American National Standards

Call for comment on proposals listed

This section solicits public comments on proposed draft new American National Standards, including the national adoption of ISO and IEC standards as American National Standards, and on proposals to revise, reaffirm or withdraw approval of existing American National Standards. A draft standard is listed in this section under the ANSI-accredited standards developer (ASD) that sponsors it and from whom a copy may be obtained. Comments in connection with a draft American National Standard must be submitted in writing to the ASD no later than the last day of the comment period specified herein. Such comments shall be specific to the section(s) of the standard under review and include sufficient detail so as to enable the reader to understand the commenter's position, concerns and suggested alternative language, if appropriate. Please note that the ANSI Executive Standards Council (ExSC) has determined that an ASD has the right to require that interested parties submit public review comments electronically, in accordance with the developer’s procedures.

Ordering Instructions for “Call-for-Comment” Listings

1. Order from the organization indicated for the specific proposal.
2. Use the full identification in your order, including the BSR prefix; for example, Electric Fuses BSR/SAE J554.
3. Include remittance with all orders.
4. BSR proposals will not be available after the deadline of call for comment.

Comments should be addressed to the organization indicated, with a copy to the Board of Standards Review, American National Standards Institute, 25 West 43rd Street, New York, NY 10036. Fax: 212-840-2298; e-mail: psa@ansi.org

* Standard for consumer products
Comment Deadline: February 23, 2014

ACCA (Air Conditioning Contractors of America)
Revision
BSR/ACCA 12 QH-201x, Home Evaluation and Performance Improvement (revision of ANSI/ACCA 12 QH-2011)
This is a 2nd public review. The revised standard provides guidance to those practitioners who evaluate building performance of existing residential buildings. The proposed standard will identify the metrics, tolerances, approved procedures, and required documentation to (1) evaluate the current performance, (2) establish the basis to create performance improvement specifications, (3) identify approved approaches to implement the specified improvements, and (4) establish the procedures to objectively assess the performance change of the completed improvements. Note: Public Comments are limited to the changes (Red-Lined Text) only.
Click here to view these changes in full
Send comments (with copy to psa@ansi.org) to: Dick Shaw, (202) 251-3835, standards-sec@acca.org

ASME (American Society of Mechanical Engineers)
Revision
BSR/ASME PTC 25-201x, Pressure Relief Devices (revision of ANSI/ASME PTC 25-2008)
This Code provides standards for conducting and reporting tests on reclosing and nonreclosing pressure relief devices normally used to terminate an abnormal internal or external rise in pressure above a predetermined design value in boilers, pressure vessels, and related piping equipment. This Code covers the methods and procedures to determine relieving capacity and additional operating characteristics that may be required for certification or other purposes by other Codes.
Click here to view these changes in full
Send comments (with copy to psa@ansi.org) to: Colleen O’Brien, (212) 591-7881, obrienc@asme.org

UL (Underwriters Laboratories, Inc.)
New National Adoption
This bulletin proposes revisions to clause 7.3 for non-intrinsically safe circuit connections of galvanically separating components
Click here to view these changes in full
Send comments (with copy to psa@ansi.org) to: Vickie Hinton, (919) 549-1851, vickie.t.hinton@ul.com

UL (Underwriters Laboratories, Inc.)
Revision
BSR/UL 32-201x, Standard for Safety for Metal Waste Cans (revision of ANSI/UL 32-2004 (R2009))
The following changes in requirements to the Standard for Metal Waste Cans, UL 32, are being proposed: (1) Clarify intent of trade sizes shown in Table 1; (2) Add marking requirement for waste cans with flat sides
Click here to view these changes in full
Send comments (with copy to psa@ansi.org) to: Heather Sakellariou, (847) 664-2346, Heather.Sakellariou@ul.com

UL (Underwriters Laboratories, Inc.)
Revision
The following changes in requirements to the Standard for Terminal Blocks, UL 1059, are being proposed: (1) Correction to Clause 50.3.1 to be consistent with the test method described in IEC 60947-7-2, Paragraph 8.4.6.
Click here to view these changes in full
Send comments (with copy to psa@ansi.org) to: Jonette Herman, (919) 549-1479, Jonette.A.Herman@ul.com

UL (Underwriters Laboratories, Inc.)
Revision
BSR/UL 2127-201X, Standard for Safety for Inert Gas Clean Agent Extinguishing System Units (revision of ANSI/UL 2127-2013)
UL proposes the addition of requirements for direct acting type pressure in UL 2127.
Click here to view these changes in full
Send comments (with copy to psa@ansi.org) to: Nicolette Allen, (919) 549-0973, Nicolette.Allen@ul.com
UL (Underwriters Laboratories, Inc.)

Revision

BSR/UL 2388-201x, Standard for Safety for Flexible Lighting Products (revision of ANSI/UL 2388-2009)

Revision to proposal to include different means of mechanical securement prior to soldering, based on comments received.

Click here to view these changes in full

Send comments (with copy to psa@ansi.org) to: Megan Sepper, (847) 664-3411, Megan.M.Sepper@ul.com

Comment Deadline: March 10, 2014

API (American Petroleum Institute)

New Standard

BSR/API RP 100-2-201x, Environmental Aspects Associated with E&P Operations including Hydraulic Fracturing (new standard)

This document provides recommended practices applicable to the planning and operation of wells, and hydraulically fractured wells. Topics covered include recommendations for managing environmental aspects during planning; site selection; logistics; mobilization, rig-up, and demobilization; and stimulation operations. Also, this document includes guidance for managing environmental aspects during well construction.

Single copy price: Free

Order from: Ronald Goodman, (202) 682-8571, goodmanr@api.org

Send comments (with copy to psa@ansi.org) to: Same

ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.)

Addenda

BSR/ASHRAE Addendum b to ANSI/ASHRAE Standard 52.2-2012, Method of Testing General Ventilation Air Cleaning Devices for Removal Efficiency by Particle Size (addenda to ANSI/ASHRAE Standard 52.2-2012)

Currently, ASHRAE 52.2 penalizes the calculated efficiencies for filters when the downstream background counts exceed 5% of the upstream counts. This addendum gives ASHRAE 52.2 the same efficiency calculation across particle counters and upstream concentrations and still requires the reporting of the downstream particle counts that may indicate particle shedding.

Single copy price: $35.00

Order from: standards.section@ashrae.org

Send comments (with copy to psa@ansi.org) to: Same

ASME (American Society of Mechanical Engineers)

Revision

BSR/ASME BPVC Section I-201x, Rules for Construction of Power Boilers (revision of ANSI/ASME BPVC Section I-2013)

This Code covers rules for construction of power boilers, electric boilers, miniature boilers, high-temperature water boilers, heat recovery steam generators, and certain fired pressure vessels to be used in stationary service and include those power boilers used in locomotive, portable, and traction service. The rules are applicable to boilers in which steam or other vapor is generated at pressures of more than 15 psig (100 kPa) for use external to itself, and high temperature water boilers intended for operation at pressures exceeding 160 psig (1.1 MPa) and/or temperatures exceeding 250°F (120°C).

Single copy price: Free

Order from: Mayra Santiago, ASME; ANSlBOX@asme.org

Send comments (with copy to psa@ansi.org) to: Same

Revision

BSR/ASME BPVC Section II-2013, Part C - Specifications for Welding Rods, Electrodes, and Filler Metals (revision of ANSI/ASME BPVC Section II-2013)

Section II, Part C, contains material specifications, most of which are identical to corresponding specifications published by AWS and other recognized national or international organizations. All adopted specifications are either reproduced in the Code, where permission to do so has been obtained from the originating organization, or so referenced, and information about how to obtain them from the originating organization is provided.

Single copy price: Free

Order from: Mayra Santiago, ASME; ANSlBOX@asme.org

Send comments (with copy to psa@ansi.org) to: Steven Rossi, (212) 591-8460, rossis@asme.org

Revision

BSR/ASME BPVC Section IX-201x, Welding and Brazing Qualifications (revision of ANSI/ASME BPVC Section IX-2013)

Section IX of the ASME Boiler and Pressure Vessel Code relates to the qualification of welders, welding operators, brazers, brazing operators, and fusing operators and the procedures that they employ in welding, brazing and fusing according to the ASME Boiler and Pressure Vessel Code and the ASME B31 Code for Pressure Piping.

Single copy price: Free

Order from: Mayra Santiago, ASME; ANSlBOX@asme.org

Send comments (with copy to psa@ansi.org) to: Steven Rossi, (212) 591-8460, rossis@asme.org
ASTM (ASTM International)

New National Adoption

Contact Corice Leonard at cleonard@astm.org.

Single copy price: $60.00

Obtain an electronic copy from: cleonard@astm.org

Order from: cleonard@astm.org

Send comments (with copy to psa@ansi.org) to: Barbara Bennett, (202) 626-5743, comments@itic.org

Obtain an electronic copy from: ebrazda@isa.org

Order from: Eliana Brazda, (919) 990-9228, ebrazda@isa.org

Send comments (with copy to psa@ansi.org) to: Same

ITI (INCITS) (InterNational Committee for Information Technology Standards)

New National Adoption

This is the first amendment for ISO/IEC 19794-2:2011. ISO/IEC 19794-2:2011 specifies a concept and data formats for representation of fingerprints using the fundamental notion of minutiae. It is generic, in that it may be applied and used in a wide range of application areas where automated fingerprint recognition is involved. It contains definitions of relevant terms, a description of how minutiae are to be determined, data formats for containing the data for both general use and for use with cards, and conformance information. Guidelines and values for matching and decision parameters are provided.

Single copy price: $22.00

Obtain an electronic copy from: ebrazda@isa.org

Order from: Eliana Brazda, (919) 990-9228, ebrazda@isa.org

Send comments (with copy to psa@ansi.org) to: Barbara Bennett, (202) 626-5743, comments@itic.org
NSF (NSF International)

Revision

BSR/NSF 373-201x (i2r1), Sustainability Assessment for Natural Dimension Stone (revision of ANSI/NSC 373-2013 (i1r2))

This Standard establishes criteria to measure the extent to which natural stone has been produced sustainably. The standard applies to all processors of natural stone, from quarry operations through final stone fabrication, and is intended to allow for both domestic and international market participation from natural dimension stone producers.

Single copy price: Free

Order from: Mindy Costello, (734) 827-6819, mcostello@nsf.org

Send comments (with copy to psa@ansi.org) to: Same

TAPPI (Technical Association of the Pulp and Paper Industry)

New Standard

BSR/TAPPI T 831 om-201x, Water absorption of corrugating medium: water drop penetration test (new standard)

The water absorptivity of corrugating medium is measured by dropping a drop of water on the surface of a specimen and determining the time in seconds for the drop to penetrate through the sheet and wet the lower surface.

Single copy price: Free

Obtain an electronic copy from: standards@tappi.org

Order from: Charles Bohanan, (770) 209-7276, standards@tappi.org

Send comments (with copy to psa@ansi.org) to: Same

UL (Underwriters Laboratories, Inc.)

New Standard

BSR/UL 213C-201x, Standard for Safety for Grooved and Plain End Fittings (new standard)

The requirements for the proposed Standard UL 213C cover the construction and performance of Grooved and Plain End fittings intended to be joined to pipe or to another fitting by couplings complying with the requirements of the Standard for Rubber Gasketed Fittings for Fire-Protection Service, UL 213.

Single copy price: Contact comm2000 for pricing and delivery options

Order from: comm2000

Send comments (with copy to psa@ansi.org) to: Derrick Martin, (408) 754-6656, Derrick.L.Martin@ul.com

Revision

BSR/UL 13-201x, Standard for Safety for Power-Limited Circuit Cables (revision of ANSI/UL 13-2011)

(1) Revision to include copper-clad aluminum as a conductor option in Class 2 and Class 3 circuits.

Single copy price: Contact comm2000 for pricing and delivery options

Order from: comm2000

Send comments (with copy to psa@ansi.org) to: Mitchell Gold, (847) 664-2850, Mitchell.Gold@ul.com

Reaffirmation

BSR/UL 61965-2009 (R201x), Standard for Safety for Mechanical Safety for Cathode Ray Tubes (reaffirmation of ANSI/UL 61965-2009)

Single copy price: Contact comm2000 for pricing and delivery options

Order from: comm2000

Send comments (with copy to psa@ansi.org) to: Ross Wilson, 919-549-1511, Ross.Wilson@ul.com

Revision

BSR/UL 310-201x, Standard for Safety for Electrical Quick-Connect Terminals (revision of ANSI/UL 310-2009)

Single copy price: Contact comm2000 for pricing and delivery options

Order from: comm2000

Send comments (with copy to psa@ansi.org) to: Danielle Tremblay, (919) 549-1309, Danielle.Tremblay@ul.com

Reaffirmation

BSR/UL 1839-2009 (R201x), Standard for Safety for Automotive Battery Booster Cables (reaffirmation of ANSI/UL 1839-2009)

(1) Reaffirmation and continuance of the first edition of the Standard for Automotive Battery Booster Cables, UL 1839, as an American National Standard.

Single copy price: Contact comm2000 for pricing and delivery options

Order from: comm2000

Send comments (with copy to psa@ansi.org) to: Elizabeth Sheppard, (847) 664-3276, Elizabeth.H.Sheppard@ul.com

Revision

BSR/UL 558-201x, Standard for Safety for Industrial Trucks, Internal Combustion Engine-Powered (revision of ANSI/UL 558-2013)

UL proposes the following requirements for UL 558: Electric Fuel Pump Wiring, Vibration Test for Fuel Filters, Removal of Metallic Tube Fitting Vibration Test, Explosion and Hydrostatic Strength Test for Electric Fuel Pumps, and Nonmetallic Fuel Tank Requirements for Cleaning Equipment in Supplement SB.

Single copy price: Contact comm2000 for pricing and delivery options

Order from: comm2000

Send comments (with copy to psa@ansi.org) to: Nicolette Allen, (919) 549-0973, Nicolette.Allen@ul.com
UL (Underwriters Laboratories, Inc.)

Revision

BSR/UL 583-201x, Standard for Safety for Electric-Battery-Powered Industrial Trucks (revision of ANSI/UL 583-2012)

UL proposes the following requirements for UL 583: Tow Tractor Temperature Test, Removal of Dielectric Test for Arc Rupture Test, Electric Enclosures for Type EE, and Field Installed Accessories.

Single copy price: Contact comm2000 for pricing and delivery options
 Order from: comm2000
 Send comments (with copy to psa@ansi.org) to: Beth Northcott, (847) 664-3198, Elizabeth.Northcott@ul.com

UL (Underwriters Laboratories, Inc.)

Revision

BSR/UL 1261-201x, Standard for Safety for Electric Water Heaters for Pools and Tubs (revision of ANSI/UL 1261-2004 (R2012))

Addition and revision of requirements to relocate component standard references from Appendix A into the body of the standard as component requirements.

Single copy price: Contact comm2000 for pricing and delivery options
 Order from: comm2000
 Send comments (with copy to psa@ansi.org) to: Nicolette Allen, (919) 549-0973, Nicolette.Allen@ul.com

UL (Underwriters Laboratories, Inc.)

Revision

BSR/UL 1449-201x, Standard for Safety for Surge Protective Devices (revision of ANSI/UL 1449-2012)

(1) Dielectric Voltage Test for varistors; (2) Component evaluations; (3) Clarification of requirements in 19.4; (4) Clarification of requirements for direct plug-in SPDs; (5) Dielectric Voltage Withstand Test - The use of lead shot; (6) Surge protection indication; (7) Non-metallic enclosure and conduit connections; (8) Revisions to thermal responsive device testing - Section 39C; (9) Addition of requirements for USB circuitry and rechargeable batteries; (10) Addition of GDT Breakover Voltage Test; (11) Revision to Table 18.1 - Minimum Spacings; (12) Revisions to Figure 33.1 - Test Program Flow Charts; (13) Revision to the Impact Test; (14) Type 3 SPDs with IEC 320 receptacles; and (15) Capacitors.

Single copy price: Contact comm2000 for pricing and delivery options
 Order from: comm2000
 Send comments (with copy to psa@ansi.org) to: Barbara Davis, (408) 754-6722, Barbara.J.Davis@ul.com

UL (Underwriters Laboratories, Inc.)

Revision

BSR/UL 1551-201x, Standard for Safety for Electric Plumbing Accessories (revision of ANSI/UL 1551-2011)

(1) Revision to the requirements of the scope to include toilets and commercial pedicure spas.

Single copy price: Contact comm2000 for pricing and delivery options
 Order from: comm2000
 Send comments (with copy to psa@ansi.org) to: Mitchell Gold, (847) 664-2850, Mitchell.Gold@ul.com

Comment Deadline: March 25, 2014

Reaffirmations and withdrawals available electronically may be accessed at: webstore.ansi.org

ASME (American Society of Mechanical Engineers)

Reaffirmation

BSR/ASME B5.52-2003 (R201x), Power Presses - General Purpose Single Gap Type (reaffirmation of ANSI/ASME B5.52-2003 (R2009))

This Standard applies to hydraulic and mechanical power presses having a one-piece frame that guides the slide and supports the bolster, adjustable bed, or horn. The frame is configured to provide unrestricted access to the front and sides of the die space. By means of dies or tooling attached to the slide and bolster or horn, these machines are used to shear, punch, form, or assemble metal or other materials. This Standard includes only the following types of presses: (a) bench; (b) open back inclinable (OBI); (c) open back stationary (OBS); and (d) adjustable bed/horn.

Single copy price: $45.00

Obtain an electronic copy from: http://cstools.asme.org/publicreview

Order from: For Reaffirmations and Withdrawn standards, please view our catalog at http://www.asme.org/kb/standards

Send comments (with copy to psa@ansi.org) to: Donnie Alonzo, (212) 591-7004, dalonzo@asme.org

ASME (American Society of Mechanical Engineers)

Reaffirmation

The requirements of this standard apply to power shears used to cut metal by shearing, utilizing a fixed lower knife(s) and a non-rotary, moving upper knife(s). This standard applies to those shears commonly referred to as squaring, guillotine, gap, plate, pivot blade (swing beam), and slitting (non-rotary). This standard specifically excludes machines referred to as right angle, alligator, cut to length, crop, slitting (rotary), nibblers, portable hand tools, coil slitters, rotary blade slitters, iron workers, angle, bar, beam, channel, notching, rotary drum, flying, and billet shears.

Single copy price: $30.00

Obtain an electronic copy from: http://cstools.asme.org/publicreview

Order from: For Reaffirmations and Withdrawn standards, please view our catalog at http://www.asme.org/kb/standards

Send comments (with copy to psa@ansi.org) to: Donnie Alonzo, (212) 591-7004, dalonzo@asme.org

ASME (American Society of Mechanical Engineers)

Reaffirmation

BSR/ASME B5.61-2003 (R201x), Power Presses - General Purpose Single Action Straight Side Type (reaffirmation of ANSI/ASME B5.61-2003 (R2009))

This Standard applies to hydraulic and mechanical power presses commonly referred to by the metal-working industry as General Purpose, Single Action, Straight Side Type Power Presses that, by means of dies or tooling attached to the slide and bolster, are used to shear, punch, form or assemble metal or other materials.

Single copy price: $45.00

Obtain an electronic copy from: http://cstools.asme.org/publicreview

Order from: For Reaffirmations and Withdrawn standards, please view our catalog at http://www.asme.org/kb/standards

Send comments (with copy to psa@ansi.org) to: Donnie Alonzo, (212) 591-7004, dalonzo@asme.org
This Report provides turbine-test procedures for the analysis and supervision of relative performance throughout the life of the turbine. These procedures will determine trends of operating efficiency, detect trouble, and furnish test data to evaluate efficiency changes in the turbine cycle. These procedures are designed to minimize test instrumentation and personnel. However, precision instrumentation at critical test locations is recommended for reliable results. A high degree of repeatability, rather than the acceptance test level of performance, is sought.

Single copy price: $85.00
Order from: Timothy Fisher, (847) 768-3411, TFisher@ASSE.org
Obtain an electronic copy from: TFisher@ASSE.org
Send comments (with copy to psa@ansi.org) to: Same

UL (Underwriters Laboratories, Inc.)

New Standard
BSR/UL 2162-201X, Standard for Safety for Commercial Wood-Fired Baking Ovens - Refractory Type (new standard)
UL proposes the first edition of the Standard for Commercial Wood-Fired Baking Ovens - Refractory Type, UL 2162.
Single copy price: Contact comm2000 for pricing and delivery options
Order from: comm2000
Send comments (with copy to psa@ansi.org) to: Nicolette Allen, (919) 549-0973, Nicolette.Allen@ul.com

Projects Withdrawn from Consideration
An accredited standards developer may abandon the processing of a proposed new or revised American National Standard or portion thereof if it has followed its accredited procedures. The following projects have been withdrawn accordingly:

AMCA (Air Movement and Control Association)

BSR/AMCA 270-201x, Laboratory Methods of Testing Fan Arrays for Rating (new standard)
Technical Reports Registered with ANSI

Technical Reports Registered with ANSI are not consensus documents. Rather, all material contained in Technical Reports Registered with ANSI is informational in nature. Technical reports may include, for example, reports of technical research, tutorials, factual data obtained from a survey carried out among standards developers and/or national bodies, or information on the "state of the art" in relation to standards of national or international bodies on a particular subject.

Immediately following the end of a 30-day announcement period in Standards Action, the Technical Report will be registered by ANSI. Please submit any comments regarding this registration to the organization indicated, with a copy to the PSA Center, American National Standards Institute, 25 West 43rd Street, New York, NY 10036 or E-Mail to psa@ansi.org.

HL7 (Health Level Seven)

HL7 TEMPLREGREQAN, R1-2014, HL7 Templates Registry Business Process Requirements Analysis, Release 1 (TECHNICAL REPORT)
(technical report)

Business Requirements Analysis sufficient to ensure template artifacts can be successfully registered and maintained throughout their life cycle from initial proposal through to active use, including roles required for management and adoption.

Single copy price: Free to members and non-members 90 days following publication

Order from: Karen Van Hentenryck, (734) 677-7777 Ext 104, Karenvan@HL7.org

Send comments (with copy to psa@ansi.org) to: Same

Correction

BSR/NSF 342

The December 20, 2013 call for comment listings for NSF 342, Sustainable Wallcoverings, had typographical errors.

Item BSR/NSF 342-201x (i1) should be called BSR/NSF 342-201x (i3) and item BSR/NSF 342-201x (i2) should be called BSR/NSF 342-201x (i4).
Call for Members (ANS Consensus Bodies)

Directly and materially affected parties who are interested in participating as a member of an ANS consensus body for the standards listed below are requested to contact the sponsoring standards developer directly and in a timely manner.

AMCA (Air Movement and Control Association)
Office: 30 West University Drive
Arlington Heights, IL 60004-1893
Contact: Amanda Muledy
Phone: (847) 704-6295
Fax: (847) 253-0088
E-mail: amuledy@amca.org

BSR/AMCA 99-201x, Standards Handbook (revision of ANSI/AMCA 99-2010)

ASA (ASC S12) (Acoustical Society of America)
Office: 35 Pinelawn Road
Suite 114E
Melville, NY 11747
Contact: Susan Blaeser
Phone: (631) 390-0215
Fax: (631) 390-0217
E-mail: sblaeser@aip.org; asastds@aip.org

BSR/ASA S12.2-201x, Criteria for Evaluating Room Noise (revision of ANSI/ASA S12.2-2008)

ASSE (ASC A10) (American Society of Safety Engineers)
Office: 1800 East Oakton Street
Des Plaines, IL 60018-2187
Contact: Timothy Fisher
Phone: (847) 768-3411
Fax: (847) 296-9221
E-mail: TFisher@ASSE.org

BSR/ASSE A10.24-201X, Roofing - Safety Requirements for Low-Sloped Roofs (revision of ANSI/ASSE A10.24-2006)

ITI (INCITS) (InterNational Committee for Information Technology Standards)
Office: 1101 K Street NW
Suite 610
Washington, DC 20005-3922
Contact: Barbara Bennett
Phone: (202) 626-5743
Fax: (202) 638-4922
E-mail: comments@itic.org

UL (Underwriters Laboratories, Inc.)
Office: 12 Laboratory Drive
Research Triangle Park, NC 27709-3995
Contact: Valara Davis
Phone: (919) 549-0921
Fax: (919) 549-0921
E-mail: Valara.Davis@ul.com

BSR/UL 1059-201x, Standard for Safety for Terminal Blocks (revision of ANSI/UL 1059-2011)

BSR/UL 1062-201X, Standard for Safety for Unit Substations (new standard)

BSR/UL 1261-201x, Standard for Safety for Electric Water Heaters for Pools and Tubs (revision of ANSI/UL 1261-2004 (R2012))

BSR/UL 1323-201x, Standard for Safety for Scaffold Hoists (revision of ANSI/UL 1323-2012)
Final Actions on American National Standards

The standards actions listed below have been approved by the ANSI Board of Standards Review (BSR) or by an ANSI-Audited Designator, as applicable.

AISI (American Iron and Steel Institute)

New Standard

Revision

ANSI/AISI S910-2013, Test Method for Distortional Buckling of Cold-Formed Steel Hat Shaped Compression Members (revision of ANSI/AISI S910-2008): 1/23/2014

ASA (ASC S3) (Acoustical Society of America)

New National Adoption

ASABE (American Society of Agricultural and Biological Engineers)

Reaffirmation

ANSI/ASAE S289.2-FEB98 (R2013), Concrete Slip-Form Canal Linings (reaffirmation of ANSI/ASAE S289.2-FEB98 (R2009)): 1/21/2014
ANSI/ASAE S296.5-DEC2003 (R2013), General Terminology for Traction of Agricultural Traction and Transport Devices and Vehicles (reaffirmation of ANSI/ASAE S296.5-2003 (R2009)): 1/21/2014
ANSI/ASAE S396.2-1990 (R2013), Combine Capacity and Performance Test Procedure (reaffirmation of ANSI/ASAE S396.2-JAN91 (R2009)): 1/23/2014

ASTM (ASTM International)

New Standard

ATIS (Alliance for Telecommunications Industry Solutions)

New Standard

ANSI ATIS 0600031-2014, (Pumped) Distributed Refrigerant Cooling - Standardized Infrastructure (new standard): 1/21/2014

Reaffirmation

ANSI ATIS 0600427.01-2004 (R2014), ATM - Based Multi-Pair Bonding (reaffirmation of ANSI ATIS 0600427.01-2004 (R2009)): 1/23/2014
ANSI ATIS 0600427.02-2004 (R2014), ATM - Based Multi-Pair Bonding Using Time Division Inverse Multiplexing (reaffirmation of ANSI ATIS 0600427.02-2004 (R2009)): 1/23/2014
ANSI ATIS 0600427.03-2004 (R2014), Multi-Pair Bonding Using Time Division Inverse Multiplexing (reaffirmation of ANSI ATIS 0600427.03-2004 (R2009)): 1/23/2014
ANSI ATIS 0700711-1999 (R2014), Number Portability for PCS 1900 Short Message Service and Other Services (reaffirmation of ANSI ATIS 0700711-1999 (R2009)): 1/21/2014
ANSI ATIS 1000114-2004 (R2014), Signalling System Number 7 (SS7) - Transaction Capabilities Application Part (TCAP) (reaffirmation of ANSI ATIS 1000114-2004 (R2009)): 1/21/2014

ANSI ATIS 1000632-1993 (R2014), ISDN Supplementary Service Normal Call Transfer (reaffirmation of ANSI ATIS 1000632-1993 (R2009)): 1/23/2014

ANSI ATIS 1000666-1999 (R2014), Signalling System Number 7 (SS7) - Operator Services Network Capabilities (reaffirmation of ANSI ATIS 1000666-1999 (R2009)): 1/23/2014

ANSI ATIS 1000666.a-2000 (R2014), Interactions between the Operator Services Network Capability (OSNC) and Release to Pivot (RTP) (reaffirmation of ANSI ATIS 1000666.a-2000 (R2009)): 1/23/2014

* Revision

AWS (American Welding Society)

Revision

AWWA (American Water Works Association)

New Standard

ANSI/AWWA G481-2014, Reclaimed Water Programs Operation and Management (new standard): 1/23/2014

CEA (Consumer Electronics Association)

Reaffirmation

ITI (INCITS) (InterNational Committee for Information Technology Standards)

Stabilized Maintenance

NCPDP (National Council for Prescription Drug Programs)

Revision

SAIA (ASC A92) (Scaffold & Access Industry Association)

Reaffirmation

* ANSI/SIA A92.5-2006 (R2014), Standard for Boom-Supported Elevating Work Platforms (reaffirmation of ANSI/SIA A92.5-2006): 1/21/2014

SCTE (Society of Cable Telecommunications Engineers)

Revision

UL (Underwriters Laboratories, Inc.)

New Standard

Revision

Standards Action - January 24, 2014 - Page 12 of 43 Pages

Project Initiation Notification System (PINS)

ANSI Procedures require notification of ANSI by ANSI-accredited standards developers (ASD) of the initiation and scope of activities expected to result in new or revised American National Standards (ANS). Early notification of activity intended to reaffirm or withdraw an ANS and in some instances a PINS related to a national adoption is optional. The mechanism by which such notification is given is referred to as the PINS process. For additional information, see clause 2.4 of the ANSI Essential Requirements: Due Process Requirements for American National Standards.

Following is a list of proposed actions and new ANS that have been received recently from ASDs. Please also review the section in Standards Action entitled "American National Standards Maintained Under Continuous Maintenance" for additional or comparable information with regard to standards maintained under the continuous maintenance option. To view information about additional standards for which a PINS has been submitted and to search approved ANS, please visit www.NSSN.org, which is a database of standards information. Note that this database is not exhaustive.

Directly and materially affected interests wishing to receive more information or to submit comments are requested to contact the standards developer directly within 30 days of the publication of this announcement.

ABMA (ASC B3) (American Bearing Manufacturers Association)
Office: 2025 M Street, NW
 Suite 800
 Washington, DC 20036-3309
Contact: James Converse
Fax: (919) 827-4587
E-mail: jconverse@americanbearings.org; jconverse1@nc.rr.com

BSR/ABMA/ISO 104:2014, Rolling bearings - Thrust bearings -
Boundary dimensions, general plan (identical national adoption of
ISO 104:2002)
Stakeholders: Producers and users of bearings.
Project Need: Updates U.S. standard to current ISO version.

This International Standard specifies the major boundary dimensions of single-direction and double-direction thrust bearings with flat back faces. In addition, it gives the minimum bore diameters of housing washers and maximum outside diameters of shaft washers of bearings in dimension series 11, 12, 13, 14, 22, 23, and 24. Guidelines for the extension of this International Standard for single-direction thrust bearings are given in annex A.

BSR/ABMA/ISO 3096:2014, Rolling bearings - Needle rollers -
Dimensions and tolerances (identical national adoption of ISO
Stakeholders: Producers and users of bearings.
Project Need: Updates U.S. standard to current ISO version.

 Specifies dimensions and tolerances for finished steel needle rollers used as rolling elements in rolling bearings. Replaces the first edition.

AMCA (Air Movement and Control Association)
Office: 30 West University Drive
 Arlington Heights, IL 60004-1893
Contact: Amanda Muledy
Fax: (847) 253-0088
E-mail: amuledy@amca.org

* BSR/AMCA 99-201x, Standards Handbook (revision of ANSI/AMCA 99
-2010)
Stakeholders: Fan testing labs, product consumers, regulatory bodies.
Project Need: A standard needed to be established that clarified terms and standardized definitions.

This standard establishes definitions and clarifications of terms and symbols commonly referenced in our publications and in the industry.

ASA (ASC S12) (Acoustical Society of America)
Office: 35 Pinelawn Road
 Suite 114E
 Melville, NY 11747
Contact: Susan Blaeser
Fax: (631) 390-0217
E-mail: sblaeser@aip.org; asastds@aip.org

BSR/ASA S12.2-201x, Criteria for Evaluating Room Noise (revision of
ANSI/ASA S12.2-2008)
Stakeholders: Architects, acoustical consultants, builders, and the general public who occupy buildings.
Project Need: The standard needs to be technically updated throughout to respond to improvements and changes in the technology.

This Standard provides three methods for evaluating room noise: a survey method that employs the A-weighted sound level; an engineering method that employs expanded noise criteria (NC) curves; and a method for evaluating low-frequency fluctuating noise using room noise criterion (RNC) curves.

ASCE (American Society of Civil Engineers)
Office: 1801 Alexander Bell Dr
 Reston, VA 20191
Contact: James Neckel
E-mail: jneckel@asce.org

* BSR/ASCE 39XX-201x, Guidelines for Operational Hail Suppression Programs (new standard)
Stakeholders: Airport and airfield operators.
Project Need: There is no current standard created through an ANSI-approved consensus process.

This document describes a process through which hail suppression operations should be designed, organized, and conducted. The information contained in this standard is intended to be helpful to those persons wishing to implement operational hail suppression activities (described interchangeably in this document as programs and/or projects), and provides information on the design, conduct, and evaluation of such efforts. Operational activities addressed by this standard include airborne, ground-based, and rocket and artillery delivery systems.
Standards Action - January 24, 2014 - Page 13 of 43 Pages

ASTM (ASTM International)
Office: 100 Barr Harbor Drive
West Conshohocken, PA 19428-2959
Contact: Kerianne Conn
Fax: (202) 347-7125
E-mail: kconn(at)atis.org; jpeppard(at)atis.org

BSR/ASTM WK44535-201x, New Practice for Mounting of Plastic Pipe, Plastic Tubing, Plastic Pipe and Tubing Materials and Assemblies Incorporating Plastic Pipe and Tubing to be Tested in Stieger Tunnel Consistent with Standard EB4 (new standard)
Stakeholders: Surface Burning industry.
Project Need: To develop a new standard for consideration by the E05.22 subcommittee membership consistent with deliberations of that subcommittee at its meeting in Jacksonville on Tuesday, December 12, 2013. Subject matter of the ballot item will be to address mounting of plastic pipe, plastic tubing, plastic pipe and tubing materials and assemblies incorporating plastic pipe and tubing to be tested in Steiger tunnel consistent with the current version of the ASTM E84 standard.
http://www.astm.org/DATABASE.CART/WORKITEMS/WK44535.htm

ATIS (Alliance for Telecommunications Industry Solutions)
Office: 1200 G Street, NW
Suite 500
Washington, DC 20005
Contact: Kerianne Conn
Fax: (202) 347-7125
E-mail: kconn(at)atis.org; jpeppard(at)atis.org

BSR ATIS 1000109-201x, Exchange-Interchange Carrier Interfaces - 950+XXXX EC-to-IC Access Signaling Protocols (revision of ANSI ATIS 1000109-1990 (R2009))
Stakeholders: Communication industry.
Project Need: The scope of this revision is to provide updates to the normative and informative clauses.
This standard specifies the procedures for the establishing, maintaining, and clearing of network connection at the Integrated Services Digital Network (ISDN) user-network interface for the support of circuit-switched calls. These procedures are defined in terms of messages exchange over the D-channel.

BSR ATIS 1000607-201x, Integrated Services Digital Network (ISDN) - Call Hold Supplementary Service (revision of ANSI ATIS 1000616-1992 (R2009))
Stakeholders: Communication industry.
Project Need: The scope of this revision is to provide updates to the normative and informative clauses.
This standard specifies the service capabilities of the Call Hold service within the context of an Integrated Services Digital Network (ISDN).

BSR ATIS 1000620a-201x, Multi-Rate Circuit-Mode Bearer Service for ISDN - Addendum to the Circuit-Mode Bearer Service Category Description (revision of ANSI ATIS 1000620a-1992 (R2009))
Stakeholders: Communication industry.
Project Need: The scope of this revision is to provide updates to the normative and informative clauses.
This standard provides the service capabilities of the multi-rate circuit-mode bearer services that are to be supported by public networks for ISDN primary rate interfaces.
BSR ATIS 1000621-201x, Integrated Services Digital Network (ISDN) - User-to-User Signalling Supplementary Service (revision of ANSI ATIS 1000621-1992 (R2009))

Stakeholders: Communication industry.
Project Need: The scope of this revision is to provide updates to the normative and informative clauses.

This standard is one of a series that defines and describes service capabilities within the context of an Integrated Service Digital Network (ISDN). It describes a single service capability, which is a telecommunication transport capability. Such capability may be made available on a demand or a subscription arrangement.

BSR ATIS 1000623-201x, Digital Subscriber Signalling System Number 1 (DSS1) - Signalling Specification for the User Signalling Bearer Service (revision of ANSI ATIS 1000623-1993 (R2009))

Stakeholders: Communication industry.
Project Need: The scope of this revision is to provide updates to the normative and informative clauses.

This standard presents the procedures at the S or T reference point for D-channel access connection on basic rate interfaces and primary rate interfaces within the Integrated Services Digital Network (ISDN) to support ISDN user signalling bearer service.

BSR ATIS 1000627-201x, Broadband ISDN - ATM Layer Functionality and Specification (revision of ANSI ATIS 1000627-1993 (R2009))

Stakeholders: Communication industry.
Project Need: The scope of this revision is to provide updates to the normative and informative clauses.

This standard is one of a series on Broadband Integrated Services Digital Network (B-ISDN). These standards describe the B-ISDN capabilities, architectural model, and network interfaces including protocol functionalities and specifications, and signaling characteristics. In particular, this standard describes the protocol of the ATM Layer.

BSR ATIS 1000642-201x, Integrated Services Digital Network (ISDN) - Call Deflection Supplementary Service (revision of ANSI ATIS 1000642-1995 (R2009))

Stakeholders: Communication industry.
Project Need: The scope of this revision is to provide updates to the normative and informative clauses.

This standard is one of a series that defines and describes supplementary services within the context of an Integrated Services Digital Network (ISDN). The interaction of this service with other ISDN services is also included. The purpose of the standard is to allow maximum compatibility among network- and user-owned telecommunication equipment in order to increase the attractiveness and usefulness of ISDN-based capabilities.

AWC (American Wood Council)
Office: 803 Sycolin Road
Leesburg, VA 20175
Contact: Bradford Douglas
Fax: (703) 581-1735
E-mail: bdouglas@awc.org

BSR/AWC NDS-201x, National Design Specification (R) for Wood Construction (revision and redesignation of ANSI/AWC NDS-2012)
Stakeholders: Wood producers, designers, and regulators.
Project Need: Revises current version of NDS-2012, primarily to add charging language for design of Cross-Laminated Timber.
This specification provides guidelines and requirements for structural and fire design of wood products, and their connectors.

BSR/AWC WFCM-201x, Wood Frame Construction Manual for One- and Two-Family Dwellings (revision and redesignation of ANSI/AWC WFCM-2012)
Stakeholders: Engineers, architects, builders, and regulators.
Project Need: Revises WFCM-2012, primarily to address changes to southern pine design values.
The WFCM provides engineered and prescriptive design requirements for wood frame construction used in one- and two-family dwellings constructed in high-wind, seismic, and snow regions.

PLASA (PLASA North America)
Office: 630 Ninth Avenue
Suite 609
New York, NY 10036-3748
Contact: Karl Ruling
Fax: (212) 244-1502
E-mail: karl.ruling@plasa.org

BSR TIA 1005-A-1-201x, Telecommunications Infrastructure Standard for Industrial Premises Addendum 1, M12-8 X-coding Connector (addenda to ANSI/TIA 1005-A-2012)
Stakeholders: Users/manufacturers of the Industrial facilities community.
Project Need: Provide updates for an existing standard.
This addendum is to provide necessary information. The industry is adopting higher data rates that require new connectors that are small form factor and sealed. The M12-8 X coding connector has been adopted by many international standards organizations and national consortia for use in the industrial areas.

TIA (Telecommunications Industry Association)
Office: 1320 North Courthouse Road
Suite 200
Arlington, VA 22201
Contact: Germaine Palangdao
Fax: (703) 907-7727
E-mail: standards@tiainline.org

BSR/TIA 1005-A-1-201x, Telecommunications Infrastructure Standard for Industrial Premises Addendum 1, M12-8 X-coding Connector (addenda to ANSI/TIA 1005-A-2012)
Stakeholders: Users/manufacturers of the Industrial facilities community.
Project Need: Provide updates for an existing standard.
This addendum is to provide necessary information. The industry is adopting higher data rates that require new connectors that are small form factor and sealed. The M12-8 X coding connector has been adopted by many international standards organizations and national consortia for use in the industrial areas.
BSR/UL 1062-201X, Standard for Safety for Unit Substations (new standard)

Stakeholders: Producers, commercial/industrial users, Authority Having Jurisdiction, test & standards, and general interest.

Project Need: ANSI approval of requirements covered by this standard.

These requirements cover unit substations of 1000-kVA single-phase and 3000-kVA 3-phase maximum having a maximum nominal primary or secondary rating of 600 volts. Their construction, installation, and use are intended to be in accordance with the National Electrical Code, ANSI/NFPA 70.
American National Standards Maintained Under Continuous Maintenance

The ANSI Essential Requirements: Due Process Requirements for American National Standards provides two options for the maintenance of American National Standards (ANS): periodic maintenance (see clause 4.7.1) and continuous maintenance (see clause 4.7.2). Continuous maintenance is defined as follows:

The standard shall be maintained by an accredited standards developer. A documented program for periodic publication of revisions shall be established by the standards developer. Processing of these revisions shall be in accordance with these procedures. The published standard shall include a clear statement of the intent to consider requests for change and information on the submittal of such requests. Procedures shall be established for timely, documented consensus action on each request for change and no portion of the standard shall be excluded from the revision process. In the event that no revisions are issued for a period of four years, action to reaffirm or withdraw the standard shall be taken in accordance with the procedures contained in the ANSI Essential Requirements.

The Executive Standards Council (ExSC) has determined that for standards maintained under the Continuous Maintenance option, separate PINS announcements are not required. The following ANSI Accredited Standards Developers have formally registered standards under the Continuous Maintenance option.

- AAMI (Association for the Advancement of Medical Instrumentation)
- AAMVA (American Association of Motor Vehicle Administrators)
- AGA (American Gas Association)
- AGSC (Auto Glass Safety Council)
- ASC X9 (Accredited Standards Committee X9, Incorporated)
- ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.)
- ASME (American Society of Mechanical Engineers)
- ASTM (ASTM International)
- GEIA (Greenguard Environmental Institute)
- HL7 (Health Level Seven)
- HMI (ASC MH10) (Material Handling Industry)
- NAHBRC (NAHB Research Center, Inc.)
- NBBPVI (National Board of Boiler and Pressure Vessel Inspectors)
- NCPDP (National Council for Prescription Drug Programs)
- NISO (National Information Standards Organization)
- NSF (NSF International)
- TIA (Telecommunications Industry Association)
- UL (Underwriters Laboratories, Inc.)

To obtain additional information with regard to these standards, including contact information at the ANSI Accredited Standards Developer, please visit ANSI Online at www.ansi.org/asd, select “Standards Activities,” click on “Public Review and Comment” and “American National Standards Maintained Under Continuous Maintenance.” This information is also available directly at www.ansi.org/publicreview.

Alternatively, you may contact the Procedures & Standards Administration department (PSA) at psa@ansi.org or via fax at 212-840-2298. If you request that information be provided via E-mail, please include your E-mail address; if you request that information be provided via fax, please include your fax number. Thank you.
ANSI-Accredited Standards Developers Contact Information

The addresses listed in this section are to be used in conjunction with standards listed in PINS, Call for Comment and Final Actions. This section is a list of developers who have submitted standards for this issue of Standards Action – it is not intended to be a list of all ANSI-Accredited Standards Developers. Please send all address corrections to Standards Action Editor at standact@ansi.org.

ABMA (ASC B3)
American Bearing Manufacturers Association
2025 M Street, NW
Suite 800
Washington, DC 20036-3309
Phone: (202) 374-2595
Fax: (202) 296-7527
Website: www.abma.com

ACCA
Air Conditioning Contractors of America
2800 Shirlington Road
Suite 300
Arlington, VA 22206
Phone: (703) 575-9147
Fax: (703) 575-9148
Web: www.acca.org

AISI
American Iron and Steel Institute
25 Massachusetts Avenue, NW
Suite 800
Washington, DC 20001
Phone: (202) 452-7100
Fax: (202) 452-1039
Website: www.steel.org

AMCA
AMCA International, Inc.
30 West University Drive
Arlington Heights, IL 60004-1893
Phone: (847) 704-6295
Fax: (847) 253-0088
Website: www.amca.org

API
American Petroleum Institute
1220 L Street, NW
Washington, DC 20005-4070
Phone: (202) 682-8571
Fax: (202) 962-4797
Website: www.api.org

ASA (ASC S12)
Acoustical Society of America
35 Pinelawn Road
Suite 114E
Melville, NY 11747
Phone: (631) 390-0215
Fax: (631) 390-0217
Website: acousticalsociety.org

ASABE
American Society of Agricultural and Biological Engineers
2950 Niles Road
St Joseph, MI 49085
Phone: (269) 932-7015
Fax: (269) 429-3852
Website: www.asabe.org

ASCE
American Society of Civil Engineers
1801 Alexander Bell Dr
Reston, VA 20191
Phone: 703-295-6176
Website: www.asce.org

ASHRAE
American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.
1791 Tullie Circle, NE
Atlanta, GA 30329
Phone: (404) 636-8400
Fax: (404) 321-5478
Website: www.ashrae.org

ASME
American Society of Mechanical Engineers
Two Park Avenue
New York, NY 10016
Phone: (212) 591-8521
Fax: (212) 591-8501
Website: www.asme.org

ATIS
Alliance for Telecommunications Industry Solutions
1200 G Street, NW
Suite 500
Washington, DC 20005
Phone: (202) 434-8841
Fax: (202) 347-7125
Website: www.atis.org

AWC
American Wood Council
803 Sycolin Road
Suite 201
Leesburg, VA 20175
Phone: (202) 463-2770
Fax: (703) 581-1735
Website: www.awc.org

AWS
American Welding Society
8669 Doral Blvd #130
Doral, FL 33166
Phone: (305) 443-9353, x 301
Fax: (305) 443-5951
Website: www.aws.org

AWWA
American Water Works Association
6666 W. Quincy Ave.
Denver, CO 80235
Phone: (303) 347-6178
Fax: (303) 795-7603
Website: www.awwa.org

CEA
Consumer Electronics Association
1919 South Eads Street
Arlington, VA 22202
Phone: (703) 907-7697
Fax: (703) 907-4197
Website: www.cea.org

HL7
Health Level Seven
3300 Washtenaw Avenue
Suite 227
Ann Arbor, MI 48104
Phone: (734) 677-7777 Ext 104
Fax: (734) 677-6622
Website: www.hl7.org

ISA (Organization)
ISA-The Instrumentation, Systems, and Automation Society
67 Alexander Drive
Research Triangle Park, NC 27709
Phone: (919) 990-9228
Fax: (919) 349-8288
Website: www.isa.org

ITI (INCITS)
InterNational Committee for Information Technology Standards
1101 K Street NW
Suite 610
Washington, DC 20005-3922
Phone: (202) 626-5741
Fax: (202) 638-4922
Website: www.incits.org

NCPDP
National Council for Prescription Drug Programs
9240 East Raintree Drive
Scottsdale, AZ 85260
Phone: (512) 291-1356
Fax: (480) 767-1042
Website: www.ncpdp.org

NSF
National Science Foundation
1200 Wilson Boulevard
Suite 1200
Arlington, VA 22209
Phone: (703) 306-1000
Fax: (703) 306-1001
Website: www.nsf.gov

PLASA
PLASA North America
630 Ninth Avenue
Suite 609
New York, NY 10036-3748
Phone: (212) 244-1505
Fax: (212) 244-1502
Website: www.plasa.org

SAIA (ASC A92)
Scaffold & Access Industry Association
400 Admiral Boulevard
Kansas City, MO 64106
Phone: (816) 595-4831
Website: www.saiainline.org
SCTE
Society of Cable Telecommunications
Engineers
140 Philips Road
Exton, PA 19341
Phone: (610) 594-7308
Fax: (610) 363-7133
Web: www.scte.org

TAPPI
Technical Association of the Pulp and
Paper Industry
15 Technology Parkway South
Peachtree Corners, GA 30092
Phone: (770) 209-7276
Fax: (770) 446-6947
Web: www.tappi.org

TIA
Telecommunications Industry
Association
1320 North Courthouse Road
Suite 200
Arlington, VA 22201
Phone: (703) 907-7497
Fax: (703) 907-7727
Web: www.tiaonline.org

UL
Underwriters Laboratories, Inc.
333 Pfingsten Road
Northbrook, IL 60062-2096
Phone: (847) 664-2346
Fax: (847) 664-2346
Web: www.ul.com
This section lists proposed standards that the International Organization for Standardization (ISO) is considering for approval. The proposals have received substantial support within the technical committees or subcommittees that developed them and are now being circulated to ISO members for comment and vote. Standards Action readers interested in reviewing and commenting on these documents should order copies from ANSI.

Comments

Comments regarding ISO documents should be sent to Karen Hughes, at ANSI's New York offices (isot@ansi.org). The final date for offering comments is listed after each draft.

Ordering Instructions

ISO Drafts can be made available by contacting ANSI's Customer Service department. Please e-mail your request for an ISO Draft to Customer Service at sales@ansi.org. When making your request, please provide the date of the Standards Action issue in which the draft document you are requesting appears.

ISO/DIS 17604, Microbiology of food and animal feed - Carcass sampling for microbiological analysis	4/17/2014
ISO/DIS 18363-1, Animal and vegetables fats and oils - Determination of fatty-acid-bound 3-chloropropane-1,2-diol (3-MCPD) and 2,3-epoxi-propane-1-ol (glycidol) - Differential method using GC/MS - Part 1: Method by GC/MS (Differential measurement)	4/19/2014
ISO/DIS 23747, Anaesthetic and respiratory equipment - Peak expiratory flow meters for the assessment of pulmonary function in spontaneously breathing humans	4/24/2014, $93.00
ISO/DIS 4217, Codes for the representation of currencies and funds	4/28/2014
ISO/DIS 2939, Cinematography - Picture image area on 35 mm motion-picture release prints - Position and dimensions	4/28/2014
ISO/DIS 18069, Corrosion of metals and alloys - Method for determination of the uniform corrosion rate of stainless steels and nickel based alloys	4/28/2014
ISO/DIS 18089, Corrosion of metals and alloys - Determination of the critical crevice temperature (ECCT) for stainless steels under potentiostatic control	4/28/2014
ISO/DIS 22674, Dentistry - Metallic materials for fixed and removable restorations and appliances	1/15/2014, $102.00
ISO/DIS 16741, Traceability of Crustacean products - Specifications on the information to be recorded in farmed Crustacean distribution chains	3/28/2014, $98.00
ISO/DIS 18537, Traceability of crustacean products - Specifications on the information to be recorded in captured crustacean distribution chains	3/28/2014, $88.00
ISO/DIS 18538, Traceability of molluscan products - Specifications on the information to be recorded in farmed molluscan distribution chains	3/28/2014, $98.00
ISO/DIS 18539, Traceability of molluscan products - Specifications on the information to be recorded in captured molluscan distribution chains	3/28/2014, $88.00
ISO/DIS 4393, Fluid power systems and components - Cylinders - Basic series of piston strokes	4/25/2014, $33.00
ISO/DIS 6432, Pneumatic fluid power - Single rod cylinders, 1 000 kPa (10 bar) series, bores from 8 mm to 25 mm - Basic and mounting dimensions	4/25/2014, $40.00
ISO/DIS 17871, Gas cylinders - Quick opening valves - Specification and type testing	4/17/2014
ISO/DIS 7967-12, Reciprocating internal combustion engines - Vocabulary of components and systems - Part 12: Exhaust emission control systems	4/25/2014
LIGHT METALS AND THEIR ALLOYS (TC 79)
ISO/DIS 6361-2, Wrought aluminium and aluminium alloys - Sheets, strips and plates - Part 2: Mechanical properties - 4/18/2014, $119.00
ISO/DIS 6361-3, Wrought aluminium and aluminium alloys - Sheets, strips and plates - Part 3: Strips: Tolerances on shape and dimensions - 4/18/2014, $33.00
ISO/DIS 6361-4, Wrought aluminium and aluminium alloys - Sheets, strips and plates - Part 4: Sheets and plates: Tolerances on shape and dimensions - 4/18/2014, $58.00
ISO/DIS 6362-2, Wrought aluminium and aluminium alloys - Extruded rods/bars, tubes and profiles - Part 2: Mechanical properties - 4/18/2014, $88.00
ISO/DIS 6362-7, Wrought aluminium and aluminium alloys - Extruded rods/bars, tubes and profiles - Part 7: Chemical composition - 4/18/2014, $40.00

MACHINE TOOLS (TC 39)
ISO/DIS 16089, Machine tools - Safety - Stationary grinding machines - 4/17/2014, $175.00
ISO/DIS 16093, Machine tools - Safety - Sawing machines for cold metal - 4/17/2014, $119.00

NUCLEAR ENERGY (TC 85)
ISO/DIS 16638-1, Radiological protection - Monitoring and internal dosimetry for specific materials - Part 1: Uranium - 4/18/2014, $112.00

OPTICS AND OPTICAL INSTRUMENTS (TC 172)
ISO 8624/DAmd1, Ophthalmic optics - Spectacle frames - Measuring system and terminology - Amendment 1 - 4/17/2014, $29.00
ISO/DIS 10322-2, Ophthalmic optics - Semi-finished spectacle lens blanks - Part 2: Specifications for progressive-power and degressive-power lens blanks - 4/17/2014, $53.00

OTHER

PETROLEUM PRODUCTS AND LUBRICANTS (TC 28)

PLASTICS (TC 61)
ISO/DIS 4892-1, Plastics - Methods of exposure to laboratory light sources - Part 1: General guidance - 4/24/2014, $88.00

PLASTICS PIPES, FITTINGS AND VALVES FOR THE TRANSPORT OF FLUIDS (TC 138)
ISO/DIS 18851, Plastics piping systems - Glass-reinforced thermosetting plastics (GRP) pipes and fittings - Test method to prove the structural design of fittings - 4/25/2014, $46.00

POWDER METALLURGY (TC 119)

ROAD VEHICLES (TC 22)
ISO/DIS 3006, Road vehicles - Passenger car wheels for road use - Test methods - 4/18/2014, $53.00
ISO/DIS 3537, Road vehicles - Safety glazing materials - Mechanical tests - 4/9/2014, $77.00
ISO/DIS 3917, Road vehicles - Safety glazing materials - Test methods for resistance to radiation, high temperature, humidity, fire and simulated weathering - 4/25/2014, $46.00
ISO/DIS 6487, Road vehicles - Measurement techniques in impact tests - Instrumentation - 4/25/2014, $67.00
ISO/DIS 15500-1, Road vehicles - Compressed natural gas (CNG) fuel system components - Part 1: General requirements and definitions - 4/25/2014, $46.00
ISO/DIS 15500-7, Road vehicles - Compressed natural gas (CNG) fuel system components - Part 7: Gas injector - 4/25/2014, $40.00
ISO/DIS 15500-8, Road vehicles - Compressed natural gas (CNG) fuel system components - Part 8: Pressure indicator - 4/25/2014, $33.00
ISO/DIS 15500-10, Road vehicles - Compressed natural gas (CNG) fuel system components - Part 10: Gas-flow adjuster - 4/25/2014, $33.00
ISO/DIS 15500-11, Road vehicles - Compressed natural gas (CNG) fuel system components - Part 11: Gas/air mixer - 4/25/2014, $33.00
ISO/DIS 15500-12, Road vehicles - Compressed natural gas (CNG) fuel system components - Part 12: Pressure relief valve (PRV) - 4/25/2014, $33.00
ISO/DIS 15500-20, Road vehicles - Compressed natural gas (CNG) fuel system components - Part 20: Rigid fuel line in material other than stainless steel - 4/25/2014, $33.00

ROLLING BEARINGS (TC 4)
ISO/DIS 104, Rolling bearings - Thrust bearings - Boundary dimensions, general plan - 4/19/2014, $67.00

RUBBER AND RUBBER PRODUCTS (TC 45)
ISO/DIS 2302, Isobutene-isoprene rubber (IIR) - Evaluation procedures - 4/25/2014, $58.00
ISO/DIS 4097, Rubber, ethylene-propylene-diene (EPDM) - Evaluation procedure - 4/25/2014, $71.00
ISO/DIS 4659, Styrene-butadiene rubber (carbon black or carbon black and oil masterbatches) - Evaluation procedure - 4/25/2014, $53.00
ISO/DIS 7663, Halogenated isobutene-isoprene rubber (BIIIR and CIIR) - Evaluation procedures - 4/25/2014, $53.00
ISO/DIS 19050, Rubber, raw, vulcanised, thermoplastic - Determination of metal content by ICP-AES - 4/25/2014, $46.00
ISO/DIS 3917, Road vehicles - Safety glazing materials - Test methods for resistance to radiation, high temperature, humidity, fire and simulated weathering - 4/25/2014, $46.00
ISO/DIS 23794, Rubber, vulcanized or thermoplastic - Abrasion testing - Guidance - 4/25/2014, $67.00

SAFETY OF MACHINERY (TC 199)
ISO/DIS 14122-4, Safety of machinery - Permanent means of access to machinery - Part 4: Fixed ladders - 4/17/2014, $112.00

SAFETY OF TOYS (TC 181)
SHIPS AND MARINE TECHNOLOGY (TC 8)
ISO/DIS 18215, Ships and marine technology - Vessel machinery operations in polar waters - Guidelines - 4/25/2014

SPORTS AND RECREATIONAL EQUIPMENT (TC 83)

SPRINGS (TC 227)

SURFACE CHEMICAL ANALYSIS (TC 201)
ISO/DIS 17560, Surface chemical analysis - Secondary-ion mass spectrometry - Method for depth profiling of boron in silicon - 4/25/2014, $53.00

TEXTILES (TC 38)
ISO/DIS 1136, Wool - Determination of mean diameter of fibres - Air permeability method - 4/28/2014
ISO/DIS 17608, Textiles - Determination of elastane fibre resistance to chlorinated water (swimming-pool water) - 4/28/2014

TRACTORS AND MACHINERY FOR AGRICULTURE AND FORESTRY (TC 23)

TRANSPORT INFORMATION AND CONTROL SYSTEMS (TC 204)
ISO 21210/DAmd1, Intelligent transport systems - Communications access for land mobiles (CALM) - IPv6 Networking - Amendment 1 - 4/25/2014, $33.00
ISO 21218/DAmd1, Intelligent transport systems - Communications access for land mobiles (CALM) - Access technology support - Amendment 1 - 4/21/2014, $62.00
ISO 24102-1/DAmd1, Intelligent transport systems - Communications access for land mobiles (CALM) - ITS station management - Part 1: Local management - Amendment 1 - 4/21/2014, $40.00
ISO 24102-3/DAmd1, Intelligent transport systems - Communications access for land mobiles (CALM) - ITS station management - Part 3: Service access points - Amendment 1 - 4/21/2014, $102.00
ISO 24102-4/DAmd1, Intelligent transport systems - Communications access for land mobiles (CALM) - ITS station management - Part 4: Station-internal management communications - Amendment 1 - 4/21/2014, $71.00
ISO 24102-5/DAmd1, Intelligent transport systems - Communications access for land mobiles (CALM) - ITS station management - Part 5: Fast service advertisement protocol (FSAP) - Amendment 1 - 4/21/2014, $53.00
ISO 29281-1/DAmd1, Intelligent transport systems - Communication access for land mobiles (CALM) - Non-IP networking - Part 1: Fast networking & transport layer protocol (FNTP) - Amendment 1 - 4/21/2014, $46.00
ISO 29281-2/DAmd1, Intelligent transport systems - Communication access for land mobiles (CALM) - Non-IP networking - Part 2: Legacy system support - Amendment 1 - 4/21/2014, $29.00

VALVES (TC 153)
ISO/DIS 15848-1, Industrial valves - Measurement, test and qualification procedures for fugitive emissions - Part 1: Classification system and qualification procedures for type testing of valves - 4/24/2014, $119.00

WELDING AND ALLIED PROCESSES (TC 44)
ISO/DIS 3834-5, Quality requirements for fusion welding of metallic materials - Part 5: Documents with which it is necessary to conform to claim conformity to the quality requirements of ISO 3834-2, ISO 3834-3 or ISO 3834-4 - 4/17/2014, $53.00

ISO/IEC JTC 1, Information Technology
ISO/IEC DIS 24711, Method for the determination of ink cartridge yield for colour inkjet printers and multi-function devices that contain printer components - 4/21/2014
ISO/IEC DIS 29102, Information technology - Office equipment - Method for the determination of ink cartridge photo yield for colour printing with inkjet printers and multi-function devices that contain inkjet printer components - 4/21/2014
ISO/IEC CD 11179-5, Information technology - Metadata registries (MDR) - Part 5: Naming and identification principles - 4/14/2014
ISO/IEC CD 19763-5, Information technology - Metamodel framework for interoperability (MFI) - Part 5: Metamodel for process model registration - 4/14/2014
ISO/IEC CD 19763-6, Information technology - Metamodel framework for interoperability (MFI) - Part 6: Registry Summary - 4/14/2014
ISO/IEC CD 19763-10, Information technology - Metamodel framework for interoperability (MFI) - Part 10: MFI Core model and basic mapping - 4/14/2014
ISO/IEC CD 19763-12, Information technology - Metamodel framework for interoperability (MFI) - Part 12: Metamodel for information model registration - 4/14/2014
ISO/IEC/IEEE DIS 26531, Systems and software engineering - Content management for product life-cycle, user and service management documentation - 4/21/2014
Newly Published IEC Standards

Listed here are new and revised standards recently approved and promulgated by IEC – the International Electrotechnical Commission. Most are available at the ANSI Electronic Standards Store (ESS) at www.ansi.org. All paper copies are available from Standards resellers (http://webstore.ansi.org/faq.aspx#resellers).

ALL-OR-NOTHING ELECTRICAL RELAYS (TC 94)

IEC 61811-10 Ed. 1.0 b:2002, Electromechanical elementary relays of assessed quality - Part 10: Sectional specification - Relays for industrial application, $157.00

IEC 62025-1 Ed. 2.0 b:2007, High frequency inductive components - Part 1: Methods of evaluating performance, $230.00

CABLES, WIRES, WAVEGUIDES, R.F. CONNECTORS, AND ACCESSORIES FOR COMMUNICATION AND SIGNALLING (TC 46)

IEC 60966-3 Ed. 3.0 b:2008, Radio frequency and coaxial cable assemblies - Part 3: Sectional specification for semi-flexible coaxial cable assemblies, $121.00

IEC 61169-4 Ed. 1.0 b:2008, Radio-frequency connectors - Part 4: RF coaxial connectors with inner diameter of outer conductor 16 mm (0.63 in) with screw lock - Characteristic impedance 50 O (type 7-16), $182.00

IEC 61169-8 Ed. 1.0 b:2007, Radio-frequency connectors - Part 8: Sectional specification - RF coaxial connectors with inner diameter of outer conductor 6,5 mm (0,256 in) with bayonet lock - Characteristic impedance 50 O (type BNC), $230.00

IEC 62037-1 Ed. 1.0 b:2012, Passive RF and microwave devices, intermodulation level measurement - Part 1: General requirements and measuring methods, $97.00

IEC 62037-2 Ed. 1.0 b:2013, Passive RF and microwave devices, intermodulation level measurement - Part 2: Measurement of passive intermodulation in coaxial cable assemblies, $31.00

IEC 62037-3 Ed. 1.0 b:2012, Passive RF and microwave devices, intermodulation level measurement - Part 3: Measurement of passive intermodulation in coaxial connectors, $36.00

IEC 62037-4 Ed. 1.0 b:2012, Passive RF and microwave devices, intermodulation level measurement - Part 4: Measurement of passive intermodulation in coaxial cables, $48.00

IEC 62037-5 Ed. 1.0 b:2013, Passive RF and microwave devices, intermodulation level measurement - Part 5: Measurement of passive intermodulation in filters, $61.00

IEC 62037-6 Ed. 1.0 b:2013, Passive RF and microwave devices, intermodulation level measurement - Part 6: Measurement of passive intermodulation in antennas, $61.00

IEC 60966-2-1 Ed. 3.0 b:2008, Radio frequency and coaxial cable assemblies - Part 2-1: Sectional specification for flexible coaxial cable assemblies, $121.00

IEC 60966-2-3 Ed. 3.0 b:2009, Radio-frequency and coaxial cable assemblies - Part 2-3: Detail specification for flexible coaxial cable assemblies - Frequency range 0 MHz to 1 000 MHz, IEC 61169-8 connectors, $24.00

IEC 60966-2-4 Ed. 3.0 b:2009, Radio frequency and coaxial cable assemblies - Part 2-4: Detail specification for cable assemblies for radio and TV receivers - Frequency range 0 MHz to 3 000 MHz, IEC 61169-2 connectors, $31.00

IEC 60966-3-1 Ed. 3.0 b:2009, Radio frequency and coaxial cable assemblies - Part 3-1: Blank detail specification for semi-flexible coaxial cable assemblies, $48.00

IEC 61169-24 Ed. 2.0 b:2009, Radio-frequency connectors - Part 24: Sectional specification - Radio frequency coaxial connectors with screw coupling, typically for use in 75 O cable networks (type F), $157.00

IEC 61169-38 Ed. 1.0 b:2008, Radio-frequency connectors - Part 38: Sectional specification - Radio frequency coaxial connectors model, slide-in (rack and panel applications) - Characteristic impedance 50 O (type TMA) - 50 O applications, $206.00

IEC 61169-43 Ed. 1.0 b:2013, Radio-frequency connectors - Part 43: Sectional specification for RBMA series blind mating RF coaxial connectors, $206.00

IEC 61169-44 Ed. 1.0 b:2012, Radio-frequency connectors - Part 44: Sectional specification for series SMP push-on radio-frequency coaxial connectors, $230.00

CAPACITORS AND RESISTORS FOR ELECTRONIC EQUIPMENT (TC 40)

IEC 60938-2-1 Ed. 1.0 b:1999, Fixed inductors for electromagnetic interference suppression - Part 2-1: Blank detail specification - Inductors for which safety tests are required - Assessment level D, $55.00

FIBRE OPTICS (TC 86)

IEC 61754-15 Ed. 2.0 b cor.1:2014, Corrigendum 1 - Fibre optic interconnecting devices and passive components - Fibre optic connector interfaces - Part 15: Type LSH connector family, $0.00

IEC 60794-1-20 Ed. 1.0 b:2014, Generic specification - Basic optical cable test procedures - General and definitions, $61.00

INDUSTRIAL-PROCESS MEASUREMENT AND CONTROL (TC 65)

IEC 61003-1 Ed. 2.0 b:2004, Industrial-process control systems - Instruments with analogue inputs and two-or multi-state outputs - Part 1: Methods of evaluating performance, $230.00

IEC 61987-11 Ed. 1.0 b:2012, Industrial-process measurement and control - Data structures and elements in process equipment catalogues - Part 11: List of Properties (LOP) of measuring equipment for electronic data exchange - Generic structures, $303.00

MAGNETIC COMPONENTS AND FERRITE MATERIALS (TC 51)

IEC 62025-1 Ed. 2.0 b:2007, High frequency inductive components - Non-electrical characteristics and measuring methods - Part 1: Fixed, surface mounted inductors for use in electronic and telecommunication equipment, $61.00
MARITIME NAVIGATION AND RADIOCOMMUNICATION
EQUIPMENT AND SYSTEMS (TC 80)

IEC 61162-1 Ed. 4.0 b:2010, Maritime navigation and radiocommunication equipment and systems - Digital interfaces - Part 1: Single talker and multiple listeners, $399.00

PRIMARY CELLS AND BATTERIES (TC 35)

IEC 60086-1 Ed. 1.0 b:2014, Primary batteries - ALL PARTS, $1080.00
IEC 62281 Ed. 2.0 b:2012, Safety of primary and secondary lithium cells and batteries during transport, $182.00
IEC 60086-3 Ed. 3.0 b:2011, Primary batteries - Part 3: Watch batteries, $206.00

SWITCHGEAR AND CONTROLGEAR (TC 17)

IEC/IEEE 62271-37-082 Ed. 1.0 en cor.1:2014, Corrigendum 1 - High-voltage switchgear and controlgear - Part 37-082: Standard practice for the measurement of sound pressure levels on alternating current circuit-breakers, $0.00

IEC Technical Reports

INSTRUMENT TRANSFORMERS (TC 38)

Proposed Foreign Government Regulations

Call for Comment

U.S. manufacturers, exporters, regulatory agencies and standards developing organizations may be interested in proposed foreign technical regulations issued by Member countries of the World Trade Organization (WTO). In accordance with the WTO Agreement on Technical Barriers to Trade (TBT Agreement), Members are required to report proposed technical regulations that may significantly affect trade to the WTO Secretariat in Geneva, Switzerland. In turn, the Secretariat disseminates the information to all WTO Members. The purpose of this requirement is to provide global trading partners with an opportunity to review and comment on the regulations before they become final.

The National Center for Standards and Certification Information (NCSCI) at the National Institute of Standards and Technology (NIST), distributes these proposed foreign technical regulations to U.S. stakeholders via an online service, Notify U.S. Notify U.S. is an e-mail and Web service that allows interested U.S. parties to register, obtain notifications, and read full texts of regulations from countries and for industry sectors of interest to them. To register for Notify U.S., please go to Internet URL: http://www.nist.gov/notifyus/ and click on “Subscribe”.

NCSCI is the WTO TBT Inquiry Point for the U.S. and receives all notifications and full texts of regulations to disseminate to U.S. Industry. For further information, please contact: NCSCI, NIST, 100 Bureau Drive, Gaithersburg, MD 20899-2160; Telephone: (301) 975-4040; Fax: (301) 926-1559; E-mail: ncsci@nist.gov or notifyus@nist.gov.
American National Standards

INCITS Executive Board

ANSI Accredited SDO and US TAG to ISO/IEC JTC 1, Information Technology

The InterNational Committee for Information Technology Standards (INCITS), an ANSI accredited SDO, is the forum for information technology developers, producers and users for the creation and maintenance of formal de jure IT standards. INCITS’ mission is to promote the effective use of Information and Communication Technology through standardization in a way that balances the interests of all stakeholders and increases the global competitiveness of the member organizations. The INCITS Executive Board serves as the consensus body with its oversight of programs of its 40+ Technical Committees. Additionally, the INCITS Executive Board exercises international leadership in its role as the US Technical Advisory Group (TAG) to ISO/IEC JTC 1, Information Technology.

The INCITS Executive Board seeks to broaden its membership base and is recruiting new participants in the following membership categories:

- special interest (user, academic, consortia)
- non-business (government and major/minor SDOs)

Membership in the INCITS Executive Board is open to all directly and materially affected parties in accordance with INCITS membership rules. To find out more about participating on the INCITS Executive Board, please contact Jennifer Garner at 202-626-5737 or jgarner@itic.org. Visit www.INCITS.org for more information regarding INCITS activities.

Calls for Members

Society of Cable Telecommunications

ANSI Accredited Standards Developer

SCTE, an ANSI-accredited SDO, is the primary organization for the creation and maintenance of standards for the cable telecommunications industry. SCTE’s standards mission is to develop standards that meet the needs of cable system operators, content providers, network and customer premises equipment manufacturers, and all others who have an interest in the industry through a fair, balanced and transparent process.

SCTE is currently seeking to broaden the membership base of its ANSI consensus bodies and is interested in new members in all membership categories to participate in new work in fiber-optic networks, advanced advertising, 3D television, and other important topics. Of particular interest is membership from the content (program and advertising) provider and user communities.

Membership in the SCTE Standards Program is open to all directly and materially affected parties as defined in SCTE’s membership rules and operating procedures. More information is available at www.scte.org or by e-mail from standards@scte.org.

ANSI Accredited Standards Developers

Approval of Reaccreditation

ASC C29 – Insulators for Electric Power Lines

ANSI’s Executive Standards Council has approved the reaccreditation of Accredited Standards Committee C29, Insulators for Electric Power Lines under its revised operating procedures for documenting consensus on ASC C29-sponsored American National Standards (and with the National Electrical Manufacturers Association continuing as Secretariat), effective January 23, 2014. For additional information, please contact: Mr. Steve Griffith, Program Manager, PMP, NEMA, 1300 North 17th Street, Suite 1752, Rosslyn, VA 22209; phone: 703.841.3297; e-mail: Steve.Griffith@nema.org.

International Organization for Standardization (ISO)

Call for Comments

ISO/DGUIDE 50, Safety aspects – Guidelines for child safety in standards and other specifications

Comment Deadline: February 13, 2014

The ISO COPOLCO WG for Guide 50 has produced a draft guide entitled ISO/DGUIDE 50 – Safety aspects – Guidelines for child safety in standards and other specifications. The scope is as follows:

- This Guide provides guidance to experts who develop and revise standards, specifications and similar publications. It aims to address potential sources of bodily harm to children from products, processes, structures, installations and services that they use, or with which they are likely to come into contact, even if not specifically intended for children.
- This Guide does not provide guidance on the prevention of intentional harm (e.g. child abuse) or non-physical forms of harm, such as psychological harm (e.g. intimidation).
- This Guide does not address the economic consequences of the above.

Organizations interested in submitting comments should contact Rachel Hawthorne at rwhathorne@ansi.org by February 13, 2014.

Call for International (ISO) Secretariat

ISO/TC 219 – Floor Coverings

ANSI has been informed by KATS (Republic of Korea), the ISO delegated secretariat, that they wish to relinquish the role of the secretariat. ISO/TC 219 operates under the following scope:

- Standardization in the field of textile, resilient and laminate floor coverings.
- Excluded: wood, ceramic, terrazzo, concrete and raised access type floorings

Information concerning the United States retaining the role of international secretariat may be obtained by contacting ANSI at isot@ansi.org.
Calls for US/TAG Administrators

ISO TC 173/SC 2 – Classification and Terminology

ANSI has been informed that, RESNA (Rehabilitation Engineering and Assistive Technology Society of North America), the ANSI accredited US/TAG administrator for ISO/TC 173/SC 2, wishes to relinquish the role as US/TAG administrator.

ISO/TC 173/SC 2 operates under the following scope:

Standardization in the field of assistive products for persons with disability.

Excluded: assistive products that are dealt with by other technical committees such as access to means of transport (ISO/TCs 8, 20, 22, 177), building construction (ISO/TC 59), furniture (ISO/TC 136), implants for surgery (ISO/TC 150), ergonomics (ISO/TC 159), prosthetics and orthotics (ISO/TC 168), ophthalmic optics (ISO/TC 172), electrical safety (IEC/TC 62), and hearing aids (IEC/TC 29).

Organizations interested in serving as the US/TAG administrator should contact ISOT@ansi.org.

ISO/TC 289 – Brand Evaluation

A new ISO Technical Committee ISO/TC 289 – Brand Evaluation has been formed. The Secretariat has been allocated to SAC (China). The scope of ISO/TC 289 is as follows:

The standardization of brand evaluation, including the terms and the definitions of the brand, the methods and the guidelines of brand evaluation, and the work of standardization in related fields.

Organizations interested in obtaining additional information about these new committees should contact ANSI at isot@ansi.org.

ISO Proposal for a New Field of ISO Technical Activity

Domestic Gas Cooking Appliances

Comment Deadline: March 7, 2014

DIN (Germany) has submitted to ISO the attached proposal for a new field of ISO technical activity on Domestic gas cooking appliances, with the following scope statement:

Standardization in the field of Domestic Gas Cooking Appliances, considering the whole appliance: terminology, classification, constructional and performance characteristics, test methods and marking. Excluded from this scope are cook stoves covered by the standards being developed in ISO/TC 285.

Anyone wishing to review the new work item proposal can request a copy of the proposal by contacting ANSI’s ISO Team via e-mail: isot@ansi.org with submission of comments to Steve Cornish (scornish@ansi.org) by close of business on Friday, March 7th, 2014.
ACCA 12 QH STANDARD RED-LINE

<table>
<thead>
<tr>
<th>Section # and Title</th>
<th>Red-Line Edit</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0 COMPREHENSIVE PERFORMANCE AUDIT</td>
<td>The comprehensive performance audit shall collect data about the residence in the form of measurements, tests, and observations. This section defined the areas of the residence that shall be evaluated and the information that shall be collected. Prior to conducting the audit, the Auditor shall notify the occupants of the potential for aggravation to persons with environmental sensitivities (e.g., asthma, allergies, chemical sensitivity, etc.) and recommend that they leave the building. When conditions listed in Appendix A, §A1.0 exist, the Auditor or auditing company shall disclose the potential for conflict of interest.</td>
</tr>
<tr>
<td>3.1 INTERVIEW</td>
<td>3.1.2 Acceptable Procedures: The Auditor shall pose the questions similar to those found in Appendix A, §A2.0 to the client.</td>
</tr>
<tr>
<td>3.2.1 Carbon Monoxide (CO) Testing</td>
<td>3.2.1.b Acceptable Procedures: The Auditor shall test the CO level in the combustion appliance’s flue gasses, the joints and seams of its venting system for CO leaks, and monitor the CO level in the CAZ using one of the following:
 i. The protocol in Appendix A, §A3.0, ii. 2015 National Fuel Gas Code, Annex G, §G.6</td>
</tr>
<tr>
<td>3.2.2 Gas/Oil Leakage Testing</td>
<td>3.2.2.b Acceptable Procedures: The Auditor shall follow one of the following acceptable procedures for fulfilling the desired criteria:
 i. Gas lines: Shall inspect all fittings and joints in supply lines and appliances with the appropriate gas detector capable of measuring at 20 ppm; shall confirm measured leaks with leak-detection fluid; shall mark the location of the leak with a clearly visible tag; shall notify the homeowner.
 ii. Oil lines: Shall be visually inspected for signs of oil; shall mark the location of the leak with a clearly visible tag; shall notify owner of leak.</td>
</tr>
<tr>
<td>3.2.3 Unvented Combustion Heating Appliances</td>
<td>3.2.3.a Requirement: The Auditor shall record the presence, location, and input rating of unvented combustion appliances. The Auditor shall record if gas-fired unvented heaters are listed to ANSI Z21.11.2. The Auditor shall verify that determine and record the total input of all gas-fired unvented heaters installed in the same room, or rooms that freely communicate with each other, do not exceed 20 Btu/hr per cubic foot.²
 <sup>²</sup> Per the 2012 International Residential Code §G2445.5 and 2012 International Fuel Gas Code §621.5.</td>
</tr>
<tr>
<td>3.2.4 Combustion Appliance Zone Volume (Atmospherically vented appliances)</td>
<td>3.2.4.a Requirement: The Auditor shall measure the volume of the space providing combustion air to fossil fuel appliances and, if provided, the size net free area of openings which supply combustion air from an adjoining room or the outdoors, including an bird/insect screen on opening terminations.</td>
</tr>
<tr>
<td>3.2.5 Depressurization Test (Atmospherically vented appliances)</td>
<td>3.2.5.a Requirement: Where required by the AHJ, the Auditor shall provide evidence that the combustion appliance is installed in a safe condition for continuing use operates safely during periods of depressurization generated by the occupants.
 3.2.5.b Acceptable Procedures: The Auditor shall follow one of the following acceptable procedures for fulfilling the desired criteria:
 i. The protocol in Appendix A, §A4.0, or 2015 National Fuel Gas Code, Annex G, §G.6, or CAN/CGSB 51.71-2005, or Original Equipment Manufacturer (OEM) specified procedure, or ii. Follow the methodology/procedure per the AHJ (e.g., IRC Appendix D), or</td>
</tr>
<tr>
<td>3.2.6 Combustion Appliance Venting (Atmospherically vented appliances)</td>
<td>3.2.6.a Requirement: The Auditor shall document whether the combustion appliance venting exhaust system shows evidence of or insufficient performance for the following:
 i. Blockages,
 ii. Soot,
 iii. Corrosion or oxidation,
 iv. Improper support, slope, and/or termination,
 v. For gas-fired appliances, insufficient draft.
 3.2.6.b Acceptable Procedures: The Auditor shall visually inspect the venting exhaust system for i. through iv. Above, and perform a draft test for v. above in accordance with the NFGC §11.6, and record the findings for all presence of the above.</td>
</tr>
</tbody>
</table>
3.6.3 Duct Leakage Testing

3.6.3.a Requirement: The Auditor shall perform a qualitative test of all accessible ducting to determine opportunities for sealing. However, if an initial visual inspection finds faults/defaults in the duct system indicating substantial duct leakage, a qualitative test shall not be required, but these faults/defects shall be recorded. At the discretion of the Auditor of the AHJ, the Auditor shall recommend that a quantitative test be performed of the entire duct system.

Discretion considerations include: the amount of ducts in the unconditioned space, whether the duct distribution system is new or modified, and/or conditions of the duct system.

For ducts specified for sealing, see §6.5.4 and §7.0.

3.11 [New Section]

3.11 DISCRETIONARY ITEMS FOR COST/BENEFIT ANALYSIS

3.11.1 Requirement: At the discretion of the homeowner or AHJ, a performance improvement cost/benefit analysis of specific attributes of the home shall be undertaken in §4.2 of this standard. This shall require the recording of additional information about the existing building (e.g., R-values, glazing, shading, HVAC systems, etc.).

3.11.2 Acceptable Procedures: The Auditor shall use the procedures listed in Appendix A, §A10.0 to record the information requested by the homeowner or AHJ.

3.13 [Extensive Revision]

3.13 SAFETY PROCEDURES UNSAFE CONDITIONS

3.13.1 Requirement: Upon discovery of any condition deemed unsafe by the Auditor, the Auditor shall halt the audit process. Auditors shall take the appropriate action during the following:

a. Evacuation before testing.

3.13.2 Acceptable Procedures: The Auditor shall leave the building and recommend that the occupants do the same until the situation is resolved. Observe the following notes when undertaking a Comprehensive Performance Audit:

Note 1: Evacuating Occupants
Prior to conducting the audit, ensure that the occupants are notified of the potential for aggravation to persons with environmental sensitivities (i.e., asthma, allergies, chemical sensitivity, etc.) and recommend that they leave the building.

Note 2: Discovery of Unsafe Conditions
Auditors shall have the discretion to halt the audit process when conditions warrant this action.

Note 3: Disclosures
When the conditions listed in Appendix A, §A1.0 exist, the Auditor or auditing company shall disclose the potential for a conflict of interest.

Table 1 §3.2.3

Comparative Benchmarks:
Listed per ANSI Z21.11.2

20 Btu/hr per cubic feet as stipulated in the 2012 International Residential Code §G2445.5 and 2012 International Fuel Gas Code §621.5.

Table 1 §3.2.5

Improvement Area:
§3.2.5 Depressurization (where tested)

Comparative Benchmarks:
Appliance drafts at all points around the circumference of the draft hood relief opening
Positive or neutral pressure in CAZ with respect to outdoors (WRTO)

4.2 COST/BENEFIT ANALYSIS

4.2.2 Cost benefit analysis shall be computed using software and/or engineering calculations capable of predicting energy savings associated with proposed improvement measures and measure packages. Acceptable alternatives include:

a. Software programs accredited by the Residential Energy Services Network (RESNET).

b. Manual J software programs recognized by ACCA that include energy modeling Heating and cooling load estimating software recognized as compliance with Manual J by the Air Conditioning Contractors of America.

c. Other software or calculation methodology as approved by the AHJ.

5.3 PROPOSAL ELEMENTS REQUIRED

5.3.9 When hazardous materials were found in the envelope home during the audit (§3.4), include the provision to conduct an envelope leakage test (per §3.3) after the remediation of hazardous materials. Proposed improvement shall include remediation steps based on the results of the envelope leakage test and the procedures in §4.0.
6.1 Safety

6.1.1 CO, spillage, and drafting issues are to be addressed by verifying compliance implementing repairs and/or installing the appliance in compliance with local codes and the appliance manufacturer’s installation instructions.

6.1.4 When measures are performed that improve the envelope tightness, the Auditor shall recommend to the homeowner that Radon tests be conducted upon completion of the selected building improvements. The results of the test, information regarding the harmful effects of Radon, and if necessary the proposed remediation shall be presented to the client.

7.0 Test Out Procedures

7.2 Per the signed proposal, they shall evaluate the improvement(s) in accordance with the requirements and applicable procedure in §3.0, and to the performance standard listed in §6.0, or the standard specified.

A3.6 Carbon Monoxide (CO) Test

A3.6 For unvented heating combustion appliances:

A3.6.3 Acceptability of emissions from unvented combustion appliances shall be based on National Fuel Gas Code, Table G611, for carbon monoxide and ANSI Z21.11.2 for nitrogen dioxide from unvented gas room heaters and fireplaces (also referred to as vent-free room heaters and fireplaces).

A3.6.4 Auditors shall inform inhabitants about the need for appropriate ventilation for unvented combustion appliances, especially when completing home performance measures that tighten the home.

11 See informative Appendix B, §B22.0.

A3.8 Carbon Monoxide (CO) Test

A3.8 CO measurements for appliances tested shall be compared to the threshold limits listed in the National Fuel Gas Code, Table G614. For threshold limits listed in “air free” units, the Auditor shall use a measurement device set to “air free” setting or calculate the air free equivalent to measured CO using the formula provided in Table G6. Alternatively, the Auditor shall compare measured CO to manufacturer’s instructions. Where CO exceed the threshold limits in Table G6, the Auditor shall:

14 See informative Appendix B, §B22.0.

A4.0 Depressurization Test for the Combustion Appliance Zone (CAZ)

A4.0 Depressurization Test for the Combustion Appliance Zone (CAZ) — Where Required by the AHJ

A4.3 Turn on all indoor fans: bathroom exhaust, range hood, clothes dryer, powered attic ventilation fans (with the exception of whole-house exhaust fans), and furnace/air handler/fan coil.

A4.4 Turn on the air handler fan. If the pressure differential in the CAZ with reference to the outdoors gets more negative, leave the air handler on; otherwise, turn it off.

A5.0 Envelope Leakage Depressurization/Pressurization Test

A5.1 Prior to blower door, Auditor shall inspect premises for the presence of non-encapsulated friable asbestos-like material. If found:

A5.1.4 Follow industry guidelines regarding working in a dwelling containing PACMs (e.g., EPA 40 CFR Part 763, Subpart G and OSHA 29 1910.1001 and CFR 1926.1101).

A5.1.5 Document how the presence of PACMs is be addressed in the work scope decisions made in light of presence of PACMs.

B22.0 National Fuel Gas Code, Table G6

Note: Table G6 is subject to ANSI ASC Z223 ballot and public review and therefore may be revised. The draft table is provided by permission of the American Gas Association.

Appendix E: Pertinent Bibliography and Resources

CGSB (Canadian General Standards Board) CAN/CGSB S1.71-2005 The Spillage Test — Method to Determine the Potential for Pressure-Induced Spillage from Vented, Fuel-Fired, Space Heating Appliances, Water Heaters, and Fireplaces
Table II-1
Table of Uncertainty Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Bias Error, B</th>
<th>Absolute Precision Error, S</th>
<th>Nominal Value (Based on Test Data)</th>
<th>Relative Bias Error, B_B</th>
<th>Relative Precision Error, S_p</th>
<th>Relative Sensitivity Coefficient, d^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>±0.007</td>
<td>0</td>
<td>0.599</td>
<td>±0.007 = 0.0117</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>d_o</td>
<td>±0.001 in.</td>
<td>0</td>
<td>0.935 in.</td>
<td>0.001 = 0.000107</td>
<td>0</td>
<td>$\frac{2}{1 - \beta^4}$ = 2.0163</td>
</tr>
<tr>
<td>D</td>
<td>±0.003 in.</td>
<td>0</td>
<td>3.117 in.</td>
<td>0.003 = 0.00096</td>
<td>0</td>
<td>$\frac{2\beta^4}{1 - \beta^4}$ = 0.0163</td>
</tr>
<tr>
<td>F_s</td>
<td>0</td>
<td>0</td>
<td>1.00007</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>ρ</td>
<td>±0.04 lbm/ft3</td>
<td>±0.02 lbm/ft3</td>
<td>62.25 lbm/ft3</td>
<td>0.04 = 0.0064</td>
<td>0.02 = ±0.00032</td>
<td>0.5</td>
</tr>
<tr>
<td>ΔP</td>
<td>11 in. water</td>
<td>5 in. water</td>
<td>387.8 in. water</td>
<td>11 = ±0.02836</td>
<td>5 = ±0.01290</td>
<td>0.5</td>
</tr>
</tbody>
</table>

F_s is determined from Fig. 11-1-3 on page 156 of ASME PTC 19.5. The curve in Fig. 11-1-3 of ASME PTC 19.5 can be approximated by the following equation:

$$F_s = 1.7143 \times 10^{-5}T + 0.99875$$

$$BF_s = \frac{\partial F_s}{\partial T} B_T$$

$$\frac{\partial F_s}{\partial T} = \frac{dF_s}{dT} = 1.7143 \times 10^{-5}$$

where

$$B_{F_s} = (1.7143 \times 10^{-5})(0.000009) = ±0.000009$$

B_T = assumed to be ±5°F

F_s based on a nominal temperature of 77°F is

$$F_s = (1.7143 \times 10^{-5})(77) + 0.99875 = 1.00007$$

at 77°F

The relative variation in F_s for a ±5°F error in water temperature would equate to

% error $F_s = \frac{0.000009}{1.00007} = 0.01\%$

Therefore, the absolute bias error is considered zero. The absolute precision error for the thermal expansion number, F_s, is zero.

II-2.5 Parameter ρ — Density of Water

$$\rho = \frac{1}{T} (P)$$

where

P = pressure, psia
T = water temperature, °F

ρ is determined from Table 3 of the ASME Steam Tables, 1967.

The variation in ρ due to pressure is negligible and not considered.

The variation in ρ due to a ±5% error in water temperature would equate to

$$B_{\rho} = ±0.03875$$

The absolute bias error for ρ is taken as ±0.04 lbm/ft3.

The absolute precision error, S_{ρ} for water density is estimated from past experience to be ±0.02 lbm/ft3.

II-2.6 Parameter ΔP — Differential Pressure Head Across Meter, In. Water

ΔP is measured on a strip chart recorder that is calibrated using a transfer gage with a range of 0–1000 in. water. The transfer gage is in turn calibrated using a deadweight tester.

The bias error limit for the strip chart recorder is based on one-half the smallest subdivision, which is ±10 in. water.

The accepted tolerance for the transfer gage is ±0.25% of full scale, which equates to an absolute bias error of ±2.5 in. water.

The calibrator (deadweight tester) for the transfer gage is two times as accurate as the transfer gage, and the bias error induced is ±0.3 in. water. Refer to pgs. 54–55 of “Fundamentals of Measurement Error.”

The RSS technique for combining the bias errors in water yields

$$B_{\Delta P} = \left[(10)^2 + (2.5)^2 + (0.3)^2 \right]^{1/2} = 10.3 = 11.0$$

The absolute precision error $S_{\Delta P}$ for the meter differential pressure is estimated based on previous experience to be ±5 in. water.

All the absolute and relative bias and precision errors are tabulated in the following equations. Also tabulated

TENTATIVE
SUBJECT TO REVISION OR WITHDRAWAL
Specific Authorization Required for Reproduction or Quotation
ASME Codes and Standards
FIG II-2-1

AREA FACTORS, F_{ad}, FOR THE THERMAL EXPANSION OF PRIMARY ELEMENTS

Source: PTC19.5-1971

A steady-state flow test was conducted with the 0.935 in. diameter orifice plate. The temperature was a constant 77°F for the entire test. During the test, ten separate sets of data were taken to establish the precision error limit of uncertainty. The results of the test are as follows:

<table>
<thead>
<tr>
<th>Data Set</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>29,410</td>
</tr>
<tr>
<td>2</td>
<td>29,280</td>
</tr>
<tr>
<td>3</td>
<td>29,170</td>
</tr>
<tr>
<td>4</td>
<td>29,320</td>
</tr>
<tr>
<td>5</td>
<td>29,190</td>
</tr>
<tr>
<td>6</td>
<td>29,450</td>
</tr>
<tr>
<td>7</td>
<td>29,305</td>
</tr>
<tr>
<td>8</td>
<td>29,260</td>
</tr>
<tr>
<td>9</td>
<td>29,380</td>
</tr>
<tr>
<td>10</td>
<td>29,350</td>
</tr>
</tbody>
</table>

x, average value m for sample is

$$\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i = \frac{1}{10} (293,115) = 29,311 \text{ lbm/hr}$$

The sample standard deviation is

$$s = \left[\frac{\sum_{i=1}^{N} (x_i - \bar{x})^2}{N-1} \right]^{1/2} = 90.4 \text{ lbm/hr}$$

Degrees of freedom $N - 1 = 10 - 1 = 9$. The t value for the 95 percentile point for a two-tailed Student t distribution with 9 degrees of freedom is 2.262. Relative precision error limit is calculated as follows:

$$\pm \frac{90.4}{29,311} (2.262) = \pm 0.0069$$

This value is roughly half the original estimated. Combining the new precision error limit obtained by test with the bias error estimate yields

$$\frac{U_{\text{RSS}}}{m} = \pm \left[(0.0145)^2 + (0.0069)^2 \right]^{1/2} = \pm 0.016$$

$$= \pm 1.6\% \text{ at } -95\% \text{ coverage}$$

Note that the test objective of $\pm 2\%$ has been achieved; however, the uncertainty error limits can be further reduced by conducting calibration tests to better define the meter coefficient of discharge. Refer to pg. 39 of ASME PTC 19.1 for additional information.

The report summary is as follows:

$$\frac{B_m}{m} = -0.0145, \text{ bias error}$$

$$\frac{s_m}{m} = \pm 0.0069, \text{ uncertainty of mass flow rate}$$

$$\frac{U_{\text{RSS}}}{m} = 1.6\% \text{ at } -95\% \text{ coverage, precision (process) error}$$

II-3 REFERENCES

ASME Flowmeter Computation Handbook, Report of ASME Research Committee on Fluid Meters
ASME PTC 19.5-1971, Fluid Meters, Part 1
Publisher: The American Society of Mechanical Engineers (ASME), Three Park Avenue, New York, NY, 10016-5990; Order Department: 22 Law Drive, PO. Box 2300, Fairfield, NJ 07007-2300

NONMANDATORY APPENDIX A
REFERENCES

ASME PTC 1, General Instructions
ASME PTC 2, Code on Definitions and Values
ASME PTC 19.1, Measurement Uncertainty
ASME PTC 19.2, Pressure Measurement
ASME PTC 19.3, Temperature Measurement
ASME PTC 19.5, Measurement of Quantity of Materials
ASME PTC 19.11, Quality and Purity of Steam
ASME SI-1, Orientation and Guide for Use of SI (Metric) Units
ASME Steam Tables, Sixth Edition
Publisher: The American Society of Mechanical Engineers (ASME), Three Park Avenue, New York, NY 10016-5990; Order Department: 22 Law Drive, P.O. Box 2300, Fairfield, NJ 07007-2300
ASTM D 1070, Standard Test Methods for Relative Density of Gaseous Fuels

ASTM D 1298, Standard Test Method for Density, Relative Density (Specific Gravity), or API Gravity of Crude Petroleum and Liquid Petroleum Products by Hydrometer Method
Publisher: American Society for Testing and Materials (ASTM International), 100 Barr Harbor Drive, P.O. Box C700, West Conshohocken, PA 19428-2959

BSR/UL 60079-11, Standard for Safety for Explosive Atmospheres - Part 11: Equipment Protection by Intrinsic Safety “i”

1. Revisions for Non-Intrinsically Safe Circuit Connections of Galvanically Separating Components

PROPOSAL

7.3 (revision to 6th paragraph only)

Fuses shall have a rated voltage of at least Um (or Ui in intrinsically safe apparatus and circuits) and the external creepage distances and clearances shall although they do not have to conform to Table 5 or Annex F (but see 8.9), General industrial standards for the construction of fuses and fuseholders shall be applied and their method of mounting including the connecting wiring shall not reduce the clearances, creepage distances and separations afforded by the fuse and its holder. Where required for intrinsic safety, the distances to other parts of the circuit shall comply with 6.3.

NOTE 1 Microfuses conforming to IEC 60127 series are acceptable provided they also conform to the external creepage distances and clearances of Table 5 or Annex F."
BSR/UL 32, Standard for Safety for Metal Waste Cans

1. Clarify intent of trade sizes shown in Table 1

3.1 Inside diameters, inside heights, and nominal capacities of established trade sizes of cylindrical waste cans are given in Table 3.1. These values are considered examples. Values between the values shown in the table are allowed, provided the minimum and maximum sizes are maintained. See 4.2.

<table>
<thead>
<tr>
<th>Nominal inside diameter of body</th>
<th>Nominal inside height of body</th>
<th>Nominal capacities</th>
</tr>
</thead>
<tbody>
<tr>
<td>inches (mm)</td>
<td>inches (mm)</td>
<td>Gallons (L)</td>
</tr>
<tr>
<td>11 (279)</td>
<td>12-1/4 (311)</td>
<td>5 (19)</td>
</tr>
<tr>
<td>12 (305)</td>
<td>13-3/8 (340)</td>
<td>6 (23)</td>
</tr>
<tr>
<td>13 (330)</td>
<td>14-1/2 (368)</td>
<td>8 (30)</td>
</tr>
<tr>
<td>14 (356)</td>
<td>15-1/2 (394)</td>
<td>10 (38)</td>
</tr>
<tr>
<td>15 (381)</td>
<td>16-5/8 (422)</td>
<td>12 (45)</td>
</tr>
<tr>
<td>16 (406)</td>
<td>17-3/4 (451)</td>
<td>15 (57)</td>
</tr>
<tr>
<td>17 (432)</td>
<td>18-7/8 (479)</td>
<td>18 (68)</td>
</tr>
<tr>
<td>18 (457)</td>
<td>20 (508)</td>
<td>22 (83)</td>
</tr>
<tr>
<td>19 (483)</td>
<td>21-1/8 (537)</td>
<td>26 (98)</td>
</tr>
<tr>
<td>20 (509)</td>
<td>22-1/4 (565)</td>
<td>30 (114)</td>
</tr>
<tr>
<td>21 (533)</td>
<td>23-3/8 (594)</td>
<td>35 (132)</td>
</tr>
<tr>
<td>22 (559)</td>
<td>24-1/2 (622)</td>
<td>40 (151)</td>
</tr>
</tbody>
</table>

*a Nominal capacities are specified to the nearest gallon or liter.

2. Add marking requirement for waste cans with flat sides

4.8 The form of the can shall prevent any appreciable area of the side or rear wall from being in close proximity to a room wall. Waste cans with flat sides or back or both shall be marked in accordance with 17.1B.

17.1B Each waste can with flat sides or back or both shall be legibly and permanently marked with: "Do not position this waste can near or against walls."
1. Luminaires Suitable for Mounting Within 4 inches of Top of Pool

40.10 Literature provided with each luminaire shall include installation instructions that contain the statement: "Except when the luminaire is installed in an area of the swimming pool that is not used for swimming and the lens is adequately guarded to keep any person from contacting it, the luminaire shall be installed in or on a wall of the pool, with the top of the lens opening not less than 457 mm (18 inches) below the normal water level of the pool." The inclusion of the value in parentheses is optional.

Exception: A luminaire rated in accordance with 8.4.1 and marked in accordance with 40.13 is permitted to be marked for installation at not less than 102 mm (4 inches) below the normal water level of the pool.
SUMMARY OF TOPICS

The following changes in requirements to the Standard for Terminal Blocks, UL 1059, are being proposed:

1. Correction to Clause 50.3.1 to be consistent with the test method described in IEC 60947-7-2, Paragraph 8.4.6

STP BALLOTS & COMMENTS DUE: February 24, 2014

UL’s goal is to have no interest category comprise more than one-third of the STP membership balance. To improve the current balance for STP 1059, UL is looking for participants in the Supply Chain, Commercial/Industrial User, General, AHJ, Government, Testing and Standards, and Consumer interest categories. Definitions for these interest categories are available on the Standards STP Internet site:

If you are interested in applying for STP 1059 membership or are aware of potential candidates for this STP, please contact the STP 1059 Project Manager, Valara.Davis@ul.com.

For your convenience in review, proposed additions to existing requirements are shown underlined and proposed deletions are shown lined-out.

1. Correction to Clause 50.3.1 to be consistent with the test method described in IEC 60947-7-2, Paragraph 8.4.6

RATIONALE

Proposal submitted by: Ken McKinney, UL, LLC

The proposed revision provides clarification of the test method and is intended to be consistent with the method described in IEC 60947-7-2, Par. 8.4.6. The IEC method specifies a pause of 6 minutes minimum shall be allowed between current surges. This is also replicated in UL 60947-7-2. The proposed change to UL 1059 will then coincide with these two documents.

The intent is to provide a sufficient cool down period (minimum of 6 min) for the test specimen to recover before application of the next current surge. The existing wording permits the application of any subsequent test current immediately and not permitting sufficient recovery time.
PROPOSAL

50.3.1 Following the measurement of voltage drop, three separate applications of the test current specified in Table 50.1 are to be applied, one after another, through the current paths 1-1 and 2-2, as appropriate, as shown in Figure 50.2. The test current is to be applied for 1 second during each application with an interval of 6 minutes or less more between applications of the current. There shall be no damage to the terminal block or its support.

Copyright © 2014 Underwriters Laboratories Inc.
BSR/UL 1310, Standard for Class 2 Power Units

1. Enclosure temperature limits for permanently connected power units

PROPOSAL

Table 33.1

Maximum acceptable temperature rises

<table>
<thead>
<tr>
<th>Materials and components</th>
<th>°C</th>
<th>°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. COMPONENTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Rubber- or thermoplastic-insulated conductors<sup>a</sup></td>
<td>35</td>
<td>(63)</td>
</tr>
<tr>
<td>2. Silicon components<sup>b</sup></td>
<td>75</td>
<td>(135)</td>
</tr>
<tr>
<td>B. ELECTRICAL INSULATION - GENERAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Class 105 insulation systems:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistance method</td>
<td>75</td>
<td>(135)</td>
</tr>
<tr>
<td>Thermocouple method</td>
<td>65</td>
<td>(117)</td>
</tr>
<tr>
<td>2. Class 120 insulation systems:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistance method</td>
<td>85</td>
<td>(153)</td>
</tr>
<tr>
<td>Thermocouple method</td>
<td>75</td>
<td>(135)</td>
</tr>
<tr>
<td>3. Class 130 insulation systems:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistance method</td>
<td>95</td>
<td>(171)</td>
</tr>
<tr>
<td>Thermocouple method</td>
<td>85</td>
<td>(153)</td>
</tr>
<tr>
<td>4. Class 155 insulation systems:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistance method</td>
<td>115</td>
<td>(207)</td>
</tr>
<tr>
<td>Thermocouple method</td>
<td>110</td>
<td>(198)</td>
</tr>
<tr>
<td>5. Class 180 insulation systems:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistance method</td>
<td>135</td>
<td>(243)</td>
</tr>
<tr>
<td>Thermocouple method</td>
<td>125</td>
<td>(225)</td>
</tr>
<tr>
<td>6. Class 200 insulation systems:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistance method</td>
<td>150</td>
<td>(270)</td>
</tr>
<tr>
<td>Thermocouple method</td>
<td>140</td>
<td>(252)</td>
</tr>
<tr>
<td>7. Class 220 insulation systems:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistance method</td>
<td>165</td>
<td>(297)</td>
</tr>
<tr>
<td>Thermocouple method</td>
<td>155</td>
<td>(279)</td>
</tr>
<tr>
<td>8. Fiber employed as electrical insulation</td>
<td>65</td>
<td>(117)</td>
</tr>
<tr>
<td>9. Phenolic composition<sup>a</sup></td>
<td>125</td>
<td>(225)</td>
</tr>
<tr>
<td>10. Varnish-cloth insulation</td>
<td>60</td>
<td>(108)</td>
</tr>
<tr>
<td>C. SURFACES</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Surface temperature, metal<sup>c,d</sup></td>
<td>30</td>
</tr>
<tr>
<td>---</td>
<td>-----------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>2.</td>
<td>Surface temperature, nonmetallic<sup>c,e</sup></td>
<td>50</td>
</tr>
<tr>
<td>3.</td>
<td>Wood or similar material</td>
<td>65</td>
</tr>
</tbody>
</table>

^a The limitation on phenolic composition, rubber and thermoplastic insulation does not apply to compounds that have been investigated and found to be acceptable for use at a higher temperature. The maximum acceptable temperature rise in any case is 25°C (77°F) less than the acceptable temperature limit in question.

^b Does not apply to a material that has been investigated and found acceptable for a higher temperature.

^c A material having a coefficient of thermal conductivity greater than 2.419 Btu per hour per square foot per foot per degree Fahrenheit (0.01 c/s/cm²/cm/°C) is considered to be metal. See 33.7.

^d 45°C (81°F) rise for semipermanent mounted and permanently connected units marked as required by 52.5 and 70.2 respectively.

^e 65°C (117°F) rise for semipermanent mounted and permanently connected units marked as required by 52.5 and 70.2 respectively.

70.2 A permanently connected unit that exceeds the surface temperature limits specified in Table 33.1 for either metallic or nonmetallic surfaces shall be legibly marked where readily visible after installation with the signal word of 52.1 and the following or the equivalent: "HOT SURFACES - Risk of Burns - Do not touch."
BSR/UL 1323, Standard for Safety for Scaffold Hoists

1. Control box assembly

5.3 The electrical features of a control box assembly shall be evaluated to the requirements of the Standard for Industrial Control Equipment, UL 508 or the Standard for Power Conversion Equipment, UL 508C. This may include, but is not limited to, AC inverters, contact blocks, phase control relays, pendant controls and their interconnection.
BSR/UL 2127, Standard for Safety for Inert Gas Clean Agent Extinguishing System Units

1. Direct acting type pressure

PROPOSAL

18.1 Pressure reducing devices shall be of the fixed orifice type or direct acting diaphragm type and shall be capable of being used in such an application.
BSR/UL 2388, Standard for Safety for Flexible Lighting Products

1. Revision to Include Different Means of Mechanical Securement Prior to Soldering

15.1.1 A soldered joint shall be made mechanically secure before soldering. One of the following methods shall be used:

a) The conductor shall be wrapped at least one revolution around the terminal, or

b) The conductor shall be passed through an eyelet or opening with at least one right angle bend, or

c) Twisted with other conductors.

Exception: When mechanical security of a soldered joint has been demonstrated to be impractical or impossible, it is acceptable to make a joint may be made without mechanical security before soldering, provided both sides of the joint are secured in such a way that stress on the connection, either during or after manufacturing process, will has been shown to be unlikely.