11.3) are shown here along with the related text for context:

5.11 Auxiliay Piping

5.11.1 Auxiliary piping shall, as a minimum, be available with the materials of construction in accordance with Table 5.11.1-1.

5.11.2 Auxiliary piping in contact with the pumped fluid shall have a pressure/temperature rating equal to, or greater than the maximum allowable working pressure (MAWP) of the pump. Auxiliary piping which may become exposed to pumped fluid in the event of a failure shall meet this requirement.

5.11.3 Auxiliary piping and components normally in contact with the pumped fluid shall have a corrosion resistance to the pumped fluid that is equal to, or better than that of the casing.
3. **DEFINITIONS**

Thermal Opening Area: The area of the TDD/HTDD product at the interior-most plane of the building's thermal envelope.

4. **GENERAL**

4.1.2 **Testing Alternative**

If an individual product listed in Section 2.1 cannot be simulated in accordance with Section 4.3.1, the test procedure found in Section 4.3.2.1 shall be used to determine the U-factors of the individual fenestration product(s) for the size defined in Table 4-3.

Currently the following products cannot be simulated:

a) Non-planar products including but not limited to:
 1) Greenhouse/garden windows
 2) Tubular daylighting devices
 3) Hybrid tubular daylighting devices
 4) Domed skylights without frames or flashing

b) Complex glazed products other than the following:
 1) Vertical products with between-glass venetian blinds
 2) Products with outdoor woven shades
 3) Products with fritted glazing

The test specimen size shall be the size with the lowest deviation determined from Equation 4-2. If the test specimen cannot be fabricated at the Table 4-3 size, the tested U-factor shall be adjusted to the model size using the following, unless other provisions for specific products have been made in ANSI/NFRC 100:

\[
U_{mod} = \frac{(U_{rep} A_{rep})}{A_{mod}}
\]

Equation 4-1

Where:

- \(U_{mod}\) = U-factor at model size
- \(U_{rep}\) = U-factor at representative size (test size)
- \(A_{rep}\) = Area at representative size
- \(A_{mod}\) = Area of model size
5. **Variations from the General Requirements**

5.4.4.1 Insulation at Ceiling Configuration

The diffuser is attached to the insulated ceiling. The tubular section is located in the attic space connecting the interior diffuser to the exterior dome. The exterior dome/flashing assembly is mounted to the roof deck.

5.4.4.1.2 Insulation at Roof Configuration

The diffuser is attached to the tubular section which is located in the interior space. The tubular section is connected to the exterior dome. The exterior dome/flashing assembly is mounted to the insulated roof deck.

5.4.4.2 Sizes

The standard TDD and HTDD sizes listed in Table 4-3 are based on the Thermal Opening Area, as defined in Section 3. For the purpose of testing, this is the interior side of the 254mm (10 in.) foam panel. The TDD size is based on a standardized 350 mm +/- 30mm (14 in +/- 1 in) diameter tube opening. The hybrid tubular daylighting device (HTDD) size is based on a standardized 530 mm +/- 30 mm (21 in +/- 1.2 in) diameter upper tube opening; with a round-to-square transition to a 600530 mm +/- 30 mm (241 in +/- 1.2 in) square lower opening. For products of non-circular shape, the product shall use an opening area equivalent to a standard size round product, be tested using a tube opening area of 0.096m² +/- 0.014 m² (154 in² +/- 23 in²). The closest production size to the standard size shall be tested. In the event that the device is not manufactured in the standard model size, the production size with the closest area (as defined in 5.4.4.3) shall be used and the result for that unit shall be the product’s rating. Equation 4-1 shall be used to determine the rating for the model size. Equation 4-1 shall not be used to adjust the results to model size.

5.4.4.3 Tubular Daylighting Device Area

The U-factor for all TDDs shall be based on the upper tube diameter Thermal Opening Area, as defined in Section 3, and the corresponding area associated with that diameter [0.1 m² (1 ft²) for the standard TDD and 0.22 m² (2.4 ft²) for the HTDD], and the diffuser area [0.1 m² (1 ft²) for the standard...
TDD and 0.28 m² (3 ft²) for the HTDD. These areas shall be used when calculating the total product U-factor.
1.6 Treatment train

A system that contains multiple, sequential treatment technologies for a performance claim under this Standard shall meet the applicable requirements as described in Annex X.

Reason: Added criteria for treatment train approach per 2015 DWTU JC meeting discussion (May 13, 2015). Text submitted under original issue paper has been moved to a separate annex along with examples for easier reference. This language will be added to section 1 of NSF/ANSI 42, 44, 53, 58 and 62.

Annex X
(normative)

Evaluation Methods for Systems With Multiple Technologies - Treatment Train

X.1 Requirements for the evaluation of a system containing multiple, sequential treatment technologies

The concept of using a treatment train to successfully treat drinking water is well known and appreciated. A treatment train is simply the treatment of water through several sequential technology stages to achieve a final water quality goal. To apply options B or C requires that the system meet all applicable standard requirements for each technology within the system that contributes to the system’s performance for that claim. Option A is the preferred method of evaluation under this Standard for a treatment train. Option C shall only be used for claim verification when options A and B will not adequately evaluate the system performance or the technologies cannot be isolated for evaluation separately. The following three options are acceptable to evaluate a system that contains multiple, sequential treatment technologies for a performance claim under this Standard:
a) Any single treatment technology stage within a system meeting the requirements of the appropriate technology DWTU standard shall be tested independently from the other treatment technologies present in the system in a manner equal to or more conservative than the technology's application in the system. This shall qualify the entire system for that performance claim under the applied standard. This is the default method of evaluation within this Standard;

b) A system using a treatment train shall be evaluated for a performance claim by evaluating two or more sequential technology stages independently and combining the resulting reduction performance to achieve the requirements for the performance claim. The technology stages shall be evaluated in the same sequence that they provide treatment within the system using a sequential challenge in a manner equal to or more conservative than the technology stage's application in the system. The resultant reduction performance, when combined, shall meet all standard requirements for that performance claim.

The sequential challenge is determined by testing the first technology stage in a treatment train under the appropriate technology DWTU standard test method. The maximum effluent concentration achieved during the test shall be used as the average target influent concentration for a following technology stage. Each technology stage is evaluated using the appropriate technology DWTU standard test method using the prior technology stage’s maximum effluent concentration as the target influent concentration. If the effluent concentrations for the last (or last evaluated) treatment technology stage meet all standard reduction requirements, the system then shall meet the requirements for that performance claim; or

c) A system using a treatment train shall be evaluated for a performance claim by evaluating the complete system for each of the technologies used within that system. The system shall be subject to the performance test method from each appropriate technology DWTU standard and shall meet all requirements to qualify for the performance claim; or

Test options B and C shall only be used for evaluations that measure the reduction of the contaminant directly. Indirect evaluations of contaminant reduction such as is used in NSF/ANSI 55 biodosemetry shall not use test options B or C.

X.2 Example Application of Treatment Train Option B

In this example a system that consists of a carbon pre-filter as first stage, followed by a reverse osmosis (RO) membrane and the final stage being a carbon post-filter. A diagram of the system is presented in Figure 1.
The example claim that the system shall be evaluated for is mercury reduction. If option A were utilized, this system would be evaluated under NSF/ANSI 58 and the RO portion of the system would be evaluated with the pre-filter and post-filter carbons removed. It is common for an RO system to fail to meet the reduction requirements for mercury under these conditions although significant reduction (20 – 50%) can be achieved. The carbon filters could also be evaluated under NSF/ANSI 53 for mercury reduction, however, the carbons may achieve some reduction, but are unable to achieve the rated capacity of the manufacturer. The system then qualifies to be evaluated under option B.

The pre-filter would be the first technology to be evaluated. In this case, the pre-filter capacity is not directly related to the volume of water delivered to the user. As a result, testing to 200% of capacity for the pre-filter would not be relevant to the volume of product water produced. Since the product volume does not directly correlate with the volume that passes through the pre-filter, the manufacturer shall include a performance indication device that meets the requirements of NSF/ANSI 53 if the pre-filter is included in the evaluation. The manufacturer has a choice regarding what stages of the treatment train are included in option B. In this case, the manufacturer decides to exclude the first carbon treatment stage of the system in the option B evaluation.

The first stage for the option B evaluation becomes the RO membrane. The technology would be evaluated in the same manner as option A. However, the resulting maximum effluent concentration measured during testing will determine the influent levels of mercury for the following technology stage.

The final stage for the option B evaluation is the carbon post-filter. Prior to conducting the testing of this stage under NSF/ANSI 53, the parameters of the test shall be established. The test capacity shall be set by the manufacturer, however, the flow rate of the test will be equal to or greater than the maximum flow rate obtained from the outlet of the system during normal use. In this case, the system would be
operated as described in the manufacturer literature and the flow rate monitored during product water dispensing. The highest flowrate achieved over any 30 second period shall be the minimum flowrate specified for the NSF/ANSI 53 test. This would provide a flow rate that is equal or more conservative than the flow rate this treatment stage sees as applied within the system. The manufacturer may choose a higher flowrate to specify for testing if desired. Since the product water delivered to the user is equivalent to the volume that passes through this stage, the manufacturer is not required to include a performance indication device.

The minimum performance criteria are applied from all NSF/ANSI standards used in the evaluation of the system. The first stage influent (as required) and the final stage effluents are used to evaluate the performance of the system and must successfully meet all performance criteria.

X.3 Example Application of Treatment Train Option C

In this example the same system as shown above in Figure 1 is used with the change that the post-filter is a cartridge intended to remove Arsenic III. The contaminant claims sought for this system is Arsenic III reduction as Arsenic V reduction can be achieved by option A under NSF/ANSI 58. The post-filter is designed to remove arsenic III, but only in a low TDS environment without the significant presence of other competing ions. This qualifies this test to be performed under option C because the RO system will not effectively reduce arsenic III and the post-filter will not effectively reduce arsenic III under the test water conditions in NSF/ANSI 53 without the RO being present upstream. To adequately evaluate the performance of this system, it must be evaluated under option C.

There are two technologies that are present in this system, reverse osmosis and adsorption. This requires that the entire system be evaluated based on these two technologies for arsenic III. Reverse osmosis falls under NSF/ANSI 58 while adsorption falls under NSF/ANSI 53. Arsenic III is not a listed claim under 58, however, the test procedure for arsenic shall be followed with minimal modifications to the test. The system shall be tested in its entirety (with pre- and post-filters in place) with arsenic III using the influential concentration limits as described within the NSF/ANSI standards (in this case 53), but following all other requirements of the test method. Since there are no pass/fail criteria for arsenic III under NSF/ANSI 58, the criteria that exist in all other NSF/ANSI standards that cover the technologies present within the system shall be applied. In this example, the criteria are contained in NSF/ANSI 53.

The system shall also be evaluated under the arsenic III requirements in NSF/ANSI 53 using the test requirements as stated in the Standard. On/Off cycling shall be performed at the system outlet with the inlet continually provided with test water containing the contaminant. The system shall be tested through the claimed capacity to 200% or 120% if a performance indication device meeting the requirements of NSF/ANSI 53 is present. Samples shall be collected as specified in the Standard and all other requirements for the arsenic III test shall be met.

Each test that is performed shall meet all requirements of the standards that apply to technologies within the system. In this example, the requirements for contaminant reduction performance in NSF/ANSI 53 are applied to both tests.

Reason: Added criteria and examples for treatment train approach per 2015 DWTU JC meeting discussion (May 13, 2015). This language will be added as an annex of NSF/ANSI 42, 44, 53, 58 and 62.
3 Definitions

3.x treatment train: A sequential series of two or more contaminant reduction technologies applied within a system to achieve a final water quality goal.

Reason: Added definition to NSF/ANSI 330 per 2015 DWTU JC meeting discussion (May 13, 2015).
2.5.1 Rational Analysis Criteria
This adhered membrane roofing system assembly rational analysis method shall only be used when all of the following criteria are met:

1. The Tested Wind Uplift Load Capacity (without consideration of any safety factor) must be greater than or equal to the calculated corner area wind uplift design load; and
2. The adhered membrane roofing system assembly utilizes either mechanical fasteners or ribbons/beads of an adhesive for insulation/substrate attachment; and
3. The Tested Wind Uplift Load Capacity of the proposed adhered roofing system assembly was determined utilizing a test chamber of sufficient size to allow side-by-side positioning of a minimum of three full-size insulation/coverboard/substrate boards/panels on the test frame; and

3.4 When mechanically fastened base or anchor sheets are utilized, the tested attachment pattern must be uniform or repeating such that the number of fasteners utilized per a specified square foot area can be determined.

This rational analysis method shall not be used for adhered roofing system assemblies when the insulation/substrate layer(s) is (are) attached using 100% coverage of any adhesive or hot asphalt.
ANSI/TIA-PN-4953-A-D1
Draft 3.0
(for ANSI Default Ballot)

Telecommunications
Communications Products

Amplified Telephone Measurement Procedures and Performance Requirements

Formulated under the cognizance of TIA Subcommittee TR-41 3,
Analog and Digital Wireline Terminals

With the approval of TIA Engineering Committee TR-41,
User Premises Telecommunications Requirements

Summary of Changes Covered by Default Ballot
(This text to be deleted from final document.)

This is a default ballot. Substantive technical changes to the previously balloted version of the document are shown as tracked changes in red. These changes are the only items subject to consideration in this default ballot.
Following is a summary of the change:

- The HFE Balance requirements & measurement procedure stated in 4.1, 4.2, 5.3.1, 5.3.2, 6.3.1, 6.3.2, A.5, B 1.3 were modified from:
 a. HFE Low-Band < HFE Mid-Band < (HFE High-Band +3) OR
 b. HFE Low-Band > HFE Mid-Band > (HFE High-Band -3)

 To:
 a. For Slight and Steep slope types:
 HFE Low-Band < HFE Mid-Band < (HFE High-Band + 3 dB)
 b. For Flat slope type:
 i. Calculate the average of the HFE Low-Band and HFE High-Band
 ii. The HFE Mid-Band shall be ± 4 dB of the HFE Low-Band and HFE High-Band average.
4 PERFORMANCE REQUIREMENTS SUMMARY

4.1 NARROWBAND AND WIDEBAND HANDSET PERFORMANCE REQUIREMENTS SUMMARY

...

1. The HFE Balance requirements for three hearing loss categories per Table 1 shall be:
 a. For Slight and Steep slope types:
 HFE Low-Band < HFE Mid-Band < (HFE High-Band + 3 dB)
 b. For Flat slope type:
 i. Calculate the average of the HFE Low-Band and HFE High-Band
 ii. The HFE Mid-Band shall be ± 4 dB of the HFE Low-Band and HFE High-Band average.
 a. HFE Low-Band < HFE Mid-Band < (HFE High-Band + 3) OR
 b. HFE Low-Band > HFE Mid-Band > (HFE High-Band - 3)

4.2 NARROWBAND AND WIDEBAND SPEAKERPHONE PERFORMANCE REQUIREMENTS SUMMARY

...

1. The HFE Balance requirements for three hearing loss categories per Table 1 shall be:
 a. For Slight and Steep slope types:
 HFE Low-Band < HFE Mid-Band < (HFE High-Band + 3 dB)
 b. For Flat slope type:
 i. Calculate the average of the HFE Low-Band and HFE High-Band
 ii. The HFE Mid-Band shall be ± 4 dB of the HFE Low-Band and HFE High-Band average.
 a. HFE Low-Band < HFE Mid-Band < (HFE High-Band + 3) OR
 b. HFE Low-Band > HFE Mid-Band > (HFE High-Band - 3)

5 HANDSET ACOUSTIC REQUIREMENTS AND TESTING PROCEDURES

...

5.3 HANDSET ACOUSTICS FOR HEARING LOSS CATEGORIES

5.3.1 Requirements

1. ...

2. Other Requirements for all hearing loss test scenarios:
 a. HFE Balance shall pass either of the following criteria:
 i. For Slight and Steep slope types:
 HFE Low-Band < HFE Mid-Band < (HFE High-Band + 3 dB)
 ii. For Flat slope type:
 Calculate the average of the HFE Low-Band and HFE High-Band
 The HFE Mid-Band shall be ± 4 dB of the HFE Low-Band and HFE High-Band average
 a. HFE Low-Band < HFE Mid-Band < (HFE High-Band + 3) OR
 b. HFE Low-Band > HFE Mid-Band > (HFE High-Band - 3)

5.3.2 Test Procedure

...

7. Perform HFE Calculations:
 a. Calculate the HFE-Low-band, HFE-Mid-band, and the HFE-High-band
 b. Calculate the HFE as HFE = HFE High-Band - HFE Low-Band
 c. Evaluate HFE Balance:
 i. For Slight and Steep slope types:
 HFE Low-Band < HFE Mid-Band < (HFE High-Band + 3 dB)
 ii. For Flat slope type:
 Calculate the average of the HFE Low-Band and HFE High-Band
 The HFE Mid-Band shall be ± 4 dB of the HFE Low-Band and HFE High-Band average
 a. HFE Low-Band < HFE Mid-Band < (HFE High-Band + 3) OR
 b. HFE Low-Band > HFE Mid-Band > (HFE High-Band - 3)
6 SPEAKERPHONE ACOUSTIC REQUIREMENTS AND TESTING PROCEDURES

6.3 SPEAKERPHONE ACOUSTICS FOR HEARING LOSS CATEGORIES

6.3.1 Requirements

2. Other Requirements for all hearing loss test scenarios:

a. HFE Balance shall pass either of the following criteria:

i. For Slight and Steep slope types:
 HFE Low-Band < HFE Mid-Band < (HFE High-Band + 3 dB)

ii. For Flat slope type:
 - Calculate the average of the HFE Low-Band and HFE High-Band
 - The HFE Mid-Band shall be ± 4 dB of the HFE Low-Band and HFE High-Band average
 - HFE Low-Band < HFE Mid-Band < (HFE High-Band + 3) OR
 - HFE Low-Band > HFE Mid-Band > (HFE High-Band - 3)

6.3.2 Test Procedure

7. Perform HFE Calculations:

a. Calculate the HFE-Low-band, HFE-Mid-band, and the HFE-High-band
b. Calculate the HFE as HFE = HFE High-band - HFE Low-band
c. Evaluate HFE Balance:

i. For Slight and Steep slope types:
 HFE Low-Band < HFE Mid-Band < (HFE High-Band + 3 dB)

ii. For Flat slope type:
 - Calculate the average of the HFE Low-Band and HFE High-Band
 - The HFE Mid-Band shall be ± 4 dB of the HFE Low-Band and HFE High-Band average
 - HFE Low-Band < HFE Mid-Band < (HFE High-Band + 3) OR
 - HFE Low-Band > HFE Mid-Band > (HFE High-Band - 3)

ANNEX A (NORMATIVE) GENERAL INFORMATION

A.5 HIGH FREQUENCY EMPHASIS (HFE)

HFE Balance: In addition to comparing the HFE-High-band dB to the HFE-Low-band dB, HFE Balance is defined as having the HFE Mid-band within a defined range between of the HFE Low-Band and (HFE High-Band +/- 3 dB) based on the slope type.

NOTE: The “+/− 3” in the term for HFE Balance is included to account for the fact that HFE may be negative or positive. The evaluation of HFE Balance is performed as an “OR” statement (i.e., “+/− 3”) to determine if the HFE Mid-Band value meets the requirement. For example, the following statements are evaluated to determine if the HFE Mid-Band value meets the requirement:

- HFE Low-Band < HFE Mid-Band < (HFE High-Band + 3)
- HFE Low-Band > HFE Mid-Band > (HFE High-Band - 3)

The HFE-Mid-band requirements are included to ensure the frequency response is generally a controlled response with the HFE Mid-Band based on between the HFE Low-Band and HFE High-Band values.

Frequency response measurements produce dB vs. frequency data. In this case the dB values are actually dBSPL/dbV, which are only meaningful as a unit-less dB value for frequency response. Nonetheless, HFE is calculated by using the frequency response dB values as if they were dBSPL values and calculating 1/3rd octave band energy. Mathematically, HFE is calculated from 1/3rd octave band energy measurements:

1. Narrowband:
• HFE Low-Band = (315 Hz FR + 400 Hz FR + 500 Hz FR) / 3
• HFE Mid-Band = (800 Hz FR + 1000 Hz FR + 1250 Hz FR) / 3
• HFE High-Band = (2000 Hz FR + 2500 Hz FR + 3150 Hz FR) / 3
• HFE = HFE High-Band – HFE Low-Band (dB)
• HFE Balance: Depending on the slope type, the HFE Mid-Band is within a defined range of the HFE Low-Band and (HFE High-Band +/- 3 dB).

2. Wideband:
• HFE Low-Band = (200 Hz FR + 250 Hz FR + 315 Hz FR + 400 Hz FR + 500 Hz FR) / 5
• HFE Mid-Band = (800 Hz FR + 1000 Hz FR + 1250 Hz FR) / 3
• HFE High-Band = (2000 Hz FR + 2500 Hz FR + 3150 Hz FR + 4000 Hz FR + 5000 Hz FR) / 5
• HFE = HFE High-Band – HFE Low-Band (dB)
• HFE Balance: Depending on the slope type, the HFE Mid-band is within a defined range of the HFE Low-Band and (HFE High-Band +/- 3 dB).

Where: “FR” denotes the frequency response value for each 1/3rd octave band.

NOTES:
1. Although the general desire is to have an upward sloping frequency band response, the 3 dB allowance for the HFE-Mid-Band to exceed the HFE-High-Band was included as a practical matter (compromise) due to the fact that some telephones exhibit higher mid-band frequency response (called a “haystack” effect).
2. The narrowband analog HFE Low-Band 1/3rd octave band frequencies do not include the lowest frequency band (250 Hz) as stated in IEEE Std 269. This change was made because the analog PSTN telephone network is designed to carry frequencies limited to the 300 Hz to 3400 Hz range.

ANNEX B. (NORMATIVE) TESTING AND MEASUREMENT METHODS
B.1 RECEIVE PERFORMANCE TESTING METHODS

B.1.3 Receive High Frequency Emphasis (HFE)
The receive HFE is calculated from the receive frequency response 1/3rd octave data translated to the free-field (FF).

1. Calculate the HFE bands by averaging “dB-wise” the dB level of the 1/3rd octave bands that are defined for the HFE-Low-Band, HFE-Mid-Band, and HFE-High-Band respectively.
2. Calculate the HFE: HFE-High-Band minus HFE-Low-Band
3. Evaluate HFE Balance (Pass/Fail):
 a. For Slight and Steep slope types:
 HFE Low-Band < HFE Mid-Band < (HFE High-Band + 3 dB)
 b. For Flat slope type:
 i. Calculate the average of the HFE Low-Band and HFE High-Band
 ii. The HFE Mid-Band shall be ± 4 dB of the HFE Low-Band and HFE High-Band average
5. HFE Low-Band < HFE Mid-Band < (HFE High-Band + 3) OR
6. HFE Low-Band > HFE Mid-Band1 > (HFE High-Band - 3)
BSR/UL 217, Standard for Safety for Smoke Alarms

Recirculation of changes to the following proposal:

1. New Cooking Nuisance, Polyurethane Flaming and Smoldering Tests

PROPOSALS

53A Cooking Nuisance Smoke Test

53A.1 Acceptance criteria

53A.1.1 Four alarms shall not produce an alarm signal or other notification signal prior to:

 a) An obscuration level of 1.5 percent per foot (0.987 percent per meter) [0.0013 OD/foot (0.0043 OD/m)] based on the profile illustrated in Figure 53A.4,

 b) A MIC value between the range of 59.348% to 49.219% based on the profile illustrated in Figure 53A.5 and,

 c) The combined acceptance criteria from (a) and (b) as identified in the profile illustrated in Figure 53A.6.

53A.1.2 The acceptance criteria specified in 53A.1.1 shall be based on:

 a) The data recorded from the center alarm location as measured by the respective photocell-lamp assembly described in B1.3 (f) and (m) of Appendix B;

 b) The OBS vs Time, MIC vs Time, OBS vs MIC, and CO vs OBS profiles shall be within the limits as specified in Figures 53A.4 - 53A.7;

 c) The CO buildup rate in relation to the particle displacement (obscuration (OBS) in %/ft) shall be within the profile as specified in Figure 53A.7. The maximum CO limit that can be achieved shall not exceed 4.72 ppm at 1.5 %/ft obscuration can range from 1.4 - 4.72 ppm; and

 d) The requirements outlined in 53A.2 through 53A.4.6.

53A.4.1.2 The electric range shall be elevated from the floor so that the top of the cooking surface of the electric range is 100.605 inches ±1 inch (254 ±2.54 154 ±2.5 cm) from the ceiling.
Figure 51.3.4

Carbon monoxide test profile based on FTIR measurement

Flaming foam measuring ionization chamber/light beam limits