American National Standards

Call for comment on proposals listed

This section solicits public comments on proposed draft new American National Standards, including the national adoption of ISO and IEC standards as American National Standards, and on proposals to revise, reaffirm or withdraw approval of existing American National Standards. A draft standard is listed in this section under the ANSI-accredited standards developer (ASD) that sponsors it and from whom a copy may be obtained. Comments in connection with a draft American National Standard must be submitted in writing to the ASD no later than the last day of the comment period specified herein. Such comments shall be specific to the section(s) of the standard under review and include sufficient detail so as to enable the reader to understand the commenter’s position, concerns and suggested alternative language, if appropriate. Please note that the ANSI Executive Standards Council (ExSC) has determined that an ASD has the right to require that interested parties submit public review comments electronically, in accordance with the developer’s procedures.

Ordering Instructions for “Call-for-Comment” Listings
1. Order from the organization indicated for the specific proposal.
2. Use the full identification in your order, including the BSR prefix; for example, Electric Fuses BSR/SAE J554.
3. Include remittance with all orders.
4. BSR proposals will not be available after the deadline of call for comment.

Comments should be addressed to the organization indicated, with a copy to the Board of Standards Review, American National Standards Institute, 25 West 43rd Street, New York, NY 10036. Fax: 212-840-2298; e-mail: psa@ansi.org

* Standard for consumer products
Comment Deadline: August 16, 2015

ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.)

Addenda

The purpose of the proposed changes is to correct the omission of “entering” in the exhaust air which is equivalent to return air. In one area, 6.5.6.1, the original addendum AR left the word “return” air while the other instances were changed to “exhaust” air. This ISC corrects them all to refer to the “entering exhaust” air of the energy recovery device.

Click here to view these changes in full

Send comments (with copy to psa@ansi.org) to: Online Comment Database at http://www.ashrae.org/standards-research--technology/public-review-drafts

ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.)

Addenda

This addendum clarifies the intent of the standard that the method of attachment is irrelevant in section 5.4.3.1.3.a as the section pertains to materials that are deemed-to-comply air barriers.

Click here to view these changes in full

Send comments (with copy to psa@ansi.org) to: Online Comment Database at http://www.ashrae.org/standards-research--technology/public-review-drafts

ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.)

Addenda

This addendum is proposing to make an informative note mandatory, which will mean that all end-use loads must be included in both the performance and baseline building designs.

Click here to view these changes in full

Send comments (with copy to psa@ansi.org) to: Online Comment Database at http://www.ashrae.org/standards-research--technology/public-review-drafts

ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.)

Addenda

This addendum modifies the fan system operation requirements in the Performance Rating Method (Appendix G) so that fan energy does not have to explicitly be modeled.

Click here to view these changes in full

Send comments (with copy to psa@ansi.org) to: Online Comment Database at http://www.ashrae.org/standards-research--technology/public-review-drafts

ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.)

Addenda

This addendum revises the prescriptive criteria for doors in Tables 5.5-0 through 5.5-8. Proposed changes were developed using both cost effectiveness analysis and engineering judgment. Additionally an exception was added for doors with one row (panel) of glazing.

Click here to view these changes in full

Send comments (with copy to psa@ansi.org) to: Online Comment Database at http://www.ashrae.org/standards-research--technology/public-review-drafts

ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.)

Addenda

This proposal requires monitoring central chiller plant efficiency in large electric motor driven chilled water plants. The requirement is for plants with a peak chilled water output greater than 1,500 tons. This proposal is designed to help commissioning and ongoing operations of the aforementioned chilled water plants.

Click here to view these changes in full

Send comments (with copy to psa@ansi.org) to: Online Comment Database at http://www.ashrae.org/standards-research--technology/public-review-drafts

ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.)

Addenda

This proposal revises the Parking Garage LPDs based on the inclusion of LED technology as the lighting source. The DOE Better Buildings Alliance provided support for extensive analysis that presented potential revision of the Parking Garage Lighting Power Densities based primarily on including LED lighting technology.

Click here to view these changes in full

Send comments (with copy to psa@ansi.org) to: Online Comment Database at http://www.ashrae.org/standards-research--technology/public-review-drafts

ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.)

Addenda

This proposal incorporates the requirement to make collected energy related data available with any applicable control systems in a manner that would be useful to building operators.

Click here to view these changes in full

Send comments (with copy to psa@ansi.org) to: Online Comment Database at http://www.ashrae.org/standards-research--technology/public-review-drafts
This addendum limits heating the DOAS supply air to 60°F when the majority of the building is expected to require cooling. This can be established based either on zone conditions or outside air temperature.

Send comments (with copy to psa@ansi.org) to: Online Comment Database at http://www.ashrae.org/standards-research--technology/public-review-drafts

This addendum adds a new section for Chilled Water Coil Selection. The analysis showed that the fan energy increase due to the larger coil was more than offset by the pump energy savings, and net first costs were reduced due to smaller piping and pumps, offsetting higher coil costs.

Send comments (with copy to psa@ansi.org) to: Online Comment Database at http://www.ashrae.org/standards-research--technology/public-review-drafts

This addendum clarifies when the reheat coil needs to be energized in systems 6 and 8 when using the Performance Rating Method (Appendix G).

Send comments (with copy to psa@ansi.org) to: Online Comment Database at http://www.ashrae.org/standards-research--technology/public-review-drafts

This addendum clarifies that water economizers may use dry coolers. Any type of heat or mass transfer is allowed whether dry or evaporative.

Send comments (with copy to psa@ansi.org) to: Online Comment Database at http://www.ashrae.org/standards-research--technology/public-review-drafts

This addendum clarifies that water economizers may use dry coolers. Any type of heat or mass transfer is allowed whether dry or evaporative.

Send comments (with copy to psa@ansi.org) to: Online Comment Database at http://www.ashrae.org/standards-research--technology/public-review-drafts

This addendum limits heating the DOAS supply air to 60°F when the majority of the building is expected to require cooling. This can be established based either on zone conditions or outside air temperature.

Send comments (with copy to psa@ansi.org) to: Online Comment Database at http://www.ashrae.org/standards-research--technology/public-review-drafts

This addendum clarifies that water economizers may use dry coolers. Any type of heat or mass transfer is allowed whether dry or evaporative.

Send comments (with copy to psa@ansi.org) to: Online Comment Database at http://www.ashrae.org/standards-research--technology/public-review-drafts

This addendum clarifies that water economizers may use dry coolers. Any type of heat or mass transfer is allowed whether dry or evaporative.

Send comments (with copy to psa@ansi.org) to: Online Comment Database at http://www.ashrae.org/standards-research--technology/public-review-drafts

This addendum clarifies that water economizers may use dry coolers. Any type of heat or mass transfer is allowed whether dry or evaporative.

Send comments (with copy to psa@ansi.org) to: Online Comment Database at http://www.ashrae.org/standards-research--technology/public-review-drafts

This addendum clarifies that water economizers may use dry coolers. Any type of heat or mass transfer is allowed whether dry or evaporative.

Send comments (with copy to psa@ansi.org) to: Online Comment Database at http://www.ashrae.org/standards-research--technology/public-review-drafts
AGMA (American Gear Manufacturers Association)

Revision
BSR/AGMA 2002-CXX, Tooth Thickness and Backlash Measurement of Cylindrical Involute Gearing (revision of ANSI/AGMA 2002-B88 (R2012))

This standard establishes the calculation procedures for determining specification limits for external and internal cylindrical involute gearing when the desired tooth thickness is known. This standard also shows the relationships between backlash and the tooth thickness, center distance, and tooth deviations in a pinion and gear mesh.

Obtain an electronic copy from: tech@agma.org
Order from: Amir Aboutaleb, (703) 684-0211, tech@agma.org
Send comments (with copy to psa@ansi.org) to: Same

AGMA (American Gear Manufacturers Association)

Reaffirmation
BSR/AGMA 2001-D04 (R2012x), Fundamental Rating Factors and Calculation Methods for Involute Spur and Helical Gear Teeth (reaffirmation of ANSI/AGMA 2001-D04 (R2010))

This standard specifies a method for rating the pitting resistance and bending strength of spur and helical involute gear pairs. A detailed discussion of factors influencing gear survival and calculation methods are provided. Metric version of AGMA 2001-D04.

Obtain an electronic copy from: tech@agma.org
Order from: Amir Aboutaleb, (703) 684-0211, tech@agma.org
Send comments (with copy to psa@ansi.org) to: Same

UL (Underwriters Laboratories, Inc.)

New National Adoption

Revises the following proposals as the result of comments received:
- Revision to the conductor temperature limit during the Temperature Test;
- Table 15DV.

Send comments (with copy to psa@ansi.org) to: Megan Sepper, (847) 664-3411, Megan.M.Sepper@ul.com

Comment Deadline: August 31, 2015

API (American Petroleum Institute)

Revision

This recommended practice (RP) identifies leading and lagging process safety indicators useful for driving performance improvement. As a framework for measuring activity, status, or performance, this document classifies process safety indicators into four tiers of leading and lagging indicators. Tiers 1 and 2 are suitable for nationwide public reporting and Tiers 3 and 4 are intended for internal use at individual facilities. Guidance on methods for development and use of performance indicators is also provided.

Single copy price: Free
Order from: Stephen Crimaudo, (202) 682-8151, crimaudos@api.org
Send comments (with copy to psa@ansi.org) to: Same

ASB (ASC Z50) (American Society of Baking)

Revision
BSR/ASB Z50.2-2013, Bakery Equipment - Sanitation Standards (revision of ANSI/ASB Z50.2-2013)

Update the older sections of this standard to the latest consensus.

Single copy price: $25.00
Obtain an electronic copy from: www.asbe.org
Order from: www.asbe.org
Send comments (with copy to psa@ansi.org) to: toby.steward@nasolutions.com

AWS (American Welding Society)

Addenda

This specification provides the requirements for qualification of welding procedure specifications, welders, and welding operators for manual, semiautomatic, mechanized, and automatic welding. The welding processes included are electrogas welding, electron-beam welding, electroslag welding, flux-cored arc welding, gas-metal arc welding, gas-tungsten arc welding, laser-beam welding, oxyfuel gas welding, plasma arc welding, shielded-metal arc welding, stud arc welding, and submerged arc welding. Base metals, filler metals, qualification variables, welding designs, and testing requirements are also included.

Single copy price: $132
Obtain an electronic copy from: jrosario@aws.org
Order from: Jennifer Rosario, (800) 443-9353, jrosario@aws.org
Send comments (with copy to psa@ansi.org) to: adavis@aws.org
AWWA (American Water Works Association)

Revision
BSR/AWWA B600-201x, Powdered Activated Carbon (revision of ANSI/AWWA B600-2010)

This standard describes powdered activated carbon (PAC) for use in adsorption of impurities for water supply service applications.

Single copy price: $20.00

Obtain an electronic copy from: vdavid@awwa.org

Order from: Paul Olson, (303) 347-6178, polson@awwa.org; vdavid@awwa.org

Send comments (with copy to psa@ansi.org) to: Same

CAGI (Compressed Air and Gas Institute)

New Standard
BSR/CAGI BL 300-201x, Simplified Acceptance Test of Electric Driven, Low Pressure Air Blower Packages: Standard for Testing, Rating, and Evaluating Blowers (new standard)

This standard applies to the following types of packaged, low-pressure blowers handling atmospheric air and producing discharge pressures between 0 psig and 30 psig:

- Turboexpansion blowers (dynamic, centrifugal);
- Positive displacement blowers, typically lobe or screw.

The standard contains three sections: a simplified performance test method for dynamic blowers based on ISO 5389, a simplified performance test method for positive displacement blowers based on ISO 1217, and a means of marrying the two methods by comparing performance between blowers regardless of the type of blower.

Single copy price: Free

Obtain an electronic copy from: cagigcagi.org

Order from: Leslie Schraff, (216) 241-7333, cagigcagi.org

Send comments (with copy to psa@ansi.org) to: Same

CEA (Consumer Electronics Association)

New Standard
BSR/CEA 709.6-201x, Control Networking Protocol Specification: Part 6: Application Elements (new standard)

This Standard will provide mechanisms through which various vendors of control networking systems may exchange information in a standardized way to ensure interoperability between various control networking protocol implementations. This standard will provide specifications for the Application Elements of Control Network Protocol packets as follows: Definitions of standardized packet (network-variable) data types; Definitions of device-interface files; Definitions of standardized configuration-property types; Definitions of standardized functional profiles; Definition of the standardized method of file transfer between devices. It also defines the device interface for a device as specified, which is necessary to exchange data between various devices from different manufacturers.

Single copy price: $455.00

Obtain an electronic copy from: standards@ce.org

Order from: Veronica Lancaster, (703) 907-7697, vlancaster@ce.org; dwilson@ce.org

Send comments (with copy to psa@ansi.org) to: Same

CSA (CSA Group)

Revision
BSR Z21.69-201x, Connectors for Movable Gas Appliances (same as CSA 6.16-201x) (revision of ANSI Z21.69-2008 and ANSI Z21.69a-2012 (R2013))

Details test and examination criteria for gas appliance connectors consisting of flexible tubing for connecting gas supply piping to a gas appliance mounted on casters or otherwise subject to movement. These connectors are limited to a maximum length of 6 feet (1.83 m). These connectors are suitable for use with natural, manufactured or mixed gases, liquefied petroleum gases, or LP gas-air mixtures, at pressures not in excess of 1/2 psi (3.5 kPa).

Single copy price: $free

Obtain an electronic copy from: cathy.rake@csagroup.org

Order from: Cathy Rake, (216) 524-4990 x88321, cathy.rake@csagroup.org

Send comments (with copy to psa@ansi.org) to: Same

EOS/ESD (ESD Association, Inc.)

New Standard
BSR/ESD S13.1-201x, ESD Association Standard for the Protection of Electrostatic Discharge Susceptible Items - Electrical Soldering/Desoldering Hand Tools (new standard)

This standard establishes test procedures to: (1) qualify, (2) perform testing of, and, (3) test repaired three-wire AC, soldering/desoldering hand tools.

Single copy price: $HC: 145 List/115 Member; SC: 135 List/105 Member

Obtain an electronic copy from: ceartesesda.org

Order from: Christina Earl, (315) 339-6937, ceartesesda.org

Send comments (with copy to psa@ansi.org) to: Same
EOS/ESD (ESD Association, Inc.)

Revision

BSR/ESD SP10.1-201x, ESD Association Standard Practice for the Protection of Electrostatic Discharge Susceptible Items - Automated Handling Equipment (AHE) (revision of ANSI/ESD SP10.1-2007)

This standard practice covers resistance-to-ground measurements of machine components and sources of charge in AHE. Two methods are described to measure sources of charge. One method measures charge indirectly by measuring the voltage or field associated with the charge. The second method directly measures the voltage induced on ESDS items.

Single copy price: $HC: 145 List/115 Member; SC: 135 List/105 Member

Obtain an electronic copy from: cearl@esda.org

Order from: Christina Earl, (315) 339-6937, cearl@esda.org

Send comments (with copy to psa@ansi.org) to: Same

NECA (National Electrical Contractors Association)

New Standard

BSR/NECA 416-201X, Recommended Practice for Installing Stored Energy Systems (new standard)

This standard describes installation practices for stored energy systems such as battery systems, flywheels, capacitors, and smart chargers used for vehicle-to-grid (V2G) applications.

Single copy price: $40.00

Obtain an electronic copy from: neis@necanet.org

Order from: Sofia Arias, (301) 215-4549, sofia.arias@necanet.org

Send comments (with copy to psa@ansi.org) to: Same

HL7 (Health Level Seven)

Revision

BSR/HL7 V2.8.2-201x, Health Level Seven Standard Version 2.8.2 - An Application Protocol for Electronic Data Exchange in Healthcare Environments (revision and redesignation of ANSI/HL7 V2.8.1-2014)

V2.8.2 provides a number of updates to support implementation guides in the US targeted for ONC’s certification program, as well as vocabulary updates for Australia used in their programs.

Single copy price: $free to members; free to non-member 90 days following ANSI approval and publication by HL7

Obtain an electronic copy from: Karenvan@HL7.org

Order from: Karen Van Hentenryck, (734) 677-7777, Karenvan@HL7.org

Send comments (with copy to psa@ansi.org) to: Same

TAPPI (Technical Association of the Pulp and Paper Industry)

New Standard

BSR/TAPPI T 1011 om-201x, Basis weight of fiber glass mats (new standard)

This method covers the determination of the basis weight of fiber glass mat. The basis weight includes the fiber, binder, and other materials incorporated into the finished web. Weight is reported as pounds per 100 square feet (i.e., not customary TAPPI paper units).

Single copy price: $FREE

Obtain an electronic copy from: standards@tappi.org

Order from: Charles Bohanan, (770) 209-7276, standards@tappi.org

Send comments (with copy to psa@ansi.org) to: Same

InfoComm (InfoComm International)

New Standard

BSR/INFOCOMM V201.02-201x, Direct View Display Image System Contrast Ratio (new standard)

This Standard will address the contrast ratio of direct-view display systems. Although these methodologies and procedures can be applied to many display system types and applications, this Standard pertains to audiovisual presentation systems including permanently installed systems and live events. This Standard is limited to image contrast ratio measurements and does not include testing and measurement of related display factors such as display luminance, image size, display resolution, display technology and construction (e.g., display screen coatings and surfaces), or other factors relating to the overall performance of the direct view device.

Single copy price: $60 USD non-member, free to members

Send comments (with copy to psa@ansi.org) to: www.infocomm.org/standards

TIA (Telecommunications Industry Association)

Revision

The TIA 102.AAAD-A standard describes the encryption protocol for land-mobile radios meeting the Project 25 requirements. This project will accept and consider contributions proposing editorial or technical changes to the published version.

Single copy price: $116

Obtain an electronic copy from: standards@tiaonline.org

Order from: Telecommunications Industry Association (TIA); standards@tiaonline.org

Send comments (with copy to psa@ansi.org) to: standards@tiaonline.org
TIA (Telecommunications Industry Association)

Revision
BSR/TIA 4953-A-201x, Telecommunications - Communications Products - Amplified Telephone Measurement Procedures and Performance Requirements (revision and redesignation of ANSI/TIA 4953-2012)

This revision project is proposed to make the following changes to the existing standard: (1) Add requirements for digital interface telephones; (2) Add requirements for sidetone; (3) Add requirements for distortion for any volume control setting and any input level; (4) Remove the "Maximum Usable Gain" measurement clause; (5) Add requirements for testing send level during conversation simulation; and (6) Revise the requirements for the "Mild" criteria to align with the volume control requirements for regular telephones. These revisions are necessary to improve the applications for this standard.

Single copy price: $133
Obtain an electronic copy from: standards@tiaonline.org
Order from: Telecommunications Industry Association (TIA); standards@tiaonline.org
Send comments (with copy to psa@ansi.org) to: standards@tiaonline.org

UL (Underwriters Laboratories, Inc.)

Revision
BSR/UL 1876-2011 (R201X), Standard for Safety for Isolating Signal and Feedback Transformers for Use in Electronic Equipment (reaffirmation of ANSI/UL 1876-2011)

Reaffirmation of ANSI approval is proposed for UL 1876.
Single copy price: Contact comm2000 for pricing and delivery options
Order from: comm2000
Send comments (with copy to psa@ansi.org) to: Joshua Johnson, (919) 549-1053, Joshua.Johnson@ul.com

Projects Withdrawn from Consideration

An accredited standards developer may abandon the processing of a proposed new or revised American National Standard or portion thereof if it has followed its accredited procedures. The following projects have been withdrawn accordingly:

ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.)

BSR/ASHRAE Standard 197-200x, Method of Test for Attenuation Characteristics of Vibration Isolators (new standard)
Vibration isolators commonly used to prevent the transmission of HVACR equipment vibration into buildings, such as springs, fiberglass mounts, elastomeric mounts and pads, wire rope, or cork pads.
Inquiries may be directed to Susan LeBlanc, (678) 539-1175, sleblanc@ashrae.org

UL (Underwriters Laboratories, Inc.)

Revision
BSR/UL 1610-201x, Standard for Safety for Central-Station Burglar-Alarm Units (revision of ANSI/UL 1610-2015a)

This covers a proposal to address remote access to alarm panels, via smart devices and/or the Internet.
Single copy price: Contact comm2000 for pricing and delivery options
Order from: comm2000
Send comments (with copy to psa@ansi.org) to: Megan Sepper, (847) 664-3411, Megan.M.Sepper@ul.com
Call for Members (ANS Consensus Bodies)

Directly and materially affected parties who are interested in participating as a member of an ANS consensus body for the standards listed below are requested to contact the sponsoring standards developer directly and in a timely manner.

AAMI (Association for the Advancement of Medical Instrumentation)
Office: 4301 N Fairfax Drive
 Suite 301
 Arlington, VA 22203-1633
Contact: Will Vargas
Phone: (703) 647-2779
E-mail: wvargas@aami.org

BSR/AAMI/IEC 62304-2006/Amd 1-201x, Medical device software -
Software life cycle processes - Amendment 1 (addenda to
ANSI/AAMI/IEC 62304, Ed.1-2006 (R2013))

API (American Petroleum Institute)
Office: 1220 L Street, NW
 Washington, DC 20005-4070
Contact: Stephen Crimaudo
Phone: (202) 682-8151
Fax: (202) 682-4797
E-mail: crimaudos@api.org

BSR/API Recommended Practice 754 Second Edition-201x, Process
Safety Performance Indicators for the Refining and Petrochemical
Industries (revision and redesignation of ANSI/API Standard RP 754
-2010)

BOMA (Building Owners and Managers Association)
Office: 1101 15th Street, NW
 Suite 800
 Washington, DC 20005
Contact: Kevin Fry
Phone: (202) 326-6357
E-mail: kfry@boma.org

BSR/BOMA Z65.1-2010 (R201x), Office Buildings: Standard Methods of
Measurement (revision of ANSI/BOMA Z65.1-2010)

CAGI (Compressed Air and Gas Institute)
Office: 1300 Sumner
 Cleveland, OH 44115
Contact: Richard Johnson
Phone: (216) 241-7333
E-mail: cjohnson@thomasamc.com

BSR/CAGI BL 300-201x, Simplified Acceptance Test of Electric Driven,
Low Pressure Air Blower Packages: Standard for Testing, Rating, and
Evaluating Blowers (new standard)
Obtain an electronic copy from: cagi@cagi.org

CEA (Consumer Electronics Association)
Office: 1919 South Eads Street
 Arlington, VA 22202
Contact: Veronica Lancaster
Phone: (703) 907-7697
Fax: (703) 907-4197
E-mail: viancaster@ce.org; dwilson@ce.org

BSR/CEA 709.5-201x, Control Networking Protocol Specification: Part 5:
Implementation - Application-Layer Guidelines (new standard)
Obtain an electronic copy from: standards@ce.org

BSR/CEA 709.6-201x, Control Networking Protocol Specification: Part 6:
Application Elements (new standard)
Obtain an electronic copy from: standards@ce.org

NECA (National Electrical Contractors Association)
Office: 3 Bethesda Metro Center
 Suite 1100
 Bethesda, MD 20814
Contact: Sofia Arias
Phone: (301) 215-4549
Fax: (301) 215-4500
E-mail: sofia.arias@necanet.org

BSR/NECA 416-201X, Recommended Practice for Installing Stored
Energy Systems (new standard)
Obtain an electronic copy from: neis@necanet.org
BSR/TAPPI T 827 om-201x, Box blank dimensioning (new standard)

Obtain an electronic copy from: standards@tiaonline.org

BSR/TIA 4953-A-201x, Telecommunications - Communications Products - Amplified Telephone Measurement Procedures and Performance Requirements (revision and redesignation of ANSI/TIA 4953-2012)
Obtain an electronic copy from: standards@tiaonline.org
Final Actions on American National Standards

The standards actions listed below have been approved by the ANSI Board of Standards Review (BSR) or by an ANSI-Audited Designator, as applicable.

AAMI (Association for the Advancement of Medical Instrumentation)

Reaffirmation

ACCA (Air Conditioning Contractors of America)

Revision

AIAA (American Institute of Aeronautics and Astronautics)

New Standard

APCO (Association of Public-Safety Communications Officials-International)

Revision

APCO ANSI 3.103.2-2015, Minimum Training Standards for Public Safety Telecommunicators (revision and redesignation of ANSI/APCO 3.103.1-2010): 7/14/2015

API (American Petroleum Institute)

Addenda

ASA (ASC S3) (Acoustical Society of America)

Revision

ANSI ASA S3.41-2015, Audible Emergency Evacuation (E2) and Evacuation Signals with Relocation Instructions (ESRI) (revision of ANSI ASA S3.41-1990 (R2008)): 7/14/2015

ATIS (Alliance for Telecommunications Industry Solutions)

New Standard

AWS (American Welding Society)

Revision

ANSI/AWS B2.1-1/8-231:2015, Standard Welding Procedure Specification (SWPS) for Gas Tungsten Arc Welding with Consumable Insert Root followed by Shielded Metal Arc Welding of Carbon Steel (M-1/P-1, Groups 1 or 2) to Austenitic Stainless Steel (M-8/P-8, Group 1), 1/8 inch [3 mm] through 1-1/2 inch [38 mm] Thick, IN309, ER309(L), and E309(L)-XX, in the As-Welded Condition, Primarily Pipe Applications (revision of ANSI/AWS B2.1-1/8-231-2002): 7/14/2015

B11 (B11 Standards, Inc.)

Reaffirmation

ANSI B11.10-2003 (R2015), Safety Requirements for Metal Sawing Machines (reaffirmation of ANSI B11.10-2003 (R2009)): 7/13/2015

CSA (CSA Group)

Revision

IEEE (Institute of Electrical and Electronics Engineers)

Revision

ISA (International Society of Automation)

New Standard

NIRMA (Nuclear Information and Records Management Association)

Reaffirmation

UL (Underwriters Laboratories, Inc.)

New Standard

Reaffirmation
ANSI/UL 920001-2011 (R2015), Standard for Performance Requirements for Toxic Gas Detectors (Proposal dated 05-08-15) (reaffirmation and redesignation of ANSI/ISA 92.00.01-2010): 7/10/2015

Revision

Correction
Incorrect Designation

ANSI/UL 1685

The Standards Action Final Action dated July 10, 2015 for the reaffirmation of ANSI/UL 1685-2010a should have been designated as ANSI/UL 1685-2010 (R2015), Standard for Safety for Vertical-Tray Fire-Propagation and Smoke-Release Test for Electrical and Optical-Fiber Cables.
Project Initiation Notification System (PINS)

ANSI Procedures require notification of ANSI by ANSI-accredited standards developers (ASD) of the initiation and scope of activities expected to result in new or revised American National Standards (ANS). Early notification of activity intended to reaffirm or withdraw an ANS and in some instances a PINS related to a national adoption is optional. The mechanism by which such notification is given is referred to as the PINS process. For additional information, see clause 2.4 of the ANSI Essential Requirements: Due Process Requirements for American National Standards.

Following is a list of proposed actions and new ANS that have been received recently from ASDs. Please also review the section in Standards Action entitled "American National Standards Maintained Under Continuous Maintenance" for additional or comparable information with regard to standards maintained under the continuous maintenance option. To view information about additional standards for which a PINS has been submitted and to search approved ANS, please visit www.NSSN.org, which is a database of standards information. Note that this database is not exhaustive.

Directly and materially affected interests wishing to receive more information or to submit comments are requested to contact the standards developer directly within 30 days of the publication of this announcement.

AAMI (Association for the Advancement of Medical Instrumentation)
Office: 4301 N Fairfax Drive
Suite 301
Arlington, VA 22203-1633
Contact: Will Vargas
E-mail: wvargas@aami.org

BKR/ASHRAE Standard 219P-201x, Method of Testing the Ability of Liquid Line Filter Driers or Adsorbents to Remove Organic and Inorganic Acid (new standard)
Stakeholders: Residential and commercial HVAC contractors.
Project Need: This standard establishes a suitable laboratory apparatus and test method for determining the ability of various adsorbents and refrigerant liquid-line filter driers to remove specific organic and inorganic acids.
This standard applies to the measurement of the mass of a specific organic acid or inorganic acid removed from a refrigerant-lubricant mixture by a liquid-line filter drier containing an absorbent desiccant material or through a specific absorbent material that can remove acid by adsorption and/or chemical reaction

ASME (American Society of Mechanical Engineers)
Office: Two Park Avenue
New York, NY 10016
Contact: Mayra Santiago
Fax: (212) 591-8501
E-mail: ansibox@asme.org

BSR/ASME B18.6.7M-201x, Metric Machine Screws (revision and redesignation of ANSI/ASME B18.6.7M-1999 (R2010))
Stakeholders: Manufacturers and users of metric machine screws.
Project Need: Revisited to reflect the current state of the art.
This Standard covers the complete general and dimensional data for metric flat countersunk, oval countersunk, and pan-slotted and recessed-head machine screws, and metric hex and hex flange head machine screws recognized as standard. Also included are appendices that provide specifications and instructions for protrusion gaging of flat countersunk head screws, across-comers gaging of hex head screws, and penetration gaging and wobble gaging of recessed head screws, and clearance hole recommendations.

BSR/ASME MFC-10M-201x, Method for Establishing Installation Effects on Flowmeters (revision and redesignation of ANSI/ASME MFC-10M-2000 (R2011))
Stakeholders: Users, manufacturers, and installers of flowmeters.
Project Need: Needs to be revised in the context of different types of meters being used by the industry.
This Standard establishes methods for determining the influence of installation conditions or flow patterns on the performance of flowmeters in closed conduits (i.e., pipe, ducts, etc.).

Project Need: Regular review of the Standard.

Stakeholders: Building owners and managers, facilities managers, architects, space planners, interior designers, engineers, leasing professionals, appraisers, and others concerned with the measurement of office buildings.

BSR/HL7 CMS V1.6-2011, HL7 Context Management Specification, Version 1.6 (reaffirmation of ANSI/HL7 CMS V1.6 -2011)

Version 1.6 extended the standard to include language on the use of SAML Assertions of authenticating users into the CCOW context and for the subsequently re-use of saved SAML Assertions by authorized context participants.

BSR/HL7 IMTRANS, R2-201x, HL7 Version 3 Standard: Transmission Infrastructure, Release 2 (revision and redesignation of ANSI/HL7 V3 IM, R1-2004)

Stakeholders: Regulatory agencies.

BSR/HL7 V3 COMT, R3-2010 (R201x), HL7 Version 3 Standard: Shared Messages, Release 3 (reaffirmation of ANSI/HL7 V3 COMT, R3-2010)

Stakeholders: All HL7 stakeholders in general.

BSR/NEMA WD 6-201x, Wiring Devices - Dimensional Specifications (revision of ANSI/NEMA WD 6-2012)

Stakeholders: Cord set manufacturers, appliance builders, electricians, inspectors.

IEEE (ASC N42) (Institute of Electrical and Electronics Engineers)

Office: 100 Bureau Drive M/S 8462
Gaithersburg, MD 20899-8462

Contact: Michael Unterweger
Fax: (301) 926-7416
E-mail: michael.unterweger@nist.gov

BSR N42.59-201x, Standard for Measuring the Imaging Performance of Millimeter-Wave Systems for Security Screening of Humans (new standard)

Stakeholders: Law enforcement, fire, criminal justice, and emergency services at the federal, state, local, and tribal levels; U.S. Department of Defense; U.S. Department of Homeland Security; National Bomb Squad Commanders Advisory Board; National Institute of Standards and Technology, U.S. Department of Justice.

Project Need: This standard applies to security screening systems that utilize millimeter-wave radiation to inspect people who are not inside vehicles, containers, or enclosures. Specifically, this standard applies to systems used to detect objects carried on the body of the individual being screened.

This standard applies to security screening systems that utilize millimeter-wave radiation to inspect people who are not inside vehicles, containers, or enclosures. Specifically, this standard applies to systems used to detect objects carried on the body of the individual being screened. The following types of systems are included in the scope of this standard:
- Systems designated as fixed, portal, re-locatable, transportable, mobile, or gantry;
- Systems that are primarily imaging but that also may have complementary features such as material discrimination or automated threat recognition.

This standard will not address how to test these complementary features.

NEMA (National Electrical Manufacturers Association)

Office: 1300 North 17th Street
Suite 900
Rosslyn, VA 22209

Contact: Andrei Moldoveanu
Fax: (703) 841 3390
E-mail: and_moldoveanu@nema.org

BSR/NEMA WD 6-201x, Wiring Devices - Dimensional Specifications (revision of ANSI/NEMA WD 6-2012)

Stakeholders: Cord set manufacturers, appliance builders, electricians, inspectors.

Project Need: New wiring devices additions.

This standard covers dimensional requirements for plugs and receptacles rated up to 60A and 600V.
This standard describes the method by which the security-related features of healthcare system components are evaluated at the product level and tested for known vulnerabilities while also establishing a minimum set of verification activities intended to reduce the likelihood of zero-day vulnerabilities that may affect the component. This security evaluation standard applies to the testing of network-connected components of healthcare systems. It applies to the following key components: medical devices, accessories to medical devices, medical device data systems, in-vitro diagnostic devices, health information technology, and wellness devices.

Stakeholders: Manufacturers, regulators, and users of network-connected components of industrial control systems
Project Need: To obtain national recognition of a standard covering software cybersecurity for industrial control systems.

Describes the method by which the security-related features of industrial control system components are evaluated at the product level and tested for known vulnerabilities while also establishing a minimum set of verification activities intended to reduce the likelihood of zero-day vulnerabilities that may affect the component. This standard applies to the testing of network-connected components of ICS. It applies to the following components: PLC, DCS, PLC and DCS programming software/operator interfaces, historian or data loggers, control server, the SCADA server, RTU, IED, HMI, data historian, IO rerver, fieldbus, networking, and access equipment for ICS systems.

Stakeholders: Manufacturers, regulators, and users of medical devices; accessories to medical devices; medical device data systems; in-vitro diagnostic devices; and wellness devices.
Project Need: To obtain national recognition of a standard covering software cybersecurity for network-connected components of healthcare systems.

This standard describes the method by which the security-related features of healthcare system components are evaluated at the product level and tested for known vulnerabilities while also establishing a minimum set of verification activities intended to reduce the likelihood of zero-day vulnerabilities that may affect the component. This security evaluation standard applies to the testing of network-connected components of healthcare systems. It applies to the following key components: medical devices, accessories to medical devices, medical device data systems, in-vitro diagnostic devices, health information technology, and wellness devices.

Stakeholders: Manufacturers, regulators, and users of network-connected components of healthcare systems.

Project Need: To obtain national recognition of a standard covering product-development security lifecycle processes for network-connected components of healthcare systems.

This standard describes the software development and maintenance process activities by which the security-related features of healthcare system components are developed using a minimum set of verification activities intended to reduce the likelihood of both known vulnerabilities and zero-day vulnerabilities that may affect the component.

Stakeholders: Manufacturers, regulators, and users of network-connected components of industrial control systems.

Project Need: To obtain national recognition of a standard covering product-development security lifecycle processes for network-connected components of industrial control systems.

This standard describes the software development and maintenance process activities by which the security-related features of industrial control system components are developed using a minimum set of verification activities intended to reduce the likelihood of both known vulnerabilities and zero-day vulnerabilities that may affect the component.

Stakeholders: Manufacturers, regulators, and users of network connected devices.

Project Need: To obtain national recognition of a standard covering product-development security lifecycle processes for network-connected devices.

This standard describes the software development and maintenance process activities by which the security-related features of network-connected devices are developed using a minimum set of verification activities intended to reduce the likelihood of both known vulnerabilities and zero-day vulnerabilities that may affect the component.
American National Standards Maintained Under Continuous Maintenance

The ANSI Essential Requirements: Due Process Requirements for American National Standards provides two options for the maintenance of American National Standards (ANS): periodic maintenance (see clause 4.7.1) and continuous maintenance (see clause 4.7.2). Continuous maintenance is defined as follows:

The standard shall be maintained by an accredited standards developer. A documented program for periodic publication of revisions shall be established by the standards developer. Processing of these revisions shall be in accordance with these procedures. The published standard shall include a clear statement of the intent to consider requests for change and information on the submittal of such requests. Procedures shall be established for timely, documented consensus action on each request for change and no portion of the standard shall be excluded from the revision process. In the event that no revisions are issued for a period of four years, action to reaffirm or withdraw the standard shall be taken in accordance with the procedures contained in the ANSI Essential Requirements.

The Executive Standards Council (ExSC) has determined that for standards maintained under the Continuous Maintenance option, separate PINS announcements are not required. The following ANSI Accredited Standards Developers have formally registered standards under the Continuous Maintenance option.

- AAMI (Association for the Advancement of Medical Instrumentation)
- AAMVA (American Association of Motor Vehicle Administrators)
- AGA (American Gas Association)
- AGSC (Auto Glass Safety Council)
- ASC X9 (Accredited Standards Committee X9, Incorporated)
- ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.)
- ASME (American Society of Mechanical Engineers)
- ASTM (ASTM International)
- GBI (The Green Building Initiative)
- GEIA (Greenguard Environmental Institute)
- HL7 (Health Level Seven)
- IESNA (The Illuminating Engineering Society of North America)
- MHI (ASC MH10) (Material Handling Industry)
- NAHBRC (NAHB Research Center, Inc.)
- NBBPVI (National Board of Boiler and Pressure Vessel Inspectors)
- NCPDP (National Council for Prescription Drug Programs)
- NISO (National Information Standards Organization)
- NSF (NSF International)
- PRCA (Professional Ropes Course Association)
- RESNET (Residential Energy Services Network)
- TIA (Telecommunications Industry Association)
- UL (Underwriters Laboratories, Inc.)

To obtain additional information with regard to these standards, including contact information at the ANSI Accredited Standards Developer, please visit ANSI Online at www.ansi.org/asd; select "Standards Activities," click on “Public Review and Comment” and “American National Standards Maintained Under Continuous Maintenance.” This information is also available directly at www.ansi.org/publicreview.

Alternatively, you may contact the Procedures & Standards Administration department (PSA) at psa@ansi.org or via fax at 212-840-2298. If you request that information be provided via E-mail, please include your E-mail address; if you request that information be provided via fax, please include your fax number. Thank you.
ANSI-Accredited Standards Developers Contact Information

The addresses listed in this section are to be used in conjunction with standards listed in PINS, Call for Comment and Final Actions. This section is a list of developers who have submitted standards for this issue of Standards Action – it is not intended to be a list of all ANSI-Accredited Standards Developers. Please send all address corrections to Standards Action Editor at standard@ansi.org.

AAAM
Association for the Advancement of Medical Instrumentation
4301 N Fairfax Drive
Suite 301
Arlington, VA 22203-1633
Phone: (703) 647-2779
Web: www.aami.org

ACCA
Air Conditioning Contractors of America
2800 Shirlington Road
Suite 300
Arlington, VA 22206
Phone: (202) 251-3835
Fax: (703) 575-9147
Web: www.acca.org

AGMA
American Gear Manufacturers Association
1001 N Fairfax Street, 5th Floor
Alexandria, VA 22314-1587
Phone: (703) 684-0211
Web: www.agma.org

AIAA
American Institute of Aeronautics and Astronautics
1801 Alexander Bell Dr.
Reston, VA 20191
Phone: (703) 264-7546
Web: www.aiaa.org

APCO
Association of Public-Safety Communications Officials-International
351 N. Williamson Boulevard
Daytona Beach, FL 32114-1112
Phone: (919) 625-6864
Fax: (386) 944-2794
Web: www.apcointl.org

API
American Petroleum Institute
1220 L Street, NW
Washington, DC 20005-4070
Phone: (202) 682-8151
Fax: (202) 682-4797
Web: www.api.org

ASA (ASC 520)
American Society of Baking
243 Reade Drive
Cogan Station, PA 17728
Phone: (570) 494-0624
Fax: (570) 494-0603
Web: www.asbe.org

ASHRAE
American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.
1791 Tullie Circle, NE
Atlanta, GA 30329
Phone: (678) 539-1143
Fax: (678) 539-2159
Web: www.ashrae.org

ASME
American Society of Mechanical Engineers
Two Park Avenue
New York, NY 10016
Phone: (212) 591-8521
Fax: (212) 591-8501
Web: www.asme.org

ATIS
Alliance for Telecommunications Industry Solutions
1200 G Street, NW
Suite 500
Washington, DC 20005
Phone: (202) 434-8841
Fax: (202) 347-7125
Web: www.atis.org

AWS
American Welding Society
8669 NW 36th Street
Suite #130
Miami, FL 33166-6672
Phone: (800) 443-9353
Fax: (305) 443-9551
Web: www.aws.org

AWWA
American Water Works Association
6666 W. Quincy Ave.
Denver, CO 80235
Phone: (303) 347-6178
Fax: (303) 795-7603
Web: www.awwa.org

B11
B11 Standards, Inc.
PO Box 690905
Houston, TX 77269-0905
Phone: (832) 446-6999

BOMA
Building Owners and Managers Association
1101 15th Street, NW
Suite 800
Washington, DC 20005
Phone: (202) 326-6357
Web: www.boma.org

CAGI
Compressed Air and Gas Institute
1300 Summer
Cleveland, OH 44115
Phone: (216) 241-7333
Web: www.cagi.orgwelcome.htm

CEA
Consumer Electronics Association
1919 South Eads Street
Arlington, VA 22202
Phone: (703) 907-7697
Fax: (703) 907-4197
Web: www.ce.org

CSA
CSA Group
8501 East Pleasant Valley Rd.
Cleveland, OH 44131
Phone: (216) 524-4990 x88321
Fax: (216) 520-8979
Web: www.csa-america.org

EOS/ESD
ESD Association
7900 Turin Rd., Bldg. 3
Rome, NY 13440
Phone: (315) 339-6937
Fax: (315) 339-6793
Web: www.esd.org

HL7
Health Level Seven
3300 Washtenaw Avenue
Suite 227
Ann Arbor, MI 48104
Phone: (734) 677-7777
Fax: (734) 677-6622
Web: www.hl7.org

IEEE
Institute of Electrical and Electronics Engineers (IEEE)
445 Hoes Lane
Piscataway, NJ 08854
Phone: (732) 562-3854
Fax: (732) 796-6966
Web: www.ieee.org

INFOCOMM
InfoComm International
11242 Waples Mill Road
Suite 200
Fairfax, VA 22030
Phone: (703) 277-2007
Fax: (703) 278-8082
Web: www.infocomm.org

ISA (Organization)
International Society of Automation
67 Alexander Drive
Research Triangle Park, NC 27709
Phone: (919) 990-9213
Fax: (919) 549-8288
Web: www.isa.org

NECA
National Electrical Contractors Association
3 Bethesda Metro Center
Suite 1100
Bethesda, MD 20814
Phone: (301) 215-4549
Fax: (301) 215-4500
Web: www.neca-nes.org

NEMA (Canvass)
National Electrical Manufacturers Association
1300 North 17th Street
Suite 900
Rosslyn, VA 22209
Phone: (703) 841-3290
Fax: (703) 841-3390
Web: www.nema.org

NIRMA
Nuclear Information and Records Management Association
245 Sunnyridge Avenue #34
Fairfield, CT 06824
Phone: (203) 388-8795
Web: www.nirma.org

NSF
NSF International
789 N. Dixboro Road
Ann Arbor, MI 48105-9723
Phone: (734) 827-5643
Fax: (734) 827-7880
Web: www.nsf.org
TAPPI
Technical Association of the Pulp and Paper Industry
15 Technology Parkway South
Peachtree Corners, GA 30092
Phone: (770) 209-7276
Fax: (770) 446-6947
Web: www.tappi.org

TIA
Telecommunications Industry Association
1320 North Courthouse Road
Suite 200
Arlington, VA 22201
Phone: (703) 907-7743
Web: www.tiaonline.org

UL
Underwriters Laboratories, Inc.
333 Pfingsten Road
Northbrook, IL 60062
Phone: (847) 664-3411
Fax: (847) 664-3411
Web: www.ul.com
Newly Published ISO & IEC Standards

Listed here are new and revised standards recently approved and promulgated by ISO - the International Organization for Standardization – and IEC – the International Electrotechnical Commission. Most are available at the ANSI Electronic Standards Store (ESS) at www.ansi.org. All paper copies are available from Standards resellers (http://webstore.ansi.org/faq.aspx#resellers).

ISO Standards

ISO/IEC JTC 1 Technical Reports

ISO/IEC TR 29189:2015, Information technology - Biometrics - Evaluation of examiner assisted biometric applications, $149.00

AIRCRAFT AND SPACE VEHICLES (TC 20)
ISO 22645/Amd1:2015, Space data and information transfer systems - TM (telemetry) space data link protocol - Amendment 1, $22.00
ISO 22646/Amd1:2015, Space data and information transfer systems - Space packet protocol - Amendment 1, $22.00
ISO 22664/Amd1:2015, Space data and information transfer systems - TC (telecommand) space data link protocol - Amendment 1, $22.00
ISO 16164:2015, Space systems - Disposal of satellites operating in or crossing Low Earth Orbit, $88.00
ISO 19632-2015, Aerospace series - Fitting end, 24° internal cone, external thread, flareless type extra fine thread pitch inch series - Design standard, $88.00

CORROSION OF METALS AND ALLOYS (TC 156)
ISO 17918:2015, Corrosion of metals and alloys - Evaluation of selective corrosion of Cu alloys and grey cast iron for power plant components by visual inspection and hardness measurement, $149.00

CRANES (TC 96)
ISO 10245-2/Amd1:2015, Cranes - Limiting and indicating devices - Part 2: Mobile cranes - Amendment 1, $22.00

FERTILIZERS AND SOIL CONDITIONERS (TC 134)
ISO 8157:2015, Fertilizers and soil conditioners - Vocabulary, $51.00

FISHERIES AND AQUACULTURE (TC 234)
ISO 16541:2015, Methods for sea lice surveillance on marine finfish farms, $88.00

MECHANICAL TESTING OF METALS (TC 164)
ISO 14577-1:2015, Metallic materials - Instrumented indentation test for hardness and materials parameters - Part 1: Test method, $200.00
ISO 14577-2:2015, Metallic materials - Instrumented indentation test for hardness and materials parameters - Part 2: Verification and calibration of testing machines, $149.00

MECHANICAL VIBRATION AND SHOCK (TC 108)
ISO 5349-2/Amd1:2015, Mechanical vibration - Measurement and evaluation of human exposure to hand-transmitted vibration - Part 2: Practical guidance for measurement at the workplace - Amendment 1, $22.00

NUCLEAR ENERGY (TC 85)
ISO 21613:2015, (U, Pu)O2 Powders and sintered pellets - Determination of chlorine and fluorine, $88.00
ISO/ASTM 51026:2015, Practice for using the Fricke dosimetry system, $88.00
ISO/ASTM 52303:2015, Guide for absorbed-dose mapping in radiation processing facilities, $88.00

PLASTICS PIPES, FITTINGS AND VALVES FOR THE TRANSPORT OF FLUIDS (TC 138)
ISO 10931/Amd1:2015, Plastics piping systems for industrial applications - Poly(vinylidene fluoride) (PVDF) - Specifications for components and the system - Amendment 1, $22.00

RUBBER AND RUBBER PRODUCTS (TC 45)
ISO 1658:2015, Natural rubber (NR) - Evaluation procedure, $123.00

TEXTILES (TC 38)
ISO 18596:2015, Test method for staple length of dehaired cashmere - Hand-arranging method, $88.00

TRACTORS AND MACHINERY FOR AGRICULTURE AND FORESTRY (TC 23)
ISO 17962:2015, Agricultural machinery - Equipment for sowing - Minimization of the environmental effects of fan exhaust from pneumatic systems, $88.00
ISO 15639-1:2015, Radio frequency identification of animals - Standardization of injection sites for different animal species - Part 1: Companion animals (cats and dogs), $88.00

TRANSPORT INFORMATION AND CONTROL SYSTEMS (TC 204)
ISO 14906/Amd1:2015, Electronic fee collection - Application interface definition for dedicated short-range communication - Amendment 1, $149.00

ISO Technical Reports

TECHNICAL SYSTEMS AND AIDS FOR DISABLED OR HANDICAPPED PERSONS (TC 173)
ISO/TR 16840-9:2015, Wheelchair seating - Part 9: Clinical interface pressure mapping guidelines for seating, $123.00

ISO/IEC JTC 1, Information Technology

ISO/IEC 18092/Cor1:2015, Information technology - Telecommunications and information exchange between systems - Near Field Communication - Interface and Protocol (NFCIP-1) - Corrigendum, FREE

IEC Standards

BARE ALUMINIUM CONDUCTORS (TC 7)
IEC 62568 Ed. 1.0 b:2015, Overhead lines - Method for fatigue testing of conductors, $97.00

ELECTRICAL APPARATUS FOR EXPLOSIVE ATMOSPHERES (TC 31)
IEC 60079-2 Ed. 6.0 b cor.1:2015, Corrigendum 1 - Explosive atmospheres - Part 2: Equipment protection by pressurized enclosure "p", $0.00

ELECTRICAL INSTALLATIONS OF SHIPS AND OF MOBILE AND FIXED OFFSHORE UNITS (TC 18)
IEC 61892-1 Ed. 3.0 b:2015, Mobile and fixed offshore units - Electrical installations - Part 1: General requirements and conditions, $206.00
IEC 61892-1 Ed. 3.0 en:2015, Mobile and fixed offshore units - Electrical installations - Part 1: General requirements and conditions

LAMPS AND RELATED EQUIPMENT (TC 34)
IEC 61048 Ed. 2.1 b:2015, Auxiliaries for lamps - Capacitors for use in tubular fluorescent and other discharge lamp circuits - General and safety requirements, $339.00
IEC 61048 Amd.1 Ed. 2.0 b:2015, Amendment 1 - Auxiliaries for lamps - Capacitors for use in tubular fluorescent and other discharge lamp circuits - General and safety requirements, $24.00
IEC 62560 Ed. 1.0 b cor.2:2015, Corrigendum 2 - Self-ballasted LED-lamps for general lighting services by voltage > 50 V - Safety specifications, FREE

POWER SYSTEM CONTROL AND ASSOCIATED COMMUNICATIONS (TC 57)
IEC 61968-6 Ed. 1.0 en:2015, Application integration at electric utilities - System interfaces for distribution management - Part 6: Interfaces for maintenance and construction, $399.00

SAFETY OF HOUSEHOLD AND SIMILAR ELECTRICAL APPLIANCES (TC 61)
IEC 60335-2-3 Ed. 6.1 b:2015, Household and similar electrical appliances - Safety - Part 2-3: Particular requirements for electric irons, $169.00
IEC 60335-2-3 Amd.1 Ed. 6.0 b:2015, Amendment 1 - Household and similar electrical appliances - Safety - Part 2-3: Particular requirements for electric irons, $14.00

SAFETY OF MEASURING, CONTROL, AND LABORATORY EQUIPMENT (TC 66)
IEC 61010-2-040 Ed. 2.0 b:2015, Safety requirements for electrical equipment for measurement, control, and laboratory use - Part 2-040: Particular requirements for sterilizers and washer-disinfectors used to treat medical materials, $254.00
Proposed Foreign Government Regulations

Call for Comment

U.S. manufacturers, exporters, regulatory agencies and standards developing organizations may be interested in proposed foreign technical regulations issued by Member countries of the World Trade Organization (WTO). In accordance with the WTO Agreement on Technical Barriers to Trade (TBT Agreement), Members are required to report proposed technical regulations that may significantly affect trade to the WTO Secretariat in Geneva, Switzerland. In turn, the Secretariat disseminates the information to all WTO Members. The purpose of this requirement is to provide global trading partners with an opportunity to review and comment on the regulations before they become final.

The National Center for Standards and Certification Information (NCSCI) at the National Institute of Standards and Technology (NIST), distributes these proposed foreign technical regulations to U.S. stakeholders via an online service, Notify U.S. Notify U.S. is an e-mail and Web service that allows interested U.S. parties to register, obtain notifications, and read full texts of regulations from countries and for industry sectors of interest to them. To register for Notify U.S., please go to Internet URL: http://www.nist.gov/notifyus/ and click on “Subscribe”.

NCSCI is the WTO TBT Inquiry Point for the U.S. and receives all notifications and full texts of regulations to disseminate to U.S. Industry. For further information, please contact: NCSCI, NIST, 100 Bureau Drive, Gaithersburg, MD 20899-2160; Telephone: (301) 975-4040; Fax: (301) 926-1559; E-mail: ncsci@nist.gov or notifyus@nist.gov.
American National Standards

INCITS Executive Board

ANSI Accredited SDO and US TAG to ISO/IEC JTC 1, Information Technology

The InterNational Committee for Information Technology Standards (INCITS), an ANSI accredited SDO, is the forum of choice for information technology developers, producers and users for the creation and maintenance of formal de jure IT standards. INCITS’ mission is to promote the effective use of Information and Communication Technology through standardization in a way that balances the interests of all stakeholders and increases the global competitiveness of the member organizations.

The INCITS Executive Board serves as the consensus body with its oversight of programs of its 40+ Technical Committees. Additionally, the INCITS Executive Board exercises international leadership in its role as the US Technical Advisory Group (TAG) to ISO/IEC JTC 1, Information Technology.

The INCITS Executive Board has eleven membership categories that can be viewed at http://www.incits.org/participation/membership-info. Membership in all categories is always welcome. INCITS also seeks to broaden its membership base and looks to recruit new participants in the following under-represented membership categories:

- **Producer – Hardware**: This category primarily produces hardware products for the ITC marketplace.
- **Producer – Software**: This category primarily produces software products for the ITC marketplace.
- **Distributor**: This category is for distributors, resellers or retailers of conformant products in the ITC industry.
- **User**: This category includes entities that primarily reply on standards in the use of a product/service, as opposed to producing or distributing conformant products/services.
- **Consultants**: This category is for organizations whose principal activity is in providing consulting services to other organizations.
- **Standards Development Organizations and Consortia**: “Minor” an SDO or Consortia that (a) holds no TAG assignments; or (b) holds no SC TAG assignments, but does hold one or more Work Group (WG) or other subsidiary TAG assignments.
- **Academic Institution**: This category is for organizations that include educational institutions, higher education schools or research programs.
- **Other**: This category includes all organizations who do not meet the criteria defined in one of the other interest categories.

Membership in the INCITS Executive Board is open to all directly and materially affected parties in accordance with INCITS membership rules. To find out more about participating on the INCITS Executive Board, please contact Jennifer Garner at 202-626-5737 or jgarner@itic.org. Visit www.incits.org for more information regarding INCITS activities.

Calls for Members

Society of Cable Telecommunications

ANSI Accredited Standards Developer

SCTE, an ANSI-accredited SDO, is the primary organization for the creation and maintenance of standards for the cable telecommunications industry. SCTE’s standards mission is to develop standards that meet the needs of cable system operators, content providers, network and customer premises equipment manufacturers, and all others who have an interest in the industry through a fair, balanced and transparent process.

SCTE is currently seeking to broaden the membership base of its ANSI consensus bodies and is interested in new members in all membership categories to participate in new work in fiber-optic networks, advanced advertising, 3D television, and other important topics. Of particular interest is membership from the content (program and advertising) provider and user communities.

Membership in the SCTE Standards Program is open to all directly and materially affected parties as defined in SCTE’s membership rules and operating procedures. More information is available at www.scte.org or by e-mail from standards@scte.org.

ANSI Accredited Standards Developers

Approval of Reaccreditation

ASC B3 – Ball and Roller Bearings

At the direction of ANSI’s Executive Standards Council (ExSC), the reaccreditation of Accredited Standards Committee B3, Ball and Roller Bearings has been approved under its recently revised operating procedures for documenting consensus on ASC B3-sponsored American National Standards, effective July 14, 2015. For additional information, please contact the Secretariat of ASC B3: Mr. Jim Converse, American Bearing Manufacturers Association, 2025 M Street, NW, Suite 800, Washington, DC 20036-3309; phone: 919.481.2852; e-mail: jconverse@americanbearings.org.

ASC C50 – Rotating Electrical Machinery

At the direction of ANSI’s Executive Standards Council (ExSC), the reaccreditation of Accredited Standards Committee C50, Rotating Electrical Machinery has been approved under its recently revised operating procedures for documenting consensus on ASC C50-sponsored American National Standards, effective July 9, 2015. For additional information, please contact the Secretariat of ASC C50: Mr. Paul Crampton, National Electrical Manufacturers Association, 1300 North 17th Street, Suite 900, Rosslyn, VA 22209; phone: 703.841.3219; e-mail: Paul.Crampton@nema.org.
International Organization for Standardization (ISO)

Call for US TAG Administrator

ISO/TC 17/SC 4 – Heat Treatable and Alloy Steels

ANSI has been informed that, ASTM, the ANSI accredited US/TAG administrator for ISO/TC 17/SC 4, wishes to relinquish the role as US/TAG administrator.

ISO TC 17/SC 4 operates under the following scope:

- Standardization of qualities, dimensions and tolerances of heat treatable and alloy steels used mainly in the engineering and automotive industry in either the non-heat treated or the heat treated conditions. Examples are free-cutting, bright, stainless, heat-resisting, tool, spring, valve and roller bearing steels including tubular products for these applications, but not those covered by ISO/TC 5.

Organizations interested in serving as the US/TAG administrator should contact ISOT@ansi.org.

Establishment of Technical Committees

ISO/TC 59/SC 18 – Construction Procurement

ISO/TC 59, Buildings and civil engineering works, has created a new ISO Subcommittee on Construction procurement (TC 59/SC 18). The secretariat has been assigned to South Africa (SABS).

ISO/TC 59/SC 18 operates under the following scope:

- Standardization of procurement processes, methods and procedures for the delivery and maintenance of construction works excluding those relating to:
 - conditions of contract; and
 - methods of measurement associated with a bill of quantities.

Organizations interested in serving as the US/TAG administrator should contact ISOT@ansi.org.

ISO/TC 296 – Bamboo and Rattan

A new ISO Technical Committee, ISO/TC 296 – Bamboo and Rattan, has been formed. The secretariat has been assigned to China (SAC).

ISO/TC 296 operates under the following scope:

- Standardization of bamboo, rattan, and derived materials, including terminology, classification, specifications, test methods and quality requirements.

Organizations interested in serving as the US/TAG administrator or participating on the US/TAG should contact ANSI’s ISO Team at isot@ansi.org.

ISO Proposal for a New Field of ISO Technical Activity

Solid Recovered Fuels

Comment Deadline: September 4, 2015

SFS (Finland) has submitted to ISO a proposal for a new field of ISO technical activity on the subject of Solid recovered fuels, with the following scope statement:

Elaboration of standards and other deliverables on solid recovered fuels prepared from non-hazardous waste to be utilized for energy recovery in waste incineration or co-incineration plants or in industrial processes (like cement manufacturing), excluding fuels that are included in the scope of ISO/TC 238.

Anyone wishing to review this new proposal can request a copy by contacting ANSI’s ISO Team via email: isot@ansi.org with submission of comments to Steve Cornish (scornish@ansi.org) by close of business on Friday, September 4, 2015.
New Work Item Proposal
Guidelines for auditing management systems

Comment Deadline: August 10, 2015

ANSI has received a request from ASQ to submit to ISO a new work item proposal to revise ISO 19011:2011 – Guidelines for auditing management systems, with the following scope statement:

This International Standard provides guidance on auditing management systems, including the principles of auditing, managing an audit programme and conducting management system audits, as well as guidance on the evaluation of competence of individuals involved in the audit process, including the person managing the audit programme, auditors and audit teams.

It is applicable to all organizations that need to conduct internal or external audits of management systems or manage an audit programme. The application of this International Standard to other types of audits is possible, provided that special consideration is given to the specific competence needed.

Since ISO 19011 gives direction on how to audit to an MSS standard, it should be revised within a new PC instead of its current placement in TC176 SC3 Supporting technologies. TC176 SC3 has a more narrow focus and experts are needed from committees with existing MSS, not just those from TC176. ANSI is proposing to administer the secretariat for the new PC.

Anyone wishing to review the new work item proposal can request a copy of the proposal by contacting ANSI’s ISO Team via e-mail: isot@ansi.org with submission of comments to Steve Cornish (scomish@ansi.org) by close of business on August 10, 2015.

U.S. Technical Advisory Groups

Approval of TAG Reaccreditation

U.S. TAG to ISO TC 258 – Project, Programme and Portfolio Management

At the direction of ANSI’s Executive Standards Council, the reaccreditation of the U.S. Technical Advisory Group to ISO TC 258, Project, Programme and Portfolio Management under the Model Operating Procedures for U.S. TAGs to ANSI for ISO Activities (as contained in Annex A of the ANSI International Procedures) and with the Project Management Institute (PMI) continuing as TAG Administrator, has been approved effective July 14, 2015. For additional information, please contact: Ms. Lorna Scheel, Standards Compliance Specialist, TAG Administrator to the US TAG to ISO/TC 258, Project Management Institute, 14 Campus Boulevard, Newtown Square, PA 19073-3299; phone: 313.404.3507; e-mail: Lorna.Scheel@pmi.org.

Reaccreditation

American Institute of Aeronautics and Astronautics

Comment Deadline: August 17, 2015

The American Institute of Aeronautics and Astronautics, the TAG Administrator for the U.S. Technical Advisory Groups (TAGs) to ISO TC 20/SC 13, Space data and information transfer systems; TC 20/SC 14, Space systems and operations; TC 20/SC 16, Unmanned aircraft systems; and TC 20/SC 17, Air exchange infrastructure has submitted to ANSI revisions to procedures under which these TAGs was last accredited. As the revisions appear to be substantive in nature, the reaccreditation process is initiated.

To obtain a copy of the revised procedures or to offer comments, please contact the TAG Administrator: Ms. Hillary Woehrle, Standards Manager, American Institute of Aeronautics and Astronautics, 1801 Alexander Bell Drive, Suite 500, Reston, VA 20191-4344; phone: 703.264.7546; e-mail: hillaryw@aiaa.org. You may view/download a copy of the revisions during the public review period at the following URL: wwwansi.org/accredPR. Please submit any public comments on the revised procedures to AIAA by August 17, 2015, with a copy to the ExSC Recording Secretary in ANSI’s New York Office (jthomppo@ansi.org).

Meeting Notices

AHRI Meetings

Development of AHRI Standard 1260,
Performance Rating of Portable Flue Gas Combustion Analyzers

The Air-Conditioning, Heating, and Refrigeration Institute (AHRI) will be holding an online meeting on July 20 from 3 p.m. to 5 p.m. If you are interested in participating in the meeting or providing comments on the standard, please contact AHRI staff member Anuj Mistry at amistry@ahrinet.org.

Revision of AHRI Standard 210/240-2008,
Performance Rating of Unitary Air Conditioning & Air-Source Heat Pump Equipment

The Air-Conditioning, Heating, and Refrigeration Institute (AHRI) will be holding a face-to-face meeting at AHRI headquarters in Arlington, Va., on August 3 from 10 a.m. to 6 p.m. and August 4 from 8 a.m. to 2:30 p.m. If you are interested in participating in the meeting or providing comments on the standard, please contact AHRI staff member Richie Mohan at rmohan@ahrinet.org.

Revision of AHRI Standard 1240, Performance Rating of Active Chilled Beams

The Air-Conditioning, Heating, and Refrigeration Institute (AHRI) will be holding an online meeting on July 24 from 11 a.m. to 12 p.m. If you are interested in participating in the meeting or providing comments on the standard, please contact AHRI staff member Mary Opaika at mopalka@ahrinet.org.
Information Concerning
International Organization for Standardization (ISO)

ISO Proposal for a New Field of ISO Technical Activity

Standardization of Requirements and Test Methods of Vape and Vapor Products

Comment Deadline: August 14, 2015

AFNOR (France) has submitted to ISO a proposal for a new field of ISO technical activity on the subject of Vape and Vapor Products, with the following scope statement:

Standardization of requirements and test methods of vape and vapor products.

Standardization of product information and services related to the use of vapor products.

NOTE: These products are not intended to be used by children under eighteen.

The verb "vape", a word originated as an abbreviation of vapor or vaporize, means ‘to inhale and exhale the vapor produced by an electronic cigarette or similar device’. Sign of its popularity, this new word has been elected Word of the Year 2014 by the Oxford Dictionaries.

Vape or vapor products refer to devices used to transform a consumable into an inhale aerosol and also to the e-liquids intended for transformation into an aerosol. This definition covers a wide range of devices including electronic cigarettes, e-cigars, e-pipes and e-chichas, which may be disposable or refillable by means of a refill container and a tank, or rechargeable with single use cartridges.

Most of the current consumables are liquids or gel consumables mainly composed of glycerol and propylene glycol, but considering the fast evolution of this growing market, new kinds of consumables might be reasonably foreseen

The following are excluded from the scope of this committee:

- tobacco products involving a combustion process (cigarettes, cigars, roll-your-own tobacco products),
- smokeless tobacco products including chewing tobacco, nasal tobacco and tobacco for oral use,
- all kinds of consumable products containing tobacco or nicotine,
- pharmaceutical products.

Further explanation and rationale is provided in the proposal document. Please note that ISO/TC 126 (Tobacco and tobacco products) has also submitted a request to modify its scope to include smokeless products. The modification of the scope of this TC is on hold until the outcome of the member body ballot and comments on this AFNOR proposal are available. The views of AFNOR (France) and ISO/TC 126 leadership regarding potential overlaps between the new proposal and the work of the committee are provided in the proposal document.

Anyone wishing to review this new proposal can request a copy by contacting ANSI's ISO Team via email: isot@ansi.org with submission of comments to Steve Cornish (scornish@ansi.org) by close of business on Friday, August 14, 2015.
Public Review Draft

Proposed ISC to Addendum AR to Standard 90.1-2013, Energy Standard for Buildings Except Low-Rise Residential Buildings

Second Public Review - ISC (July 2016)
(Draft shows Proposed Changes to Previous Public Review Draft)

This draft has been recommended for public review by the responsible project committee. To submit a comment on this proposed standard, go to the ASHRAE website at www.ashrae.org/standards-research-technology/public-review-drafts and access the online comment database. The draft is subject to modification until it is approved for publication by the Board of Directors and ANSI. Until this time, the current edition of the standard (as modified by any published addenda on the ASHRAE website) remains in effect. The current edition of any standard may be purchased from the ASHRAE Online Store at www.ashrae.org/bookstore or by calling 404-636-8400 or 1-800-727-4723 (for orders in the U.S. or Canada).

This standard is under continuous maintenance. To propose a change to the current standard, use the change submittal form available on the ASHRAE website, www.ashrae.org.

The appearance of any technical data or editorial material in this public review document does not constitute endorsement, warranty, or guaranty by ASHRAE of any product, service, process, procedure, or design, and ASHRAE expressly disclaims such.

© 2012 ASHRAE. This draft is covered under ASHRAE copyright. Permission to reproduce or redistribute all or any part of this document must be obtained from the ASHRAE Manager of Standards, 1791 Tullie Circle, NE, Atlanta, GA 30329. Phone: 404-636-8400, Ext. 1125. Fax: 404-321-5478. E-mail: standards.section@ashrae.org.

ASHRAE, 1791 Tullie Circle, NE, Atlanta GA 30329-2305
Second Public Review - Independent Substantive Change

(This foreword is not part of this standard. It is merely informative and does not contain requirements necessary for conformance to the standard. It has not been processed according to the ANSI requirements for a standard and may contain material that has not been subject to public review or a consensus process. Unresolved objectors on informative material are not offered the right to appeal at ASHRAE or ANSI.)

FOREWORD
The purpose of the proposed changes is to correct the omission of “entering” in the exhaust air which is equivalent to return air. In one area, 6.5.6.1, the original addendum AR left the word “return” air while the other instances were changed to “exhaust” air. This ISC corrects them all to refer to the “entering exhaust” air of the energy recovery device.

Note: In this addendum, changes to the current standard are indicated in the text by underlining (for additions) and strikethrough (for deletions) unless the instructions specifically mention some other means of indicating the changes. Only these changes are open for review and comment at this time. Additional material is provided for context only and is not open for comment except as it relates to the proposed substantive changes.

Addendum ar to 90.1-2013

Revise the Standard as follows (IP and SI Units)

Section 3.2:

sensible energy recovery ratio: change in the dry-bulb temperature of the outdoor air supply divided by the difference between the outdoor air and entering exhaust air dry-bulb temperatures, expressed as a percentage.

enthalpy recovery ratio: change in the enthalpy of the outdoor air supply divided by the difference between the outdoor air and entering exhaust air enthalpy, expressed as a percentage.

TABLE 6.5.3.1-2 Fan Power Limitation Pressure Drop Adjustment

<table>
<thead>
<tr>
<th>Device</th>
<th>Adjustment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>Energy recovery device, other than coil runaround loop (2.2 x enthalpy recovery ratio) - 0.5 in. wc for each airstream</td>
</tr>
</tbody>
</table>

Section 6.5.6.1:

Each fan system shall have an energy recovery system when the design supply fan airflow rate exceeds the value listed in Table 6.5.6.1 based on the climate zone and percentage of outdoor air at design airflow conditions.

Energy recovery systems required by this section shall result in an enthalpy recovery ratio of at least 50 percent.
A fifty percent enthalpy recovery ratio shall mean a change in the enthalpy of the outdoor air supply equal to 50% of the difference between the outdoor air and return entering exhaust air enthalpies at design conditions. Provision shall be made to bypass or control the energy recovery system to permit air economizer operation as required by 6.5.1.1.

Section 6.5.7.1.4:

If a kitchen/dining facility has a total kitchen hood exhaust airflow rate greater than 5,000 cfm then it shall have one of the following:

a. At least 50% of all replacement air is transfer air that would otherwise be exhausted.

b. Demand ventilation system(s) on at least 75% of the exhaust air. Such systems shall be capable of at least 50% reduction in exhaust and replacement air system airflow rates, including controls necessary to modulate airflow in response to appliance operation and to maintain full capture and containment of smoke, effluent and combustion products during cooking and idle.

c. Listed energy recovery devices that result in a sensible energy recovery ratio of not less than 40% on at least 50% of the total exhaust airflow. A forty percent sensible energy recovery ratio shall mean a change in the dry-bulb temperature of the outdoor air supply equal to 40% of the difference between the outdoor air and entering exhaust air dry-bulb temperatures at design conditions.

Section 6.5.7.2 Laboratory Exhaust Systems.

Buildings with laboratory exhaust systems having a total exhaust rate greater than 5000 cfm shall include at least one of the following features:

a. VAV laboratory exhaust and room supply system capable of reducing exhaust and makeup airflow rates and/or incorporate a heat recovery system to precondition makeup air from laboratory exhaust that shall meet the following:

\[A + B \times (E/M) \leq 50\% \]

where

\[A = \] percentage that the exhaust and makeup airflow rates can be reduced from design conditions

\[B = \] sensible energy recovery ratio

\[E = \] exhaust airflow rate through the heat recovery device at design conditions

\[M = \] makeup airflow rate of the system at design conditions.

b. VAV laboratory exhaust and room supply systems that are required to have minimum circulation rates to comply with code or accreditation standards shall be capable of reducing zone exhaust and makeup airflow rates to the regulated minimum circulation values or the minimum required to maintain pressurization relationship requirements. Nonregulated zones shall be capable of reducing exhaust and makeup airflow rates to 50% of the zone design values or the minimum required to maintain pressurization relationship requirements.

c. Direct makeup (auxiliary) air supply equal to at least 75% of the exhaust airflow rate, heated no warmer than 2°F below room setpoint, cooled to no cooler than 3°F above room setpoint, no humidification added, and no simultaneous heating and cooling used for dehumidification control.
BSR/ASHRAE/IES Addendum ay to ANSI/ASHRAE/IES Standard 90.1-2013

Public Review Draft

First Public Review (July 2015)
(Draft shows Proposed Changes to Current Standard)

This draft has been recommended for public review by the responsible project committee. To submit a comment on this proposed standard, go to the ASHRAE website at www.ashrae.org/standards-research-technology/public-review-drafts and access the online comment database. The draft is subject to modification until it is approved for publication by the Board of Directors and ANSI. Until this time, the current edition of the standard (as modified by any published addenda on the ASHRAE website) remains in effect. The current edition of any standard may be purchased from the ASHRAE Online Store at www.ashrae.org/bookstore or by calling 404-636-8400 or 1-800-727-4723 (for orders in the U.S. or Canada).

This standard is under continuous maintenance. To propose a change to the current standard, use the change submittal form available on the ASHRAE website, www.ashrae.org.

The appearance of any technical data or editorial material in this public review document does not constitute endorsement, warranty, or guaranty by ASHRAE of any product, service, process, procedure, or design, and ASHRAE expressly disclaims such.

© 2014 ASHRAE. This draft is covered under ASHRAE copyright. Permission to reproduce or redistribute all or any part of this document must be obtained from the ASHRAE Manager of Standards, 1791 Tullie Circle, NE, Atlanta, GA 30329. Phone: 404-636-8400, Ext. 1125. Fax: 404-321-5478. E-mail: standards.sectio@ashrae.org.

ASHRAE, 1791 Tullie Circle, NE, Atlanta GA 30329-2305
FOREWORD

This addendum clarifies the intent of the standard that the method of attachment is irrelevant in section 5.4.3.1.3.a as the section pertains to materials that are deemed-to-comply air barriers.

Note: In this addendum, changes to the current standard are indicated in the text by underlining (for additions) and strikethrough (for deletions) unless the instructions specifically mention some other means of indicating the changes. Only these changes are open for review and comment at this time. Additional material is provided for context only and is not open for comment except as it relates to the proposed substantive changes.

Addendum ay to 90.1-2013

Revise the Standard as follows (IP and SI Units)

5.4.3.1.3 Acceptable Materials and Assemblies. Continuous air barrier materials and assemblies for the opaque building envelope shall comply with one of the following requirements:

a. Materials that have an air permeance not exceeding 0.004 cfm/ft\(^2\) under a pressure differential of 0.3 in. H\(_2\)O (1.57 psf) when tested in accordance with ASTM E 2178. The following materials meet these requirements:
 1. Plywood—minimum 3/8 in.
 2. Oriented strand board—minimum 3/8 in.
 3. Extruded polystyrene insulation board—minimum 1/2 in.
 4. Foil-faced urethane insulation board—minimum 1/2 in.
 5. Exterior gypsum sheathing or interior gypsum board—minimum 1/2 in.
 6. Cement board—minimum 1/2 in.
 7. Built-up roofing membrane
 8. Modified bituminous roof membrane
 9. Fully adhered single-ply roof membranes
 10. A Portland cement/sand parget, stucco, or gypsum plaster—minimum 1/2 in. thick
 11. Cast-in-place and precast concrete
 12. Sheet metal
 13. Closed-cell 2 lb/ft\(^3\) nominal density spray polyurethane foam—minimum 1 in.

b. Assemblies of materials and components (sealants, tapes, etc.) that have an average air leakage not to exceed 0.04 cfm/ft\(^2\) under a pressure differential of 0.3 in. H\(_2\)O (1.57 psf) when tested in accordance with ASTM E 2357, ASTM E 1677, ASTM E 1680, or ASTM E 283. The following assemblies meet these requirements:
 1. Concrete masonry walls that are
 (a) fully grouted, or
 (b) painted to fill the pores.
BSR/ASHRAE/IES Addendum az
to ANSI/ASHRAE/IES Standard 90.1-2013

Public Review Draft

Proposed Addendum az to
Standard 90.1-2013, Energy Standard
for Buildings Except Low-Rise
Residential Buildings

First Public Review (July 2015)
(Draft shows Proposed Changes to Current Standard)

This draft has been recommended for public review by the responsible project committee. To submit a comment on this proposed standard, go to the ASHRAE website at www.ashrae.org/standards-research-technology/public-review-drafts and access the online comment database. The draft is subject to modification until it is approved for publication by the Board of Directors and ANSI. Until this time, the current edition of the standard (as modified by any published addenda on the ASHRAE website) remains in effect. The current edition of any standard may be purchased from the ASHRAE Online Store at www.ashrae.org/bookstore or by calling 404-636-8400 or 1-800-727-4723 (for orders in the U.S. or Canada).

This standard is under continuous maintenance. To propose a change to the current standard, use the change submittal form available on the ASHRAE website, www.ashrae.org.

The appearance of any technical data or editorial material in this public review document does not constitute endorsement, warranty, or guaranty by ASHRAE of any product, service, process, procedure, or design, and ASHRAE expressly disclaims such. © 2014 ASHRAE. This draft is covered under ASHRAE copyright. Permission to reproduce or redistribute all or any part of this document must be obtained from the ASHRAE Manager of Standards, 1791 Tullie Circle, NE, Atlanta, GA 30329. Phone: 404-636-8400, Ext. 1125. Fax: 404-321-5478. E-mail: standards.section@ashrae.org.

ASHRAE, 1791 Tullie Circle, NE, Atlanta GA 30329-2305
Addendum az to 90.1-2013

Modify the standard as follows (IP and SI Units)

<table>
<thead>
<tr>
<th>5. Building Envelope</th>
</tr>
</thead>
</table>
| c. **Vertical Fenestration Areas.** For building area types included in Table G3.1.1-4, vertical fenestration areas for new buildings and additions shall equal that in Table G3.1.1-4 based on gross above-grade exterior wall area. Where a building has multiple building area types, each type shall use the values in the table. The vertical fenestration shall be distributed on each face of the building in the same proportion as in the proposed design. For building areas not shown in Table G3.1.1-4, vertical fenestration areas for new buildings and additions shall equal that in the proposed design or the maximum allowed in Tables 5.5-1 through 5.5-840% of gross above-grade wall area, whichever is smaller, and shall be distributed on each face of the building in the same proportions in the proposed design. The fenestration area for an existing building shall equal the existing fenestration area prior to the proposed work and shall be distributed on each face of the building in the same proportions as the existing building. For portions of those tables where there are no SHGC requirements, the SHGC shall be equal to that determined in accordance with Section C3.5. The VT shall be equal to that determined in accordance with Section C3.5.

d. **Skylights and Glazed Smoke Vents.** Skylight area shall be equal to that in the proposed building design or the maximum allowed in Tables 5.5-1 through 5.5-83%, whichever is smaller. If the skylight area of the proposed building design is greater than the maximum area allowed in Tables 5.5-1 through 5.5-83%, baseline skylight area shall be decreased by an identical percentage in all roof components in which skylights are located to reach the maximum allowed in Tables 5.5-1 through 5.5-83%. Skylight orientation and tilt shall be the same as in the proposed building design. Skylight U-factor and SHGC properties shall match the appropriate requirements in Tables G3.4-1 through G3.4-8 using the value for skylights without curb and the applicable skylight percentage.
BSR/ASHRAE/IES Addendum bb to ANSI/ASHRAE/IES Standard 90.1-2013

Public Review Draft

First Public Review (July 2015)
(Draft shows Proposed Changes to Current Standard)

This draft has been recommended for public review by the responsible project committee. To submit a comment on this proposed standard, go to the ASHRAE website at www.ashrae.org/standards-research--technology/public-review-drafts and access the online comment database. The draft is subject to modification until it is approved for publication by the Board of Directors and ANSI. Until this time, the current edition of the standard (as modified by any published addenda on the ASHRAE website) remains in effect. The current edition of any standard maybe purchased from the ASHRAE Online Store at www.ashrae.org/bookstore or by calling 404-636-8400 or 1-800-727-4723 (for orders in the U.S. or Canada).

This standard is under continuous maintenance. To propose a change to the current standard, use the change submittal form available on the ASHRAE website, www.ashrae.org.

The appearance of any technical data or editorial material in this public review document does not constitute endorsement, warranty, or guaranty by ASHRAE of any product, service, process, procedure, or design, and ASHRAE expressly disclaims such.

© 2014 ASHRAE. This draft is covered under ASHRAE copyright. Permission to reproduce or redistribute all or any part of this document must be obtained from the ASHRAE Manager of Standards, 1791 Tullie Circle, NE, Atlanta, GA 30329. Phone: 404-636-8400, Ext. 1125. Fax: 404-321-5478. E-mail: standards.section@ashrae.org.

ASHRAE, 1791 Tullie Circle, NE, Atlanta GA 30329-2305
(This foreword is not part of this standard. It is merely informative and does not contain requirements necessary for conformance to the standard. It has not been processed according to the ANSI requirements for a standard and may contain material that has not been subject to public review or a consensus process. Unresolved objectors on informative material are not offered the right to appeal at ASHRAE or ANSI.)

FOREWORD

Addendum by to 90.1-2013

Modify the standard as follows (IP and SI Units)

G3.1.2.5 Fan System Operation. Supply and return fans shall operate continuously whenever spaces are occupied and shall be cycled to meet heating and cooling loads during unoccupied hours. If the supply fan is modeled as cycling and fan energy is included in the energy efficiency rating of the equipment, fan energy shall not be modeled explicitly. Supply, return, and/or exhaust fans will remain on during occupied and unoccupied hours in spaces that have health and safety mandated minimum ventilation requirements during unoccupied hours.
(This foreword is not part of this standard. It is merely informative and does not contain requirements necessary for conformance to the standard. It has not been processed according to the ANSI requirements for a standard and may contain material that has not been subject to public review or a consensus process. Unresolved objectors on informative material are not offered the right to appeal at ASHRAE or ANSI.)

FOREWORD

This addendum revises the prescriptive criteria for doors in Tables 5.5-0 through 5.5-8. Proposed changes were developed using both cost effectiveness analysis and engineering judgment. Additionally an exception was added for doors with one row (panel) of glazing.

Note: In this addendum, changes to the current standard are indicated in the text by underlining (for additions) and strikethrough (for deletions) unless the instructions specifically mention some other means of indicating the changes. Only these changes are open for review and comment at this time. Additional material is provided for context only and is not open for comment except as it relates to the proposed substantive changes.

Addendum bc to 90.1-2013

Revise the Standard as follows (IP and SI Units)

5.5.3.6 Opaque Doors. All opaque doors shall have a U-factor not greater than that specified in Tables 5.5-1 through 5.5-8.

Exceptions:

1. For conditioned spaces, nonswinging doors that are horizontally-hinged sectional doors with a single row of fenestration shall have an assembly U-factor less than or equal to 0.440 (2.498) in Climate Zones 0 through 6 and less than or equal to 0.360 (2.044) in Climate Zones 7 and 8 provided the fenestration area is at least 14% and no more than 25% of the total door area.

2. For semiheated spaces, nonswinging doors that are horizontally-hinged sectional doors with a single row of fenestration shall have an assembly U-factor less than or equal to 0.440 (2.498) in Climate Zones 3 through 6 and less than or equal to 0.360 (2.044) in Climate Zones 7 and 8 provided the fenestration area is at least 14% and no more than 25% of the total door area.
BSR/ASHRAE/IES Addendum bd to ANSI/ASHRAE/IES Standard 90.1-2013

Public Review Draft

First Public Review (July 2015)
(Draft shows Proposed Changes to Current Standard)

This draft has been recommended for public review by the responsible project committee. To submit a comment on this proposed standard, go to the ASHRAE website at www.ashrae.org/standards-research--technology/public-review-drafts and access the online comment database. The draft is subject to modification until it is approved for publication by the Board of Directors and ANSI. Until this time, the current edition of the standard (as modified by any published addenda on the ASHRAE website) remains in effect. The current edition of any standard may be purchased from the ASHRAE Online Store at www.ashrae.org/bookstore or by calling 404-636-8400 or 1-800-727-4723 (for orders in the U.S. or Canada).

This standard is under continuous maintenance. To propose a change to the current standard, use the change submittal form available on the ASHRAE website, www.ashrae.org.

The appearance of any technical data or editorial material in this public review document does not constitute endorsement, warranty, or guaranty by ASHARE of any product, service, process, procedure, or design, and ASHRAE expressly disclaims such.

© 2014 ASHRAE. This draft is covered under ASHRAE copyright. Permission to reproduce or redistribute all or any part of this document must be obtained from the ASHRAE Manager of Standards, 1791 Tullie Circle, NE, Atlanta, GA 30329. Phone: 404-636-8400, Ext. 1125. Fax: 404-321-5478. E-mail: standards.section@ashrae.org.

ASHRAE, 1791 Tullie Circle, NE, Atlanta GA 30329-2305
(This foreword is not part of this standard. It is merely informative and does not contain requirements necessary for conformance to the standard. It has not been processed according to the ANSI requirements for a standard and may contain material that has not been subject to public review or a consensus process. Unresolved objectors on informative material are not offered the right to appeal at ASHRAE or ANSI.)

FOREWORD

This proposal requires monitoring central chiller plant efficiency in large electric motor driven chilled water plants. The requirement is for plants with a peak chilled water output greater than 1,500 tons. This proposal is designed to help commissioning and ongoing operations of the aforementioned chilled water plants. By provided data on plant efficiency in K\text{W}/ton the operators and those responsible for management of the plant can easily determine if the chilled water plant is performing efficiently. This is a prescriptive requirement, not mandatory.

The ability for operators and responsible managers to determine the plant efficiency will encourage and support more efficient operations. The cost of the additional hardware to monitor efficiency is expected to be returned with just a 2% improvement in efficiency. This target is readily achievable.

[Note to Reviewers: This addendum makes proposed changes to the current standard. These changes are indicated in the text by underlining (for additions) and strikethrough (for deletions) except where the reviewer instructions specifically describe some other means of showing the changes. Only these changes to the current standard are open for review and comment at this time. Additional material is provided for context only and is not open for comment except as it relates to the proposed changes.]

Addendum bd to 90.1-2013

Modify the standard as follows (IP and SI Units)

\textbf{6.4.3.11 Monitoring.} Measurement devices shall be installed in new electric motor driven chilled water plants larger than 1,500 tons (5,276 kW) peak load for climate zones 5-8, 3C and 4C and larger than 1,000 tons (3,517 kW) for all other zones to monitor the efficiency of the chilled water plant.

\textbf{6.4.3.11.1 Recording and Reporting.} The efficiency shall be trended every 15 minutes and graphically displayed and include hourly, daily, monthly, and annual data. The system shall be capable of maintaining all data collected for a minimum of 36 months.
First Public Review Draft

(This foreword is not part of this standard. It is merely informative and does not contain requirements necessary for conformance to the standard. It has not been processed according to the ANSI requirements for a standard and may contain material that has not been subject to public review or a consensus process. Unresolved objectors on informative material are not offered the right to appeal at ASHRAE or ANSI.)

FOREWORD
This proposal revises the Parking Garage LPDs based on the inclusion of LED technology as the lighting source. The DOE Better Buildings Alliance provided support for extensive analysis that presented potential revision of the Parking Garage Lighting Power Densities based primarily on including LED lighting technology. The LSC reviewed the analysis and approved applying the following components:

- Application of LED lighting technology in place of HID (Metal Halide)
- Average design illuminance of 6.0 (5 fc background, 15 fc task at 10% of area)
- Coefficient of Utilization for LED fixture of 0.688
- LED luminaire efficacy of 0.99
- Light loss factor of 0.65

This resulted in a parking garage space LPD of 0.14 and a corresponding Parking garage building LPD of 0.17. The cost effectiveness calculations provided by the analysis show a scalar ratio of 7.1.

[Note to Reviewers: This addendum makes proposed changes to the current standard. These changes are indicated in the text by underlining (for additions) and strikethrough (for deletions) except where the reviewer instructions specifically describe some other means of showing the changes. Only these changes to the current standard are open for review and comment at this time. Additional material is provided for context only and is not open for comment except as it relates to the proposed changes.]

Addendum bf to 90.1-2013
Modify the standard as follows (IP and SI Units)

<table>
<thead>
<tr>
<th>TABLE 9.5.1 Lighting Power Densities Using the Building Area Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building Area Typea</td>
</tr>
<tr>
<td>--------------------</td>
</tr>
<tr>
<td>...</td>
</tr>
<tr>
<td>Parking garage</td>
</tr>
<tr>
<td>...</td>
</tr>
</tbody>
</table>
Modify the standard as follows (IP Units)

<table>
<thead>
<tr>
<th>Common Space Types</th>
<th>LPD W/ft²</th>
<th>RCR Threshold</th>
<th>Local Control 1 (See Section 9.4.1.1[a])</th>
<th>Restricted to Manual ON (See Section 9.4.1.1[b])</th>
<th>Restricted to Partial Automatic ON (See Section 9.4.1.1[c])</th>
<th>Bilevel Lighting Control (See Section 9.4.1.1[d])</th>
<th>Automatic Daylight Responsive Controls for Sidelighting (See Section 9.4.1.1[e])</th>
<th>Automatic Daylight Responsive Controls for Toplighting (See Section 9.4.1.1[f])</th>
<th>Automatic Partial OFF (See Section 9.4.1.1[g])</th>
<th>Automatic Full OFF (See Section 9.4.1.1[h])</th>
<th>Scheduled Shutoff (See Section 9.4.1.1[i])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parking Area, Interior</td>
<td>0.14</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>""</td>
</tr>
</tbody>
</table>

Informative Note: This table is divided into two sections; this first section covers space types that can be commonly found in multiple building types. The second part of this table covers space types that are typically found in a single building type.

Table 9.6.1 Lighting Power Density Allowances Using the Space-by-Space Method and Minimum Control Requirements Using Either Method

The control functions below shall be implemented in accordance with the descriptions found in the referenced paragraphs within Section 9.4.1.1. For each space type:

1. All REQs shall be implemented.
2. At least one ADD1 (when present) shall be implemented.
3. At least one ADD2 (when present) shall be implemented.

See Section 9.4.1.2.
Modify the standard as follows (SI Units)

<table>
<thead>
<tr>
<th>TABLE 9.6.1 Lighting Power Density Allowances Using the Space-by-Space Method and Minimum Control Requirements Using Either Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informative Note: This table is divided into two sections; this first section covers space types that can be commonly found in multiple building types. The second part of this table covers space types that are typically found in a single building type.</td>
</tr>
<tr>
<td>The control functions below shall be implemented in accordance with the descriptions found in the referenced paragraphs within Section 9.4.1.1. For each space type:</td>
</tr>
<tr>
<td>(2) At least one ADD1 (when present) shall be implemented.</td>
</tr>
<tr>
<td>(3) At least one ADD2 (when present) shall be implemented.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Local Control</th>
<th>Restricted to Manual ON (See Section 9.4.1.1[b])</th>
<th>Restricted to Partial Automatic ON (See Section 9.4.1.1[c])</th>
<th>Bilevel Lighting Control (See Section 9.4.1.1[d])</th>
<th>Automatic Daylight Responsive Controls for Sidelighting (See Section 9.4.1.1[e][f])</th>
<th>Automatic Daylight Responsive Controls for Toplighting (See Section 9.4.1.1[f])</th>
<th>Automatic Partial OFF (See Section 9.4.1.1[g] (Full Off complies))</th>
<th>Automatic Full OFF (See Section 9.4.1.1[h])</th>
<th>Scheduled Shutoff (See Section 9.4.1.1[i])</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPD W/m²</td>
</tr>
<tr>
<td>RCR Threshold</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>f</td>
<td>g</td>
<td>h</td>
<td>i</td>
</tr>
</tbody>
</table>
| Parking Area, Interior | 4 | See Section 9.4.1.2. | | | | | | | ADD2
BSR/ASHRAE/IES Addendum bh
to ANSI/ASHRAE/IES Standard 90.1-2013

Public Review Draft

Proposed Addendum bh to
Standard 90.1-2013, Energy Standard
for Buildings Except Low-Rise Residential Buildings

First Public Review (July 2015)
(Draft shows Proposed Changes to Current Standard)

This draft has been recommended for public review by the responsible project committee. To submit a comment on this proposed standard, go to the ASHRAE website at www.ashrae.org/standards-research--technology/public-review-drafts and access the online comment database. The draft is subject to modification until it is approved for publication by the Board of Directors and ANSI. Until this time, the current edition of the standard (as modified by any published addenda on the ASHRAE website) remains in effect. The current edition of any standard may be purchased from the ASHRAE Online Store at www.ashrae.org/bookstore or by calling 404-636-8400 or 1-800-727-4723 (for orders in the U.S. or Canada).

This standard is under continuous maintenance. To propose a change to the current standard, use the change submittal form available on the ASHRAE website, www.ashrae.org.

The appearance of any technical data or editorial material in this public review document does not constitute endorsement, warranty, or guaranty by ASHARE of any product, service, process, procedure, or design, and ASHRAE expressly disclaims such.

© 2014 ASHRAE. This draft is covered under ASHRAE copyright. Permission to reproduce or redistribute all or any part of this document must be obtained from the ASHRAE Manager of Standards, 1791 Tullie Circle, NE, Atlanta, GA 30329. Phone: 404-636-8400, Ext. 1125. Fax: 404-321-5478. E-mail: standards.section@ashrae.org.

ASHRAE, 1791 Tullie Circle, NE, Atlanta GA 30329-2305
FOREWORD

This proposal incorporates the requirement to make collected energy related data available with any applicable control systems in a manner that would be useful to building operators.

[Note to Reviewers: This addendum makes proposed changes to the current standard. These changes are indicated in the text by underlining (for additions) and strikethrough (for deletions) except where the reviewer instructions specifically describe some other means of showing the changes. Only these changes to the current standard are open for review and comment at this time. Additional material is provided for context only and is not open for comment except as it relates to the proposed changes.]

Addendum bh to 90.1-2013

Modify the standard as follows (IP and SI Units)

8.4.3.2 Recording and Reporting. The electrical energy usage for all loads specified in Section 8.4.3.1 shall be recorded a minimum of every 15 minutes and reported at least hourly, daily, monthly, and annually. The data for each tenant space shall be made available to that tenant. In buildings with a digital control system installed to comply with Section 6.4.3.10, the energy usage data shall be transmitted to the digital control system and graphically displayed. The system shall be capable of maintaining all data collected for a minimum of 36 months.
BSR/ASHRAE/IES Addendum bi
to ANSI/ASHRAE/IES Standard 90.1-2013

Proposed Addendum bi to
Standard 90.1-2013, Energy Standard
for Buildings Except Low-Rise
Residential Buildings

First Public Review (July 2015)
(Draft shows Proposed Changes to Current Standard)

This draft has been recommended for public review by the responsible project committee. To submit a comment on this proposed standard, go to the ASHRAE website at www.ashrae.org/standards-research-technology/public-review-drafts and access the online comment database. The draft is subject to modification until it is approved for publication by the Board of Directors and ANSI. Until this time, the current edition of the standard (as modified by any published addenda on the ASHRAE website) remains in effect. The current edition of any standard may be purchased from the ASHRAE Online Store at www.ashrae.org/bookstore or by calling 404-636-8400 or 1-800-727-4723 (for orders in the U.S. or Canada).

This standard is under continuous maintenance. To propose a change to the current standard, use the change submittal form available on the ASHRAE website, www.ashrae.org.

The appearance of any technical data or editorial material in this public review document does not constitute endorsement, warranty, or guaranty by ASHARE of any product, service, process, procedure, or design, and ASHRAE expressly disclaims such.

© 2014 ASHRAE. This draft is covered under ASHRAE copyright. Permission to reproduce or redistribute all or any part of this document must be obtained from the ASHRAE Manager of Standards, 1791 Tullie Circle, NE, Atlanta, GA 30329. Phone: 404-636-8400, Ext. 1125. Fax: 404-321-5478. E-mail: standards.section@ashrae.org.
FOREWORD

Dedicated outside air systems (DOAS) use significant heating energy when controlled to provide a “neutral” supply temperature that matches the space setpoint. In fact, for humidity control DOAS air is often cooled to remove moisture then reheated to a neutral temperature. In addition, when cooling is required in the building, the neutral air does not contribute to cooling like ventilation though a single air system would. This addendum limits heating the DOAS supply air to 60°F when the majority of the building is expected to require cooling. This can be established based either on zone conditions or outside air temperature. Zones that do not require cooling can provide heating to neutral with the zone conditioning system. Zones that do require cooling will benefit from the lower outside air temperature.

Cost effectiveness: This represents a control requirement rather than a requirement for additional equipment, so there is no anticipated cost increase and cost effectiveness analysis is not required.

[Note to Reviewers: This addendum makes proposed changes to the current standard. These changes are indicated in the text by underlining (for additions) and strikethrough (for deletions) except where the reviewer instructions specifically describe some other means of showing the changes. Only these changes to the current standard are open for review and comment at this time. Additional material is provided for context only and is not open for comment except as it relates to the proposed changes.]

Addendum bi to 90.1-2013

Modify the standard as follows (IP and SI Units)

Add the following:

6.5.2.6 Ventilation Air Heating Control. Units that provide ventilation air to multiple zones and operate in conjunction with zone heating and cooling systems shall not use heating or heat recovery to warm supply air above 60°F (16°C) when representative building loads or outdoor air temperature indicate the majority of zones require cooling.
First Public Review Draft

(This foreword is not part of this standard. It is merely informative and does not contain requirements necessary for conformance to the standard. It has not been processed according to the ANSI requirements for a standard and may contain material that has not been subject to public review or a consensus process. Unresolved objectors on informative material are not offered the right to appeal at ASHRAE or ANSI.)

FOREWORD

High \(T \) was shown to result in optimum energy efficiency and life cycle costs in analysis by Taylor, S. Optimizing Design & Control of Chilled Water Plants, Part 3: Pipe Sizing and Optimizing \(T \), ASHRAE Journal, December 2011. (See http://www.taylor-engineering.com/downloads/articles/ASHRAE%20Design%20%20Optimizing%20Design%20%20Optimizing%20Pipe%20Sizing%20and%20Optimizing%20DT%20-%20Taylor.pdf). The analysis showed that the fan energy increase due to the larger coil was more than offset by the pump energy savings, and net first costs were reduced due to smaller piping and pumps, offsetting higher coil costs. So both first costs and energy costs are reduced by this requirement.

Rationale for the exceptions:
1. This exception allows lower \(T \) if the coil area is near the limit of Standard 62.1’s cleanability criterion:

 5.11.2 Finned-Tube Coil Selection for Cleaning. Individual finned-tube coils or multiple finned-tube coils in series without intervening access space(s) of at least 18 in. (457 mm) shall be selected to result in no more than 0.75 in. wc (187 Pa) combined dry-coil pressure drop at 500 fpm (2.54 m/s) face velocity.

 A higher \(T \) would require a coil that would likely violate the Standard 62.1 limit. A pressure drop of 0.7 is used (rather than 0.75) since the limit cannot always be selected right on the nose.

2. Most small fan-coils do not have an option for 8 row coils so 18ºF \(T \) cannot be achieved in most applications. They are also usually limited to 4 row coils when the fan-coil also has a hot water coil.

[Note to Reviewers: This addendum makes proposed changes to the current standard. These changes are indicated in the text by underlining (for additions) and strikethrough (for deletions) except where the reviewer instructions specifically describe some other means of showing the changes. Only these changes to the current standard are open for review and comment at this time. Additional material is provided for context only and is not open for comment except as it relates to the proposed changes.]
Addendum bj to 90.1-2013

Modify the standard as follows (IP and SI Units)

Add new prescriptive requirement

6.5.4.7 Chilled Water Coil Selection. Chilled water cooling coils shall be selected to provide 15°F (8.3°C) or higher temperature difference between leaving and entering water temperatures at design conditions.

Exceptions: The following systems are not required to comply with this section:

1. Chilled water cooling coils that have an airside pressure drop exceeding 0.70 in.wc. (175 Pa) when rated at 500 fpm (2.54 m/s) face velocity and dry conditions (no condensation)
2. Fan-coils with a design airflow rate 5000 cfm (2400 L/s) and less
3. Constant air volume systems
4. Coils selected at the maximum temperature difference allowed by the chiller
5. Convective coils (no fans)
6. Coils with design entering chilled water temperatures of 50°F (10°C) and higher
7. Coils with design entering air dry-bulb temperatures of 65°F (18°C) and lower
This draft has been recommended for public review by the responsible project committee. To submit a comment on this proposed standard, go to the ASHRAE website at www.ashrae.org/standards-research--technology/public-review-drafts and access the online comment database. The draft is subject to modification until it is approved for publication by the Board of Directors and ANSI. Until this time, the current edition of the standard (as modified by any published addenda on the ASHRAE website) remains in effect. The current edition of any standard may be purchased from the ASHRAE Online Store at www.ashrae.org/bookstore or by calling 404-636-8400 or 1-800-727-4723 (for orders in the U.S. or Canada).

This standard is under continuous maintenance. To propose a change to the current standard, use the change submittal form available on the ASHRAE website, www.ashrae.org.

The appearance of any technical data or editorial material in this public review document does not constitute endorsement, warranty, or guaranty by ASHARE of any product, service, process, procedure, or design, and ASHRAE expressly disclaims such.

© 2014 ASHRAE. This draft is covered under ASHRAE copyright. Permission to reproduce or redistribute all or any part of this document must be obtained from the ASHRAE Manager of Standards, 1791 Tullie Circle, NE, Atlanta, GA 30329. Phone: 404-636-8400, Ext. 1125. Fax: 404-321-5478. E-mail: standards.section@ashrae.org.

ASHRAE, 1791 Tullie Circle, NE, Atlanta GA 30329-2305
FOREWORD

This addendum addresses control of fans in fan powered parallel VAV boxes. The fan is only required during heating; however, these fans may be programmed to run continuously during occupied hours. The addendum also requires the fan operation to be used as the first stage of heating and allows fan operation in response to DCV ventilation requests. Use of primary air for setback and warmup heating during unoccupied hours is not allowed unless the terminal logic is reversed and primary air provides central heating rather than cooling.

Cost effectiveness: This represents a setup of controls and does not require new equipment, so there is no anticipated cost increase and cost effectiveness analysis is not required.

[Note to Reviewers: This addendum makes proposed changes to the current standard. These changes are indicated in the text by underlining (for additions) and strikethrough (for deletions) except where the reviewer instructions specifically describe some other means of showing the changes. Only these changes to the current standard are open for review and comment at this time. Additional material is provided for context only and is not open for comment except as it relates to the proposed changes.]

Addendum bk to 90.1-2013

Modify the standard as follows (IP and SI Units)

6.5.3.4 Parallel-Flow Fan-Powered VAV Air Terminal Control. Parallel-flow fan-powered VAV air terminals shall have automatic controls configured to:

1. Turn off the terminal fan except when space heating is required or if required for ventilation.
2. Turn on the terminal fan as the first stage of heating before the heating coil is activated.
3. During heating for warmup or setback temperature control, either:
 a. operate the terminal fan and heating coil without primary air, or
 b. reverse the terminal damper logic and provide heating from the central air handler through primary air.

[renumber current sections 6.5.3.4 and 6.5.3.5 as 6.5.3.5 and 6.5.3.6 respectively]
BSR/ASHRAE/IES Addendum bl
to ANSI/ASHRAE/IES Standard 90.1-2013

Public Review Draft

Proposed Addendum bl to
Standard 90.1-2013, Energy Standard
for Buildings Except Low-Rise
Residential Buildings

First Public Review (July 2015)
(Draft shows Proposed Changes to Current Standard)

This draft has been recommended for public review by the responsible project committee. To submit a comment on this proposed standard, go to the ASHRAE website at www.ashrae.org/standards-research-technology/public-review-drafts and access the online comment database. The draft is subject to modification until it is approved for publication by the Board of Directors and ANSI. Until this time, the current edition of the standard (as modified by any published addenda on the ASHRAE website) remains in effect. The current edition of any standard may be purchased from the ASHRAE Online Store at www.ashrae.org/bookstore or by calling 404-636-8400 or 1-800-727-4723 (for orders in the U.S. or Canada).

This standard is under continuous maintenance. To propose a change to the current standard, use the change submittal form available on the ASHRAE website, www.ashrae.org.
The appearance of any technical data or editorial material in this public review document does not constitute endorsement, warranty, or guaranty by ASHARE of any product, service, process, procedure, or design, and ASHRAE expressly disclaims such.
© 2014 ASHRAE. This draft is covered under ASHRAE copyright. Permission to reproduce or redistribute all or any part of this document must be obtained from the ASHRAE Manager of Standards, 1791 Tullie Circle, NE, Atlanta, GA 30329. Phone: 404-636-8400, Ext. 1125. Fax: 404-321-5478. E-mail: standards.section@ashrae.org.

ASHRAE, 1791 Tullie Circle, NE, Atlanta GA 30329-2305
FOREWORD

This addendum clarifies that water economizers may use dry coolers. Any type of heat or mass transfer is allowed whether dry or evaporative.

economizer, water: a system by which the supply air of a cooling system is cooled indirectly with water that is itself cooled by heat or mass transfer to the environment without the use of mechanical cooling.

[Note to Reviewers: This addendum makes proposed changes to the current standard. These changes are indicated in the text by underlining (for additions) and strikethrough (for deletions) except where the reviewer instructions specifically describe some other means of showing the changes. Only these changes to the current standard are open for review and comment at this time. Additional material is provided for context only and is not open for comment except as it relates to the proposed changes.]

Addendum bl to 90.1-2013

Modify the standard as follows (IP and SI Units)

6.5.1.2.1 **Design Capacity**. Water economizer systems shall be capable of cooling supply air by indirect evaporation and providing up to 100% of the expected system cooling load at outdoor air temperatures of 50°F dry bulb/45°F wet bulb and below.
BSR/ASHRAE/IES Addendum bn

to ANSI/ASHRAE/IES Standard 90.1-2013

Public Review Draft

Proposed Addendum bn to

Standard 90.1-2013, Energy Standard

to Buildings Except Low-Rise

Residential Buildings

First Public Review (July 2015)
(Draft shows Proposed Changes to Current Standard)

This draft has been recommended for public review by the responsible project committee. To submit a comment on this proposed standard, go to the ASHRAE website at www.ashrae.org/standards-research--technology/public-review-drafts and access the online comment database. The draft is subject to modification until it is approved for publication by the Board of Directors and ANSI. Until this time, the current edition of the standard (as modified by any published addenda on the ASHRAE website) remains in effect. The current edition of any standard may be purchased from the ASHRAE Online Store at www.ashrae.org/bookstore or by calling 404-636-8400 or 1-800-727-4723 (for orders in the U.S. or Canada).

This standard is under continuous maintenance. To propose a change to the current standard, use the change submittal form available on the ASHRAE website, www.ashrae.org.

The appearance of any technical data or editorial material in this public review document does not constitute endorsement, warranty, or guaranty by ASHARE of any product, service, process, procedure, or design, and ASHRAE expressly disclaims such.

© 2014 ASHRAE. This draft is covered under ASHRAE copyright. Permission to reproduce or redistribute all or any part of this document must be obtained from the ASHRAE Manager of Standards, 1791 Tullie Circle, NE, Atlanta, GA 30329. Phone: 404-636-8400, Ext. 1125. Fax: 404-321-5478. E-mail: standards.section@ashrae.org.

ASHRAE, 1791 Tullie Circle, NE, Atlanta GA 30329-2305
(This foreword is not part of this standard. It is merely informative and does not contain requirements necessary for conformance to the standard. It has not been processed according to the ANSI requirements for a standard and may contain material that has not been subject to public review or a consensus process. Unresolved objectors on informative material are not offered the right to appeal at ASHRAE or ANSI.)

FOREWORD

Currently Standard 62.1 establishes the minimum outside air required for ventilation; however there is no upper limit for ventilation in 90.1 prescriptive requirements. This addendum offers the designer three options:

- Green building standards have established 130% of required minimum ventilation for indoor air quality credits. This option limits ventilation to 135%.
- The intent of the second option is to allow increased design outdoor air if desired to improve indoor air quality but to allow operators to reduce outdoor air rates to the minimum in the future without significant cost to modify the system.
- Should a situation desire more ventilation, heat recovery can be used for systems with higher ventilation.

Cost effectiveness: This represents a control/design requirement rather than a requirement for additional equipment, so there is no anticipated cost increase and cost effectiveness analysis is not required.

[Note to Reviewers: This addendum makes proposed changes to the current standard. These changes are indicated in the text by underlining (for additions) and strikethrough (for deletions) except where the reviewer instructions specifically describe some other means of showing the changes. Only these changes to the current standard are open for review and comment at this time. Additional material is provided for context only and is not open for comment except as it relates to the proposed changes.]

Addendum bn to 90.1-2013

Modify the standard as follows (IP and SI Units)

Add the following:

6.3.2 Criteria. The HVAC system must meet all of the following criteria:

q. The system shall comply with the demand control ventilation requirements in Section 6.4.3.8 and ventilation design in 6.5.3.6.

6.5.3.6 Ventilation Design. The required minimum outdoor air rate is the larger of the minimum outdoor air rate or the minimum exhaust air rate required by Standard 62.1, Standard 170, or applicable codes or accreditation standards. Outdoor air ventilation systems shall comply with one of the following:

1. Design minimum system outdoor air provided shall not exceed 135% of the required minimum outdoor air rate.
2. **Dampers, ductwork and controls shall be provided that allow the system to supply no more than** the required minimum outdoor air rate with a single setpoint adjustment.

3. **The system includes exhaust air energy recovery complying with Section 6.5.6.1.**
BSR/ASHRAE/IES Addendum bo to ANSI/ASHRAE/IES Standard 90.1-2013

Public Review Draft

First Public Review (July 2015)
(Draft shows Proposed Changes to Current Standard)

This draft has been recommended for public review by the responsible project committee. To submit a comment on this proposed standard, go to the ASHRAE website at www.ashrae.org/standards-research--technology/public-review-drafts and access the online comment database. The draft is subject to modification until it is approved for publication by the Board of Directors and ANSI. Until this time, the current edition of the standard (as modified by any published addenda on the ASHRAE website) remains in effect. The current edition of any standard may be purchased from the ASHRAE Online Store at www.ashrae.org/bookstore or by calling 404-636-8400 or 1-800-727-4723 (for orders in the U.S. or Canada).

This standard is under continuous maintenance. To propose a change to the current standard, use the change submittal form available on the ASHRAE website, www.ashrae.org.

The appearance of any technical data or editorial material in this public review document does not constitute endorsement, warranty, or guaranty by ASHARE of any product, service, process, procedure, or design, and ASHRAE expressly disclaims such.

© 2014 ASHRAE. This draft is covered under ASHRAE copyright. Permission to reproduce or redistribute all or any part of this document must be obtained from the ASHRAE Manager of Standards, 1791 Tullie Circle, NE, Atlanta, GA 30329. Phone: 404-636-8400, Ext. 1125. Fax: 404-321-5478. E-mail: standards.section@ashrae.org.

ASHRAE, 1791 Tullie Circle, NE, Atlanta GA 30329-2305
FOREWORD

This addendum modifies the exceptions to Section 5.5.4.4.1 and Table 5.5.4.4.1 related to the SHGC credit for shading by permanent projections. New analysis by PNNL for office buildings meeting ASHRAE 90.1-2013 show that horizontal permanent projections over north-facing fenestration have minimal impact on total building energy use. As such, the SHGC multipliers for north-oriented fenestration in Table 5.5.4.4.1 are removed, and exceptions 1 and 2 are modified to only apply to south, east, and west-oriented fenestration. Additionally, this addendum corrects a technical flaw in the calculation where the previous SHGC multipliers could illogically require fenestration to have a lower SHGC on the north side of a building than on the west side of the building when projections are used. To correct this issue, exception 5 is changed to allow the same fenestration product SHGC to be used on the north side of the building as the area weighted average of the SHGC of fenestration products on the other orientations before any adjustments are made for projections. This addendum has no impact on cost effectiveness.

[Note to Reviewers: This addendum makes proposed changes to the current standard. These changes are indicated in the text by underlining (for additions) and strikethrough (for deletions) except where the reviewer instructions specifically describe some other means of showing the changes. Only these changes to the current standard are open for review and comment at this time. Additional material is provided for context only and is not open for comment except as it relates to the proposed changes.]

Addendum bo to 90.1-2013

Modify the standard as follows (IP and SI Units)

5.5.4.4.1 SHGC of Vertical Fenestration. Vertical fenestration shall have an SHGC not greater than that specified in Tables 5.5-1 through 5.5-8.

Exceptions:

1. For demonstrating compliance for south, east, or west-oriented vertical fenestration shaded by opaque permanent projections that will last as long as the building itself, the SHGC of the shaded vertical fenestration in the proposed building is permitted to be reduced by using the multipliers in Table 5.5.4.4.1. Permanent projections consisting of open louvers shall be considered to provide shading, provided that no sun penetrates the louvers during the peak sun angle on June 21.

2. For demonstrating compliance for south, east, or west-oriented vertical fenestration shaded by partially opaque permanent projections (e.g., framing with glass or perforated metal) that will last as long as the building itself, the projection factor (PF) shall be reduced by multiplying it by a factor of O_s, which is derived as follows:

$$O_s = (A_i \times O_i) + (A_f \times O_f)$$

Where:

O_s = percent opacity of the shading device

A_i = percent of the area of the shading device that is a partially opaque infill
O_i = percent opacity of the infill for glass \(O_i = (100\% - T_s) \), where \(T_s \) is the solar transmittance as determined in accordance with NFRC 300; for perforated or decorative metal panels, \(O_i \) = percentage of solid material

\(A_f = \) percent of the area of the shading device that represents the framing members

\(O_f = \) percent opacity of the framing members; if solid, then 100%

The SHGC of the shaded vertical fenestration in the proposed building is permitted to then shall be reduced by using the multipliers in Table 5.5.4.4.1 for each fenestration product.

3. Vertical fenestration that is located on the street side of the street-level story only, provided that
 a. the street side of the street-level story does not exceed 20 ft in height;
 b. the fenestration has a continuous overhang with a weighted average PF greater than 0.5, and
 c. the fenestration area for the street side of the street-level story is less than 75% of the gross wall area for the street side of the street-level story.

When this exception is utilized, separate calculations shall be performed for these sections of the building envelope, and these values shall not be averaged with any others for compliance purposes. No credit shall be given here or elsewhere in the building for not fully utilizing the fenestration area allowed.

4. For dynamic glazing, the minimum SHGC shall be used to demonstrate compliance with this section. Dynamic glazing shall be considered separately from other vertical fenestration, and area-weighted averaging with other vertical fenestration that is not dynamic glazing shall not be permitted.

5. Vertical fenestration that is north-oriented shall be allowed to have a maximum solar heat gain coefficient SHGC 0.05 greater than that specified in Tables 5.5-1 through 5.5-8. When this exception is utilized, separate calculations shall be performed for these sections of the building envelope, and these values shall not be averaged with any others for compliance purposes. Vertical fenestration that is north-oriented shall be permitted to have a SHGC no greater than the area-weighted average SHGC of the south, east, and west-oriented vertical fenestration before any adjustments made for permanent projections in Exceptions 1 and 2 of Section 5.5.4.4.1.

Table 5.5.4.4.1 SHGC Multipliers for Permanent Projections

<table>
<thead>
<tr>
<th>Projection Factor</th>
<th>SHGC Multiplier (all Other South, East, West Orientations)</th>
<th>SHGC Multiplier (North-Oriented)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00-0.10</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>>0.10-0.20</td>
<td>0.91</td>
<td>0.95</td>
</tr>
<tr>
<td>>0.20-0.30</td>
<td>0.82</td>
<td>0.91</td>
</tr>
<tr>
<td>>0.30-0.40</td>
<td>0.74</td>
<td>0.87</td>
</tr>
<tr>
<td>>0.40-0.50</td>
<td>0.67</td>
<td>0.84</td>
</tr>
<tr>
<td>>0.50-0.60</td>
<td>0.61</td>
<td>0.81</td>
</tr>
<tr>
<td>>0.60-0.70</td>
<td>0.56</td>
<td>0.78</td>
</tr>
<tr>
<td>>0.70-0.80</td>
<td>0.51</td>
<td>0.76</td>
</tr>
<tr>
<td>>0.80-0.90</td>
<td>0.47</td>
<td>0.75</td>
</tr>
<tr>
<td>>0.90-1.00</td>
<td>0.44</td>
<td>0.73</td>
</tr>
</tbody>
</table>
BSR/ASHRAE/IES Addendum bp

to ANSI/ASHRAE/IES Standard 90.1-2013

Public Review Draft

Proposed Addendum bp to

First Public Review (July 2015)
(Draft shows Proposed Changes to Current Standard)

This draft has been recommended for public review by the responsible project committee. To submit a comment on this proposed standard, go to the ASHRAE website at www.ashrae.org/standards-research-technology/public-review-drafts and access the online comment database. The draft is subject to modification until it is approved for publication by the Board of Directors and ANSI. Until this time, the current edition of the standard (as modified by any published addenda on the ASHRAE website) remains in effect. The current edition of any standard may be purchased from the ASHRAE Online Store at www.ashrae.org/bookstore or by calling 404-636-8400 or 1-800-727-4723 (for orders in the U.S. or Canada).

This standard is under continuous maintenance. To propose a change to the current standard, use the change submittal form available on the ASHRAE website, www.ashrae.org.

The appearance of any technical data or editorial material in this public review document does not constitute endorsement, warranty, or guaranty by ASHARE of any product, service, process, procedure, or design, and ASHRAE expressly disclaims such. © 2014 ASHRAE. This draft is covered under ASHRAE copyright. Permission to reproduce or redistribute all or any part of this document must be obtained from the ASHRAE Manager of Standards, 1791 Tullie Circle, NE, Atlanta, GA 30329. Phone: 404-636-8400, Ext. 1125. Fax: 404-321-5478. E-mail: standards.section@ashrae.org.

ASHRAE, 1791 Tullie Circle, NE, Atlanta GA 30329-2305
FOREWORD

Addendum bp to 90.1-2013

Modify the standard as follows (IP and SI Units)

<table>
<thead>
<tr>
<th>TABLE G3.1.2.8 Economizer High-Limit Shutoff Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate Zone</td>
</tr>
<tr>
<td>1b, 2b, 3b, 3c, 4b, 4c, 5b, 5c, 6b, 7, 8</td>
</tr>
<tr>
<td>2a, 3a, 4a</td>
</tr>
<tr>
<td>5a, 6a, 7a</td>
</tr>
<tr>
<td>Others</td>
</tr>
</tbody>
</table>
BSR/ASHRAE/IES Addendum bq
to ANSI/ASHRAE/IES Standard 90.1-2013

Public Review Draft

Proposed Addendum bq to

First Public Review (July 2015)
(Draft shows Proposed Changes to Current Standard)

This draft has been recommended for public review by the responsible project committee. To submit a comment on this proposed standard, go to the ASHRAE website at www.ashrae.org/standards-research-technology/public-review-drafts and access the online comment database. The draft is subject to modification until it is approved for publication by the Board of Directors and ANSI. Until this time, the current edition of the standard (as modified by any published addenda on the ASHRAE website) remains in effect. The current edition of any standard maybe purchased from the ASHRAE Online Store at www.ashrae.org/bookstore or by calling 404-636-8400 or 1-800-727-4723 (for orders in the U.S. or Canada).

This standard is under continuous maintenance. To propose a change to the current standard, use the change submittal form available on the ASHRAE website, www.ashrae.org.

The appearance of any technical data or editorial material in this public review document does not constitute endorsement, warranty, or guaranty by ASHRAE of any product, service, process, procedure, or design, and ASHRAE expressly disclaims such.

© 2014 ASHRAE. This draft is covered under ASHRAE copyright. Permission to reproduce or redistribute all or any part of this document must be obtained from the ASHRAE Manager of Standards, 1791 Tullie Circle, NE, Atlanta, GA 30329. Phone: 404-636-8400, Ext. 1125. Fax: 404-321-5478. E-mail: standards.section@ashrae.org.

ASHRAE, 1791 Tullie Circle, NE, Atlanta GA 30329-2305
(This foreword is not part of this standard. It is merely informative and does not contain requirements necessary for conformance to the standard. It has not been processed according to the ANSI requirements for a standard and may contain material that has not been subject to public review or a consensus process. Unresolved objectors on informative material are not offered the right to appeal at ASHRAE or ANSI.)

FOREWORD

Addendum bq to 90.1-2013

Modify the standard as follows (IP and SI Units)

G3.1.2.5 Fan System Operation. Supply and return fans shall operate continuously whenever spaces are occupied and shall be cycled to meet heating and cooling loads during unoccupied hours. If the supply fan is modeled as cycling and fan energy is included in the energy-efficiency rating of the equipment, fan energy shall not be modeled explicitly. Supply, return, and/or exhaust fans will remain on during occupied and unoccupied hours in spaces that have health and safety mandated minimum ventilation requirements during unoccupied hours.

Exception: For Systems 6 and 8 only the terminal unit fan and reheat coil shall be energized to meet heating setpoint during unoccupied hours.

G3.1.3.14 Fan Power and control (Systems 6 and 8). Fans in parallel VAV fan-powered boxes shall run as the first stage of heating before the reheat coil is energized. Fans in parallel VAV fan-powered boxes shall be sized for 50% of the peak design primary air (from the VAV air-handling unit) flow rate and shall be modeled with 0.35 W/cfm fan power. Minimum volume setpoints for fan-powered boxes shall be equal to 30% of peak design primary airflow rate or the rate required to meet the minimum outdoor air ventilation requirement, whichever is larger. The supply air temperature setpoint shall be constant at the design condition.
NSF/ANSI Standard
for Drinking Water Treatment Units –

Reverse osmosis
drinking water treatment systems

6 Minimum performance requirements

6.7 Performance indication

6.7.2 Chemical reduction and mechanical filtration claims

In addition to the requirements of 6.7.1, a system making claims for the reduction of health-related inorganic, organic, or particulate contaminants shall be provided with an effective means to warn the user when the system is not performing its functions. This may be accomplished by one of the following:

– terminating discharge of product water;

– sounding an alarm connected to an acceptable power source;

– flashing a light connected to an acceptable power source;

– providing the user with an obvious, readily interpretable indication of the system's failure to perform, such as decreasing the flow of water by 50% or more for systems making mechanical filtration claims;

– providing a sampling service by the manufacturer, either directly or through an authorized dealer, at least once every six months;

– providing a sampling kit for analysis of TDS or other appropriate contaminants; or

– providing a TDS monitor to measure the product water quality.

If an activated carbon disposable component is provided for organic reduction claims, simple explicit instructions for determining the need for servicing of the component shall be provided. If the RO system has a VOC reduction claim in accordance with 7.1.1, any performance indication device for the VOC reduction component in the system shall meet the requirements of NSF/ANSI 53.
7 Elective performance claims – test methods

7.1.1 Volatile organic chemical (VOC) reduction claims

7.1.1.1 VOC reduction claims – accelerated method

7.1.1.1.7 Sampling

7.1.1.1.7.1 Systems equipped with warning device/s and a performance indication device

Systems equipped with warning device/s and a performance indication device, in accordance with 6.7.2, shall have influent and product water samples collected and analyzed to determine VOC reduction. Prior to the initial sampling, 10 unit volumes of influent challenge water shall be passed through the system. An initial influent and product water sample shall then be taken, followed by sample collections at 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 110%, and 120% of estimated service cycle of replaceable treatment components.

7.1.1.1.7.2 Systems lacking a warning performance indication device

Systems lacking a warning performance indication device shall have influent and product water samples collected and analyzed to determine VOC reduction. Prior to the initial sampling, 10 unit volumes of influent challenge water shall be passed through the system. An initial influent and product water sample shall be taken followed by sample collections at 20%, 40%, 60%, 80%, 100%, 120%, 140%, 160%, 180%, and 200% of the estimated service cycle of replaceable treatment components. Testing up to 200% of the estimated capacity will provide a 2:1 safety factor.

7.1.1.2 VOC reduction claims – Non-accelerated

7.1.1.2.7 Sampling

7.1.1.2.7.1 Systems equipped with warning device/s and a performance indication device

Systems equipped with warning device/s and a performance indication device, in accordance with 6.7.2, shall have influent and product water samples collected and analyzed to determine VOC reduction. Prior to the initial sampling, 10 unit volumes of influent challenge water shall be passed through the system. An initial influent and product water sample shall then be taken, followed by sample collections at 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 110%, and 120% of estimated service cycle of replaceable treatment components.
7.1.1.2.7.2 Systems lacking a warning performance indication device

Systems lacking a warning performance indication device shall have influent and product water samples collected and analyzed to determine VOC reduction. Prior to the initial sampling, 10 unit volumes of influent challenge water shall be passed through the system. An initial influent and product water sample shall be taken followed by sample collections at 20%, 40%, 60%, 80%, 100%, 120%, 140%, 160%, 180%, and 200% of the estimated service cycle of replaceable treatment components. Testing up to 200% of the estimated capacity will provide a 2:1 safety factor.

Reason: Changed the term “warning device” to “performance indication device” to be consistent with the other DWTU standards and added reference to NSF/ANSI 53 for the performance indication device requirements per the 2015 DWTU JC meeting discussion (May 13th, 2015).
2. Revision to the conductor temperature limit during the Temperature Test, Table 15DV

Table 15DV D2 Modification to replace Table 15 with the following:

Table 15DV - Maximum measured temperatures for internal materials and components

<table>
<thead>
<tr>
<th>Materials and components</th>
<th>Thermometer method °C</th>
<th>Resistance method °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Rubber- or thermoplastic-insulated conductors</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>2 USER TERMINALS</td>
<td>c, i, j, k, l</td>
<td></td>
</tr>
<tr>
<td>3 Copper bus bars and connecting straps</td>
<td>d</td>
<td></td>
</tr>
<tr>
<td>4 Insulation systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class A (105)</td>
<td>105</td>
<td>125</td>
</tr>
<tr>
<td>Class E (120)</td>
<td>120</td>
<td>135</td>
</tr>
<tr>
<td>Class B (130)</td>
<td>125</td>
<td>145</td>
</tr>
<tr>
<td>Class F (155)</td>
<td>135</td>
<td>155</td>
</tr>
<tr>
<td>Class H (180)</td>
<td>155</td>
<td>175</td>
</tr>
<tr>
<td>Class N (220)</td>
<td>195</td>
<td>215</td>
</tr>
<tr>
<td>5 Phenolic composition</td>
<td>165</td>
<td></td>
</tr>
<tr>
<td>6 On bare resistor material</td>
<td>415</td>
<td></td>
</tr>
<tr>
<td>7 Capacitor</td>
<td>e</td>
<td></td>
</tr>
<tr>
<td>8 Power switching semiconductors</td>
<td>f</td>
<td></td>
</tr>
<tr>
<td>9 PWBs</td>
<td>g</td>
<td></td>
</tr>
<tr>
<td>10 Liquid cooling medium</td>
<td>h</td>
<td></td>
</tr>
</tbody>
</table>

The limitation on phenolic composition does not apply to compounds which have been investigated and found to meet the requirements for a higher temperature. For rubber- or thermoplastic-insulated conductors, the temperature shall not exceed the maximum operating temperature specified for the conductor in question by the conductor manufacturer. Also see 6.3.6.4DV.2.

The temperature on a wiring terminal or lug is measured at the point most at risk of being contacted by the insulation of a conductor installed as in actual service.

Other than as modified by footnote k, the maximum terminal temperature shall not exceed 15 °C more than the insulation temperature rating of the conductor or cable specified by the manufacturer (see 6.3.6.4).

The maximum permitted temperature is determined by the temperature limit of support materials or insulation of connecting wires or other components. A maximum temperature of
140 °C is recommended.

- For a capacitor, the maximum temperature specified by the manufacturer shall not be exceeded.
- The maximum temperature on the case shall be the maximum case temperature for the applied power dissipation specified by the semiconductor manufacturer.
- The maximum operating temperature of the PWB shall not be exceeded.
- The maximum temperature of the cooling medium, specified by the manufacturer of the medium or determined from the known characteristics of the medium, shall not be exceeded.
- See 6.3.6.4DV.2.
- In equipment marked for 60°C (140°F) supply wire, the terminal temperature shall not exceed 75°C (167°F).
- In equipment marked for 75°C (167°F) supply wire, the terminal temperature shall not exceed 75°C (167°F) for connectors marked AL7CU and for connectors marked AL9CU the terminal temperature shall not exceed 90°C (194°F).
- Equipment marked for 60/75°C supply wires shall comply with both notes j and k of this table.