This section solicits public comments on proposed draft new American National Standards, including the national adoption of ISO and IEC standards as American National Standards, and on proposals to revise, reaffirm or withdraw approval of existing American National Standards. A draft standard is listed in this section under the ANSI-accredited standards developer (ASD) that sponsors it and from whom a copy may be obtained. Comments in connection with a draft American National Standard must be submitted in writing to the ASD no later than the last day of the comment period specified herein. Such comments shall be specific to the section(s) of the standard under review and include sufficient detail so as to enable the reader to understand the commenter’s position, concerns and suggested alternative language, if appropriate. Please note that the ANSI Executive Standards Council (ExSC) has determined that an ASD has the right to require that interested parties submit public review comments electronically, in accordance with the developer’s procedures.

Ordering Instructions for "Call-for-Comment" Listings
1. Order from the organization indicated for the specific proposal.
2. Use the full identification in your order, including the BSR prefix; for example, Electric Fuses BSR/SAE J554.
3. Include remittance with all orders.
4. BSR proposals will not be available after the deadline of call for comment.

Comments should be addressed to the organization indicated, with a copy to the Board of Standards Review, American National Standards Institute, 25 West 43rd Street, New York, NY 10036. Fax: 212-840-2298; e-mail: psa@ansi.org

* Standard for consumer products
The following changes in requirements to the Standard for Portable Electric Luminaires, UL 153, are being proposed: (1) Revise Class 2 Circuit definition to include “LVLE” circuit per UL 8750.

Send comments (with copy to psa@ansi.org) to: Heath Sakellariou, (847) 664-2346, Heath.Sakellariou@ul.com

UL (Underwriters Laboratories, Inc.)
Revision
BSR/UL 153-201X, Standard for Safety for Portable Electric Luminaires (revision of ANSI/UL 153-2013a)
The following changes in requirements to the Standard for Portable Electric Luminaires, UL 153, are being proposed: (1) Revise Class 2 Circuit definition to include “LVLE” circuit per UL 8750.

Click here to view these changes in full

Send comments (with copy to psa@ansi.org) to: Heath Sakellariou, (847) 664-2346, Heath.Sakellariou@ul.com

UL (Underwriters Laboratories, Inc.)
Revision
BSR/UL 489-201X, Standard for Safety for Molded-Case Circuit Breakers, Molded-Case Switches and Circuit-Breaker Enclosures (revision of ANSI/UL 489-2013a)

(8) Revisions for Table 6.1.6.1.2. (9) Addition of requirements for Class 2 Spacings. (10) Addition of EMC requirements in supplements SF and SG. (13) Clarification of test procedure for series-connected circuit breakers.

Click here to view these changes in full

Send comments (with copy to psa@ansi.org) to: Patricia Sena, (919) 549-1636, patricia.a.sena@ul.com

UL (Underwriters Laboratories, Inc.)
Revision
BSR/UL 763-201X, Standard for Motor-Operated Commercial Food Preparing Machines (revision of ANSI/UL 763-2012c)

(1) Clarification of requirements regarding mating and interchangeability.

Click here to view these changes in full

Send comments (with copy to psa@ansi.org) to: Amy Walker, (847) 664-2023, Amy.K.Walker@ul.com

UL (Underwriters Laboratories, Inc.)
Revision
BSR/UL 778-201X, Standard for Safety for Motor-Operated Water Pumps (revision of ANSI/UL 778-2011a)

UL proposes to allow the use of Flag/Tag Type Markings on all pumps covered by UL 778.

Click here to view these changes in full

Send comments (with copy to psa@ansi.org) to: Derrick Martin, (408) 754-6656, Derrick.L.Martin@ul.com

UL (Underwriters Laboratories, Inc.)
Revision

(1) Clarification of requirements regarding mating and interchangeability.

Click here to view these changes in full

Send comments (with copy to psa@ansi.org) to: Patricia Sena, (919) 549-1636, patricia.a.sena@ul.com

UL (Underwriters Laboratories, Inc.)
Revision

(1) Clarification of requirements regarding mating and interchangeability.

Click here to view these changes in full

Send comments (with copy to psa@ansi.org) to: Patricia Sena, (919) 549-1636, patricia.a.sena@ul.com

UL (Underwriters Laboratories, Inc.)
Revision
BSR/UL 778-201X, Standard for Safety for Motor-Operated Water Pumps (revision of ANSI/UL 778-2011a)

UL proposes to allow the use of Flag/Tag Type Markings on all pumps covered by UL 778.

Click here to view these changes in full

Send comments (with copy to psa@ansi.org) to: Derrick Martin, (408) 754-6656, Derrick.L.Martin@ul.com

UL (Underwriters Laboratories, Inc.)
Revision
BSR/UL 778-201X, Standard for Safety for Motor-Operated Water Pumps (revision of ANSI/UL 778-2011a)

UL proposes to allow the use of Flag/Tag Type Markings on all pumps covered by UL 778.

Click here to view these changes in full

Send comments (with copy to psa@ansi.org) to: Derrick Martin, (408) 754-6656, Derrick.L.Martin@ul.com

UL (Underwriters Laboratories, Inc.)
Revision
BSR/UL 778-201X, Standard for Safety for Motor-Operated Water Pumps (revision of ANSI/UL 778-2011a)

UL proposes to allow the use of Flag/Tag Type Markings on all pumps covered by UL 778.

Click here to view these changes in full

Send comments (with copy to psa@ansi.org) to: Derrick Martin, (408) 754-6656, Derrick.L.Martin@ul.com

UL (Underwriters Laboratories, Inc.)
Revision
BSR/UL 778-201X, Standard for Safety for Motor-Operated Water Pumps (revision of ANSI/UL 778-2011a)

UL proposes to allow the use of Flag/Tag Type Markings on all pumps covered by UL 778.

Click here to view these changes in full

Send comments (with copy to psa@ansi.org) to: Derrick Martin, (408) 754-6656, Derrick.L.Martin@ul.com
UL (Underwriters Laboratories, Inc.)

Revision

This recirculation proposal provides revisions to the UL 817 proposal dated 7-26-13.

Click here to view these changes in full

Send comments (with copy to psa@ansi.org) to: Ross Wilson, (919) 549-1511, Ross.Wilson@ul.com

UL (Underwriters Laboratories, Inc.)

Revision

BSR/UL 1686-201X, Standard for Safety for Pin and Sleeve Configurations (revision of ANSI/UL 1686-2012)

Addition of 4 O’Clock Dimensional Configuration with a Rated Voltage Not Exceeding 50 V.

Click here to view these changes in full

Send comments (with copy to psa@ansi.org) to: Patricia Sena, (919) 549-1636, patricia.a.sena@ul.com

ASME (American Society of Mechanical Engineers)

Revision

BSR/ASME B30.21-201x, Manually Lever Operated Hoists (revision of ANSI/ASME B30.21-2005)

Volume B30.21 includes provisions that apply to the construction, installation, operation, inspection, and maintenance of ratchet and pawl and friction brake type lever chain, rope, and web strap hoists used for lifting, pulling, and tensioning applications. The requirements for a lever hoist that is used for a special purpose, such as lifting personnel, or drawing both the load and the hoist up or down the load chain, rope, or web strap when the lever hoist is attached to the load, and a specially insulated hoist used for handling energized electrical power lines are not included in this volume.

Single copy price: Free

Order from: Mayra Santiago, ASME; ANSLBOX@asme.org

Send comments (with copy to psa@ansi.org) to: Same

ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.)

Revision

This revision of Standard 72-2005 adds Energy Management Devices and Drawer Openings for units with drawers. It also clarifies “Door and Drawer Openings,” “Test Probe Locations” for units over 1220 mm (4’) in width, “Electrical Loads” that need to be on during the test, “Air Currents” with the test room, and “Internal Volumes” in Appendix A.

Single copy price: $35.00

Obtain an electronic copy from: http://www.ashrae.org/standards-research--technology/public-review-drafts

Order from: standards.section@ashrae.org

Send comments (with copy to psa@ansi.org) to: http://www.ashrae.org/standards-research--technology/public-review-drafts

ASIS (ASIS International)

New Standard

BSR ASIS SPC.2-201X, Auditing Management Systems - Risk, Resilience, Security, and Continuity - Guidance for Application (new standard)

This Standard provides guidance for conducting resilience, security, crisis, continuity and other risk-based audits within the context of management systems and includes practical advice on conducting audits. It will provide guidance on the management of audit programs, conduct of internal or external audits of risk- and resilience-based management systems such as security, crisis, continuity, and emergency management, including the competence and evaluation of auditors.

Single copy price: $75.00

Obtain an electronic copy from: standards.asisonline.org

Order from: Aivelis Opicka, (703) 518-1439, aivelis.opicka@asisonline.org

Send comments (with copy to psa@ansi.org) to: Same
ASQ (American Society for Quality)

Revision
BSR/ASQ E4:2013, Quality management systems for environmental information and technology programs - Requirements with guidance for use (revision of ANSI/ASQ E4-2004)

This ANS specifies requirements for a Quality Management System (QMS) to enable an organization to formulate policies and procedures to plan and implement sufficient and adequate quality management practices for environmental programs. This Standard is applicable to any organization that wishes to:

- implement, maintain, and improve a QMS for environmental programs;
- specify quality requirements when contracting for work;
- assure itself of its conformity with its stated quality policy; and
- demonstrate such conformity to others.

Single copy price: $99.00
Obtain an electronic copy from: standards@asq.org
Order from: standards@asq.org
Send comments (with copy to psa@ansi.org) to: Same

DISA (ASC X12) (Data Interchange Standards Association)

New Standard
BSR X12.700-201x, Context Inspired Component Architecture Documents (new standard)

This draft proposed American National Standard defines ASC X12's message-designed methodology, created to help resolve costly, differing, and often incompatible XML messages used for business-to-business data exchange. CICA Documents are a complete specification of the data exchanged (a message) at a step in a business process. The ASC X12 Family of Standards is distributed as a single package. X12.700 is contained within the All Documents by Subcommittee section.

Single copy price: $800.00
Obtain an electronic copy from: http://store.x12.org/store/dpans-downloads
Order from: Jerry Connors, (301) 685-6517, info@disa.org
Send comments (with copy to psa@ansi.org) to: Same

DISA (ASC X12) (Data Interchange Standards Association)

Reaffirmation
BSR X12.1-2008 (R201x), Transaction Set Tables (reaffirmation of ANSI X12.1-2008)

This American National Standard is a compilation of transaction sets in the X12 family of American National Standards for electronic data interchange. A transaction set is the collection of data that is exchanged in order to convey meaning between the parties engaged in electronic data interchange. The ASC X12 Family of Standards is distributed as a single package. X12.1 is contained within the transaction Set Tables section.

Single copy price: $800.00
Obtain an electronic copy from: http://store.x12.org/store/dpans-downloads
Order from: Jerry Connors, (301) 685-6517, info@disa.org
Send comments (with copy to psa@ansi.org) to: Same

DISA (ASC X12) (Data Interchange Standards Association)

Reaffirmation
BSR X12.3-2008 (R201x), Data Element Dictionary (reaffirmation of ANSI X12.3-2008)

This draft proposed American National Standard contains the specifications of the data elements used to construct the segments that comprise the transaction sets of the X12 series of American National Standards for electronic data interchange. The ASC X12 Family of Standards is distributed as a single package. X12.3 is contained within the Data Element Dictionary section.

Single copy price: $800.00
Obtain an electronic copy from: http://store.x12.org/store/dpans-downloads
Order from: Jerry Connors, (301) 685-6517, info@disa.org
Send comments (with copy to psa@ansi.org) to: Same

ATIS (Alliance for Telecommunications Industry Solutions)

Reaffirmation
BSR ATIS 0900002-2009 (R201x), Synchronization Standard - Physical Interconnection for Ethernet-Based Timing Distribution (reaffirmation of ANSI ATIS 0900002-2009)

This standard addresses the interconnection between the Timing Signal Generator (TSG) and Network Elements (NE) in an Intra-Central-Office environment. The principal focus of this standard is the physical layer connectivity for Ethernet signals including the connectorization, cabling, and shielding requirements for delivering a timing reference from the Office TSG to the NE.

Single copy price: $145.00
Obtain an electronic copy from: kconn@atis.org
Order from: Kerianne Conn, (202) 434-8841, kconn@atis.org; jpmard@atis.org
Send comments (with copy to psa@ansi.org) to: Same

CSA (CSA Group)

Revision

Details test and examination criteria for gas hose connectors suitable for connecting portable outdoor gas-fired appliances to fixed gas supply lines containing natural, manufactured, or mixed gases, liquefied petroleum gases or LP gas-air mixtures at pressures not in excess of 1/2 psi (3.45 kPa). These connectors are intended for use in unconcealed outdoor locations unlikely to be subject to excessive temperatures [above 200°F (93.5°C)].

Single copy price: $175.00
Obtain an electronic copy from: david.zimmerman@csagroup.org
Order from: David Zimmerman, (216) 524-4990, david.zimmerman@csagroup.org
Send comments (with copy to psa@ansi.org) to: Same
DISA (ASC X12) (Data Interchange Standards Association)

Reaffirmation

BSR X12.5-2004 (R201x), Interchange Control Structures (reaffirmation of ANSI X12.5-2004 (R2008))

This draft proposed American National Standard defines the control segments used to envelope one or more encoded business transactions including the EDI (Electronic Data Interchange) encoded transaction of Accredited Standards Committee X12. The acknowledgment for the interchange control segment envelope is also provided. The ASC X12 Family of Standards is distributed as a single package. X12.5 is contained within the Control Standards section.

Single copy price: $800.00

Obtain an electronic copy from: http://store.x12.org/store/dpans-downloads
Order from: Jerry Connors, (301) 685-6517, info@disa.org
Send comments (with copy to psa@ansi.org) to: Same

DISA (ASC X12) (Data Interchange Standards Association)

Reaffirmation

BSR X12.6-2004 (R201x), Application Control Structure (reaffirmation of ANSI X12.6-2004 (R2008))

This draft proposed American National Standard defines the structure of business transactions for computer-to-computer interchange for use within the context of an Electronic Data Interchange (EDI) environment. This includes the control segments used to bound loops of data segments, transaction sets, and groups of related transaction sets. The ASC X12 Family of Standards is distributed as a single package. X12.6 is contained within the Control Standards section.

Single copy price: $800.00

Obtain an electronic copy from: http://store.x12.org/store/dpans-downloads
Order from: Jerry Connors, (301) 685-6517, info@disa.org
Send comments (with copy to psa@ansi.org) to: Same

DISA (ASC X12) (Data Interchange Standards Association)

Reaffirmation

BSR X12.7-2010 (R201x), Context-Inspired Component Architecture (CICA) Technical Specification and XML Schema Syntax Representation (reaffirmation of ANSI X12.7-2010)

This draft proposed American National Standard defines ASC X12's message-designed methodology, created to help resolve costly, differing and often incompatible XML messages used for business-to-business data exchange. CICA has defined a flexible set of semantic components that can be reused to accommodate a number of business processes. The ASC X12 Family of Standards is distributed as a single package. X12.7 is contained within the Control Standards & Guidelines section.

Single copy price: $800.00

Obtain an electronic copy from: http://store.x12.org/store/dpans-downloads
Order from: Jerry Connors, (301) 685-6517, info@disa.org
Send comments (with copy to psa@ansi.org) to: Same
DISA (ASC X12) (Data Interchange Standards Association)

Reaffirmation

This draft proposed American National Standard is to describe the semantic relationships inherent in the implementation of those X12 structures where the relative positioning of segments provides semantic information in their implementation. This information may include the meaning that is to be associated with data due to their positioning within the exchange of X12 information, and the data relationships that can be inferred from the data structure. The ASC X12 Family of Standards is distributed as a single package. X12.59 is contained within the Control Standards section.

Single copy price: $800.00

Obtain an electronic copy from: http://store.x12.org/store/dpans-downloads

Order from: Jerry Connors, (301) 685-6517, info@disa.org

Send comments (with copy to psa@ansi.org) to: Same

DISA (ASC X12) (Data Interchange Standards Association)

Reaffirmation

BSR X12.71-2010 (R201x), CICA Design Rules and Guidelines (reaffirmation of ANSI X12.71-2010)

This draft proposed American National Standard defines ASC X12's message-designed methodology, created to help resolve costly, differing and often incompatible XML messages used for business-to-business data exchange. CICA's Design Rules and Guidelines assist in establishing uniformity in CICA business document development and maintenance efforts. The ASC X12 Family of Standards is distributed as a single package. X12.71 is contained within the Control Standards & Guidelines section.

Single copy price: $800.00

Obtain an electronic copy from: http://store.x12.org/store/dpans-downloads

Order from: Jerry Connors, (301) 685-6517, info@disa.org

Send comments (with copy to psa@ansi.org) to: Same

EOS/ESD (ESD Association, Inc.)

Revision

This standard test method relies on electrical resistance measurements utilizing common electrical instruments to provide a means of evaluating footwear. This standard excludes foot grounders (i.e., heel straps, toe grounders, sole grounders, and booties).

Single copy price: $105.00 (List)/$75.00 (ESD Members) [Hardcopy]; $130.00 (List)/$100.00 (ESD Members) [Softcopy]

Obtain an electronic copy from: cearl@esda.org

Order from: Christina Earl, (315) 339-6937, cearl@esda.org

Send comments (with copy to psa@ansi.org) to: Same

ITI (INCITS) (InterNational Committee for Information Technology Standards)

New Standard

INCITS 524-201x, Information Technology - AT Attachment 8 - ATA/ATAPI Parallel Transport (ATA8-APT) (new standard)

This standard specifies the mandatory and optional operating features of a parallel bus transport for ATA commands described in the AT Attachment 8 - Command Set (ATA8-ACS) standard. It provides a common attachment interface for systems manufacturers, system integrators, software suppliers, and suppliers of intelligent storage devices.

Single copy price: $30.00

Obtain an electronic copy from: http://www.incits.org or http://webstore.ansi.org

Send comments (with copy to psa@ansi.org) to: Rachel Porter, (202) 626-5741, comments@itlic.org

NSF (NSF International)

New Standard

BSR/NSF 401-201x (i1r2), Drinking Water Treatment Units - Emerging Compounds/Incidental Contaminants (new standard)

It is the purpose of this Standard to establish minimum requirements for materials, design and construction, and performance of drinking water treatment systems that are designed to reduce specific incidental contaminants/emerging compounds in public or private water supplies, such as pharmaceutical, personal care products, and endocrine disrupting compounds. This Standard also specifies the minimum product literature and labeling information that a manufacturer shall supply to authorized representatives and system owners as well as the minimum service-related obligations that the manufacturer shall extend to system owners.

Single copy price: Free

Order from: Monica Leslie, (734) 827-5643, mleslie@nsf.org; scruden@nsf.org

Send comments (with copy to psa@ansi.org) to: Same

NSF (NSF International)

Revision

BSR/NSF 49-201x (i51r1), Biosafety Cabinetry: Design, Construction, Performance, and Field Certification (revision of ANSI/NSF 49-2012)

This Standard applies to Class II (laminar flow) biosafety cabinetry designed to minimize hazards inherent in work with agents assigned to biosafety levels 1, 2, 3, or 4. It also defines the tests that shall be passed by such cabinetry to meet this Standard. This Standard includes basic requirements for the design, construction, and performance of biosafety cabinets that are intended to provide personnel, product, and environmental protection; reliable operation; durability and structural stability; cleanliness; limitations on noise level; illumination; vibration; and motor/blower performance.

Single copy price: Free

Obtain an electronic copy from: arose@nsf.org

Order from: Allan Rose, (734) 827-3817, arose@nsf.org

Send comments (with copy to psa@ansi.org) to: Same

NSF (NSF International)

Revision

BSR/NSF 401-201x (i51r1), Biosafety Cabinetry: Design, Construction, Performance, and Field Certification (revision of ANSI/NSF 49-2012)

This Standard applies to Class II (laminar flow) biosafety cabinetry designed to minimize hazards inherent in work with agents assigned to biosafety levels 1, 2, 3, or 4. It also defines the tests that shall be passed by such cabinetry to meet this Standard. This Standard includes basic requirements for the design, construction, and performance of biosafety cabinets that are intended to provide personnel, product, and environmental protection; reliable operation; durability and structural stability; cleanliness; limitations on noise level; illumination; vibration; and motor/blower performance.

Single copy price: Free

Obtain an electronic copy from: arose@nsf.org

Order from: Allan Rose, (734) 827-3817, arose@nsf.org

Send comments (with copy to psa@ansi.org) to: Same
SCTE (Society of Cable Telecommunications Engineers)

Revision

BSR/SCTE 140-201x, Cable Modem IPv4 and IPv6 eRouter Specification (revision of ANSI/SCTE 140-2007)

This standard defines a core set of features that enable multiple subscriber devices to gain access to operator-provided high-speed data service using DOCSIS. This core set of features allow for both IPv4- and IPv6-enabled devices to gain connectivity to the Internet.

Single copy price: $50.00
Obtain an electronic copy from: standards@scte.org
Send comments (with copy to psa@ansi.org) to: standards@scte.org

SPI (The Society of the Plastics Industry, Inc.)

New Standard

BSR/SPI B151.7-201X, Safety Requirements for Extrusion Machines (new standard)

The requirements of this standard shall apply to extrusion machines that are used in the plastics industry. Extrusion machinery suppliers and users shall use the risk assessment process in the manufacture, care, and use of the machinery. Deviations from the requirements of this standard shall be based on a documented risk assessment. Safety requirements of ancillary equipment used with extrusion machines are not covered by this standard.

Single copy price: $45.00
Obtain an electronic copy from: dfelinski@plasticsindustry.org
Order from: kmasterson@plasticsindustry.org
Send comments (with copy to psa@ansi.org) to: David Felinski, (832) 446-6999, DFelinski@plasticsindustry.org

TAPPI (Technical Association of the Pulp and Paper Industry)

New Standard

BSR/TAPPI T 1200 sp-201x, Interlaboratory evaluation of test methods to determine TAPPI repeatability and reproducibility (new standard)

This practice describes techniques for conducting and analyzing the results of intralaboratory and interlaboratory studies. The steps described here will result in a good statistical design that provides sound data for formulating a broadly applicable precision statement regarding the performance of a TAPPI test method.

Single copy price: Free
Obtain an electronic copy from: standards@tappi.org
Order from: Charles Bohanan, (770) 209-7276, standards@tappi.org
Send comments (with copy to psa@ansi.org) to: Same

UL (Underwriters Laboratories, Inc.)

Revision

BSR/UL 484-201x, Standard for Safety for Room Air Conditioners (revision of ANSI/UL 484-2013)

The following is being proposed: (1) Addition of exception that LCDI/AFCI devices are not required on cord-connected packaged terminal air conditioners (PTACs) employing a subbase.

Single copy price: Contact comm2000 for pricing and delivery options
Order from: comm2000
Send comments (with copy to psa@ansi.org) to: Jeff Prusko, (847) 664-3416, jeffrey.prusko@ul.com

Comment Deadline: January 14, 2014

Reaffirmations and withdrawals available electronically may be accessed at: webstore.ansi.org

ASME (American Society of Mechanical Engineers)

Revision

This Standard is applicable to industrial electromagnetic flowmeters and their application in the measurement of liquid flow. The electromagnetic flowmeters covered by this Standard utilize an alternating electrical current (AC) or pulsed direct-current (pulsed-DC) to generate a magnetic field in electrically conductive and electrically homogeneous liquids or slurries flowing in a completely filled, closed conduit.

Single copy price: Free
Order from: Mayra Santiago, ASME; ANSIBOX@asme.org
Send comments (with copy to psa@ansi.org) to: Calvin Gomez, (212) 591-7021, gomezc@asme.org
Call for Members (ANS Consensus Bodies)

Directly and materially affected parties who are interested in participating as a member of an ANS consensus body for the standards listed below are requested to contact the sponsoring standards developer directly and in a timely manner.

ASQ (American Society for Quality)
- **Office:** 600 N Plankinton Ave, Milwaukee, WI 53201
- **Contact:** Julie Sharp
- **Phone:** (800) 248-1946
- **E-mail:** standards@asq.org
- **BSR/ASQ E4:2013**, Quality management systems for environmental information and technology programs - Requirements with guidance for use (revision of ANSI/ASQ E4-2004)

CSA (CSA Group)
- **Office:** 8501 E. Pleasant Valley Road, Cleveland, OH 44131
- **Contact:** David Zimmerman
- **Phone:** (216) 524-4990
- **Fax:** (216) 520-8979
- **E-mail:** david.zimmerman@csagroup.org
- **BSR CSA 3.21-201x**, Bi-national standard for gas-fired industrial tank heater (new standard)
- **BSR CSA 3.22-201x**, Bi-national standard for gas-fired industrial pipeline heaters (new standard)
- **BSR CSA 3.23-201x**, Bi-national gas-fired industrial dehydrators (new standard)
- **BSR CSA 3.24-201x**, Bi-national standard for gas-fired industrial engines and generators (new standard)
- **BSR CSA 3.25-201x**, Bi-national standard for industrial pressure regulators (new standard)

DISA (ASC X12) (Data Interchange Standards Association)
- **Office:** P.O. Box 1367, Middletown, MD 21769
- **Contact:** Jerry Connors
- **Phone:** (301) 685-6517
- **E-mail:** info@disa.org
- **BSR X12.1-2008 (R201x)**, Transaction Set Tables (reaffirmation of ANSI X12.1-2008)
- **BSR X12.3-2008 (R201x)**, Data Element Dictionary (reaffirmation of ANSI X12.3-2008)
- **BSR X12.5-2004 (R201x)**, Interchange Control Structures (reaffirmation of ANSI X12.5-2004 (R2008))
- **BSR X12.6-2004 (R201x)**, Application Control Structure (reaffirmation of ANSI X12.6-2004 (R2008))

ITI (INCITS) (InterNational Committee for Information Technology Standards)
- **Office:** 1101 K Street NW, Suite 610, Washington, DC 20005-3922
- **Contact:** Rachel Porter
- **Phone:** (202) 626-5741
- **Fax:** 202-638-4922
- **E-mail:** comments@itic.org
- **INCITS 524-201x**, Information Technology - AT Attachment 8 - ATA/ATAPI Parallel Transport (ATA8-APT) (new standard)
- **INCITS 534-201x**, Information technology - Serial Attached SCSI - 4 (SAS-4) (new standard)
BSR/SPI B151.11-201X, Safety Requirements for Granulators, Strand Pelletizers and Dicers Used for Size Reduction of Plastics (new standard)

Final Actions on American National Standards

The standards actions listed below have been approved by the ANSI Board of Standards Review (BSR) or by an ANSI-Audited Designator, as applicable.

AA (ASC H35) (Aluminum Association)
Reaffirmation
ANSI H35.3-1997 (R2013), Standard Designation System for Aluminum Hardeners (reaffirmation of ANSI H35.3-1997 (R2009)): 11/7/2013
ANSI H35.4-2006 (R2013), Standard Designation System for Unalloyed Aluminum (reaffirmation of ANSI H35.4-2006 (R2009)): 11/7/2013

Revision
ANSI H35.2(M)-2013, Standard Dimensional Tolerances for Aluminum Mill Products (revision of ANSI H35.2(M)-2009): 11/7/2013
ANSI H35.2-2013, Standard Dimensional Tolerances for Aluminum Mill Products (revision of ANSI H35.2-2009): 11/7/2013
ANSI H35.5-2013, Standard Nomenclature System for Aluminum Metal Matrix Composites (revision of ANSI H35.5-1993 (R2009)): 11/7/2013

AAMI (Association for the Advancement of Medical Instrumentation)
Addenda

AHRI (Air-Conditioning, Heating, and Refrigeration Institute)
New Standard

ASIS (ASIS International)
Revision

ASME (American Society of Mechanical Engineers)
Reaffirmation
Revision

ASTM (ASTM International)
Reaffirmation

ATIS (Alliance for Telecommunications Industry Solutions)
Revision

CEA (Consumer Electronics Association)
New Standard

ITI (INCITS) (InterNational Committee for Information Technology Standards)
New National Adoption

Stabilized Maintenance

NEMA (ASC C29) (National Electrical Manufacturers Association)
Revision
NSF (NSF International)

Revision

* ANSI/BIFMA e3-2013 (i20r1), Furniture Sustainability (revision of ANSI/BIFMA e3-2012e): 11/5/2013

UL (Underwriters Laboratories, Inc.)

New National Adoption

Revision

ANSI Procedures require notification of ANSI by ANSI-accredited standards developers (ASD) of the initiation and scope of activities expected to result in new or revised American National Standards (ANS). Early notification of activity intended to reaffirm or withdraw an ANS and in some instances a PINS related to a national adoption is optional. The mechanism by which such notification is given is referred to as the PINS process. For additional information, see clause 2.4 of the ANSI Essential Requirements: Due Process Requirements for American National Standards.

Following is a list of proposed actions and new ANS that have been received recently from ASDs. Please also review the section in Standards Action entitled "American National Standards Maintained Under Continuous Maintenance" for additional or comparable information with regard to standards maintained under the continuous maintenance option. To view information about additional standards for which a PINS has been submitted and to search approved ANS, please visit www.NSSN.org, which is a database of standards information. Note that this database is not exhaustive.

Directly and materially affected interests wishing to receive more information or to submit comments are requested to contact the standards developer directly within 30 days of the publication of this announcement.

ACCA (Air Conditioning Contractors of America)
Office: 2800 Shirlington Road
 Suite 300
 Arlington, VA 22206
Contact: Dick Shaw
Fax: (703) 575-9147
E-mail: shawdd@aol.com; dick.shaw@acca.org

* BSR/ACCA 1 Manual D-2009 (R201x), Residential Duct Design
 (revision of ANSI/ACCA 1 Manual D-2009)
Stakeholders: Design practitioners, contractors, installers and others involved in the air distribution system.
Project Need: Provide a standard for the design of residential HVAC air distribution systems. Properly designed duct systems are critical to maximizing operating efficiency and comfort through the synergistic interactions of HVAC equipment, building envelope, vents, and household appliances.
This standard provides the methods and procedures for the design of residential duct systems. Constant and Variable Air Volume (VAV) applications in single, zoned and multi-zone air distribution systems found in single and two family dwellings less than three stories are included.

ASME (American Society of Mechanical Engineers)
Office: Two Park Avenue
 New York, NY 10016
Contact: Mayra Santiago
Fax: (212) 591-8501
E-mail: ANSIBox@asme.org

* BSR/ASME PTC 17-201x, Performance Test Code - Reciprocating Internal-Combustion Engines (revision of ANSI/ASME PTC 17-1973 (R2012))
Stakeholders: Test engineers and other professionals involved with technical handling and analysis of reciprocating internal-combustion engines.
Project Need: The current Standard remains relevant but is several decades old and probably in need of revision.
This Standard provides procedures for testing, and for the computation and tabulation of the results of such tests, for all types of reciprocating internal-combustion engines, in order to determine power and fuel consumption. This Standard is not intended to be submitted for consideration as an ISO or ISO/IEC JTC-1 Standard.

ASPE (American Society of Plumbing Engineers)
Office: 6400 Shafer Court
 Rosemont, IL 60018
Contact: Gretchen Pienta
Fax: (847) 296-2963
E-mail: gpienta@aspe.org

BSR/WQA/ASPE 1201-201x, Electrochemical Drinking Water Treatment Systems (new standard)
Stakeholders: Water treatment system manufacturers.
Project Need: The purpose of this standard is to establish minimum requirements for drinking-water treatment systems that utilize electrochemical technology.
This standard applies to any electrochemical drinking-water treatment system that meets the minimum requirements for chemical, electrical, mechanical, and hydraulic performance claims, which shall be tested and substantiated according to the procedures in this standard. This standard also establishes minimum requirements for material safety, structural integrity, and product literature (including instructions and labeling).

BSR/ASME B46.1-201x, Surface Texture, Surface Roughness, Waviness and Lay (revision of ANSI/ASME B46.1-2009)
Stakeholders: Manufacturers, medical, laboratory, government, users, academia, and consumers.
Project Need: The current standard is being revised to reflect the state-of-the-art with regard to Surface Roughness, Waviness, and Lay.
This Standard is concerned with the geometric irregularities of surfaces. It defines surface texture and its constituents: roughness, waviness, and lay. It also defines parameters for specifying surface texture. The terms and ratings in this Standard relate to surfaces produced by such means as brading, casting, coating, cutting, etching, plastic deformation, sintering, wear, erosion, etc.
BSR/WQA/ASPE Series 800-201x, Product Sustainability for Water Treatment Systems (new standard)
Stakeholders: Water treatment system manufacturers.
Project Need: No sustainability standards currently exist for drinking-water treatment products, and this series will provide meaningful product sustainability performance information to consumers and stakeholders to drive innovation and continual improvement in the sustainability performance of these products.
This series of drinking-water treatment product certification standards will include but not be limited to the following: water treatment media (e.g., carbon, anthracite, green sand, ion exchange resin, etc.), water filters, reverse osmosis systems, ultraviolet treatment systems, distillation systems, water softeners, electrochemical treatment systems, ultrafiltration, ozone generators, antiscale devices, endpoint devices (e.g., bubblers, coolers, heaters, carbonators, etc.), and other treatment products for drinking water developed in the future. It will describe sustainability criteria, evaluation, scoring, and verification for the different products.

ATIS (Alliance for Telecommunications Industry Solutions)
Office: 1200 G Street, NW
Suite 500
Washington, DC 20005
Contact: Kerrianne Conn
Fax: (202) 347-7125
E-mail: kconn@atis.org; jpemar@atis.org
Stakeholders: Communication industry.
Project Need: Develop a standard that provides a roadmap view of a subextending suite of standards, technical reports, and requirements documents that provide a consistent baseline that defines the NNI interface to promote IP-IP interconnection between carriers in support of multimedia services.
As telecommunication networks migrate the Network-to-Network Interface (NNI) from circuit switched to IP, there is a need for standards that define the interface to support multimedia services. The initial focus of these standards will be to support VoIP, and then their scope will be extended to cover multimedia services. These standards need to define:
- Interconnection architecture;
- SIP call/session control signaling;
- Signaling and media transport;
- Security;
- Association between call control and media control, including priorities;
- Informative information, e.g., in annexes, on “items for consideration” in SLAs; etc.
BSR ATIS 1000059-201x, ETS Wireline Access Requirements (new standard)
Stakeholders: Communication industry.
Project Need: Develop a document that defines the requirements for wireline access in support of Emergency Telecommunications Service (ETS).
To ensure that ETS wireline access is implementable and interoperable for multiple types of wireline access technologies in a multivendor environment, there is a need to define requirements that are applicable to each of these wireline access technologies.

BSR ATIS 1000060-201x, LTE Access Network Security Requirements for NS/EP NGN Priority Services (new standard)
Stakeholders: Communication industry.
Project Need: Develop a standard that provides security requirements for ETS security (i.e., authenticity, integrity, confidentiality and availability protection) in LTE Access Networks.
There is a need for network-based security protection of ETS in the multivendor Next Generation Network (NGN) environment. Recognizing that security is one of the defining features of the evolving packet-based communication networks, it is essential to put in place a set of standards that will facilitate the expected levels of security in the multiparty ecosystem. To this end, ETS has end-to-end security needs that must be addressed by standards.
BSR ATIS 1000061-201x, LTE Access Class 14 for NS/EP (new standard)
Stakeholders: Communication industry.
Project Need: It is suggested that ATIS take the necessary steps to reserve LTE Access Class 14 within the appropriate North American standard(s) for the sole purpose of NS/EP communications. NS/EP communications requires priority access during network congestion. LTE Access Class 14 needs to be reserved for NS/EP communications by authorized users in order to permit exemption from access class barring activated during network congestion, and to permit priority marking of NS/EP resource request signaling. It should be noted that the current baseline EPC network element requirements document includes a requirement for carriers to reserve this Access Class for NS/EP purposes.
BSR ATIS 1000679-201x, Interworking between Session Initiation Protocol (SIP) and Bearer Independent Call Control or ISDN User Part (revision of ANSI ATIS 1000679-2013)
Stakeholders: Communication industry.
Project Need: There is a need to maintain current references and to update the content of ATIS 1000679.
This Standard defines the singling and interworking between the Bearer Independent Call Control (BICC) or ISDN User Part (ISUP) protocols and SIP in order to support services that can be commonly supported by BICC- or ISUP- and SIP-based network domains.

AWS (American Welding Society)
Office: 8669 NW 36 St, #130
Miami, FL 33166
Contact: Chelsea Lewis
Fax: (305) 443-5951
E-mail: clewis@aws.org
Stakeholders: This document will be used by oxyfuel gas heating torch operators and users of oxyfuel gas welding systems, such as: steel mills, fabrication, tool shops, and construction personnel.
Project Need: Revision to include editorial and additional information on procedures to be used in conjunction with oxyfuel gas heating equipment.
The newly revised manual for oxyfuel gas heating torch operation includes the latest procedures to be used in conjunction with oxyfuel gas heating equipment. The manual also includes the latest safety requirements. Complete lists of equipment are available from individual manufacturers.
Stakeholders: The document will be used by oxyfuel gas heating torch operators and users of oxyfuel gas welding systems.
Project Need: Revision of the 2007 edition of Recommended Practices for Heat Shaping and Straightening to include editorial changes and updates on latest practices.
This third edition of Recommended Practices for Heat Shaping and Straightening covers the shaping of metal products by prudent use of heat to obtain a desired configuration. The text reviews the theory and analytical calculations that explain how heat shaping and straightening occurs. Sample calculations and tables are presented for typical materials. General heating patterns and heat shaping and straightening techniques are discussed. Specific heating applications are illustrated for various sections.

Stakeholders: The document will be used by oxyfuel gas heating torch operators and users of oxyfuel gas welding systems.
Project Need: Revision of the 2007 edition of Recommended Practices for Heat Shaping and Straightening to include editorial changes and updates on latest practices.
This third edition of Recommended Practices for Heat Shaping and Straightening covers the shaping of metal products by prudent use of heat to obtain a desired configuration. The text reviews the theory and analytical calculations that explain how heat shaping and straightening occurs. Sample calculations and tables are presented for typical materials. General heating patterns and heat shaping and straightening techniques are discussed. Specific heating applications are illustrated for various sections.

Stakeholders: The document will be used by oxyfuel gas heating torch operators and users of oxyfuel gas welding systems.
Project Need: Revision of the 2007 edition of Recommended Practices for Heat Shaping and Straightening to include editorial changes and updates on latest practices.
This third edition of Recommended Practices for Heat Shaping and Straightening covers the shaping of metal products by prudent use of heat to obtain a desired configuration. The text reviews the theory and analytical calculations that explain how heat shaping and straightening occurs. Sample calculations and tables are presented for typical materials. General heating patterns and heat shaping and straightening techniques are discussed. Specific heating applications are illustrated for various sections.

Stakeholders: The document will be used by oxyfuel gas heating torch operators and users of oxyfuel gas welding systems.
Project Need: Revision of the 2007 edition of Recommended Practices for Heat Shaping and Straightening to include editorial changes and updates on latest practices.
This third edition of Recommended Practices for Heat Shaping and Straightening covers the shaping of metal products by prudent use of heat to obtain a desired configuration. The text reviews the theory and analytical calculations that explain how heat shaping and straightening occurs. Sample calculations and tables are presented for typical materials. General heating patterns and heat shaping and straightening techniques are discussed. Specific heating applications are illustrated for various sections.

Stakeholders: The document will be used by oxyfuel gas heating torch operators and users of oxyfuel gas welding systems.
Project Need: Revision of the 2007 edition of Recommended Practices for Heat Shaping and Straightening to include editorial changes and updates on latest practices.
This third edition of Recommended Practices for Heat Shaping and Straightening covers the shaping of metal products by prudent use of heat to obtain a desired configuration. The text reviews the theory and analytical calculations that explain how heat shaping and straightening occurs. Sample calculations and tables are presented for typical materials. General heating patterns and heat shaping and straightening techniques are discussed. Specific heating applications are illustrated for various sections.

Stakeholders: The document will be used by oxyfuel gas heating torch operators and users of oxyfuel gas welding systems.
Project Need: Revision of the 2007 edition of Recommended Practices for Heat Shaping and Straightening to include editorial changes and updates on latest practices.
This third edition of Recommended Practices for Heat Shaping and Straightening covers the shaping of metal products by prudent use of heat to obtain a desired configuration. The text reviews the theory and analytical calculations that explain how heat shaping and straightening occurs. Sample calculations and tables are presented for typical materials. General heating patterns and heat shaping and straightening techniques are discussed. Specific heating applications are illustrated for various sections.

Stakeholders: The document will be used by oxyfuel gas heating torch operators and users of oxyfuel gas welding systems.
Project Need: Revision of the 2007 edition of Recommended Practices for Heat Shaping and Straightening to include editorial changes and updates on latest practices.
This third edition of Recommended Practices for Heat Shaping and Straightening covers the shaping of metal products by prudent use of heat to obtain a desired configuration. The text reviews the theory and analytical calculations that explain how heat shaping and straightening occurs. Sample calculations and tables are presented for typical materials. General heating patterns and heat shaping and straightening techniques are discussed. Specific heating applications are illustrated for various sections.

Stakeholders: The document will be used by oxyfuel gas heating torch operators and users of oxyfuel gas welding systems.
Project Need: Revision of the 2007 edition of Recommended Practices for Heat Shaping and Straightening to include editorial changes and updates on latest practices.
This third edition of Recommended Practices for Heat Shaping and Straightening covers the shaping of metal products by prudent use of heat to obtain a desired configuration. The text reviews the theory and analytical calculations that explain how heat shaping and straightening occurs. Sample calculations and tables are presented for typical materials. General heating patterns and heat shaping and straightening techniques are discussed. Specific heating applications are illustrated for various sections.

Stakeholders: The document will be used by oxyfuel gas heating torch operators and users of oxyfuel gas welding systems.
Project Need: Revision of the 2007 edition of Recommended Practices for Heat Shaping and Straightening to include editorial changes and updates on latest practices.
This third edition of Recommended Practices for Heat Shaping and Straightening covers the shaping of metal products by prudent use of heat to obtain a desired configuration. The text reviews the theory and analytical calculations that explain how heat shaping and straightening occurs. Sample calculations and tables are presented for typical materials. General heating patterns and heat shaping and straightening techniques are discussed. Specific heating applications are illustrated for various sections.

Stakeholders: The document will be used by oxyfuel gas heating torch operators and users of oxyfuel gas welding systems.
Project Need: Revision of the 2007 edition of Recommended Practices for Heat Shaping and Straightening to include editorial changes and updates on latest practices.
This third edition of Recommended Practices for Heat Shaping and Straightening covers the shaping of metal products by prudent use of heat to obtain a desired configuration. The text reviews the theory and analytical calculations that explain how heat shaping and straightening occurs. Sample calculations and tables are presented for typical materials. General heating patterns and heat shaping and straightening techniques are discussed. Specific heating applications are illustrated for various sections.

Stakeholders: The document will be used by oxyfuel gas heating torch operators and users of oxyfuel gas welding systems.
Project Need: Revision of the 2007 edition of Recommended Practices for Heat Shaping and Straightening to include editorial changes and updates on latest practices.
This third edition of Recommended Practices for Heat Shaping and Straightening covers the shaping of metal products by prudent use of heat to obtain a desired configuration. The text reviews the theory and analytical calculations that explain how heat shaping and straightening occurs. Sample calculations and tables are presented for typical materials. General heating patterns and heat shaping and straightening techniques are discussed. Specific heating applications are illustrated for various sections.

Stakeholders: The document will be used by oxyfuel gas heating torch operators and users of oxyfuel gas welding systems.
Project Need: Revision of the 2007 edition of Recommended Practices for Heat Shaping and Straightening to include editorial changes and updates on latest practices.
This third edition of Recommended Practices for Heat Shaping and Straightening covers the shaping of metal products by prudent use of heat to obtain a desired configuration. The text reviews the theory and analytical calculations that explain how heat shaping and straightening occurs. Sample calculations and tables are presented for typical materials. General heating patterns and heat shaping and straightening techniques are discussed. Specific heating applications are illustrated for various sections.
Standards Action - November 15, 2013 - Page 15 of 62 Pages

BSR/EIA 296-G-201x, Lead Taping of Components in Axial Lead Configuration for Automatic Handling (new standard)
Stakeholders: Electrical, electronics, and telecommunications industry.
Project Need: Revise and upgrade to American National Standard.
This standard is formulated to provide dimensions and tolerances necessary to tape axial leaded components after manufacture so that they can be automatically handled. Axial leaded components are leaded components with the lead egress concentric with the longitudinal axis centerline of the component body.

Stakeholders: Electronics, electrical, and telecommunications industry
Project Need: Revise current ANS to provide clarification for the soldering equipment and fluxing operation.
This standard establishes a test method for determining if connectors or sockets can withstand exposure to solder rework conditions using either soldering iron, solder pot/fountain/wave solder, or hot gas/vapor techniques. It is important to note that compliant pin connectors or sockets can be affected by solder rework if they are in close proximity to other connectors or sockets undergoing solder rework.

BSR/EIA 364-84-201x, Residual Magnetism Test Procedure for Electrical Contact Used in Space Applications (new standard)
Stakeholders: Electronics, electrical, and telecommunications industry
Project Need: New standard.
This standard establishes a test procedure to determine the residual magnetism of individual contacts within a connector during controlled laboratory tests designed to simulate conditions likely to be encountered in unusual atmospheres, high-altitude, and space flight environments.

BSR/EIA 886-A-201x, Thick Film Resistor Array Specification (new standard)
Stakeholders: Electrical, electronics, and telecommunications industry
Project Need: Reaffirm existing EIA Standard and upgrade to American National Standard.
This specification defines the requirements for a family of thick film chip resistors arrays in ceramic with various configurations and package sizes.

BSR/EIA 887-A-201x, Thin Film Resistor Network Specification (new standard)
Stakeholders: Electrical, electronics, and telecommunications industry
Project Need: Reaffirm existing EIA Standard and upgrade to American National Standard.
This specification defines the requirements for a family of thin film resistor networks on silicon with various configurations, packaged in a molded, JEDEC-approved package.

BSR/EIA 60115-1-201x, Fixed Resistors for Use in Electronic Equipment - Part 1: Generic specification (identical national adoption of IEC 60115-1 (ed.4))
Stakeholders: Electrical, electronics, and telecommunications industry.
Project Need: International harmonization.
This part of IEC 60115 is a generic specification and is applicable to fixed resistors for use in electronic equipment. It establishes standard terms, inspection procedures and methods of test for use in sectional and detail specifications of electronic components for quality assessment or any other purpose.

BSR/EIA 60115-8-201x, Fixed Resistors for Use in Electronic Equipment - Part 8: Sectional specification - Fixed surface mount resistors (identical national adoption of IEC 60115-8 (ed.2))
Stakeholders: Electrical, electronics, and telecommunications industry.
Project Need: International harmonization.
This part of IEC 60115 is applicable to fixed surface mount resistors for use in electronic equipment. These resistors are typically described according to types (different geometric shapes) and styles (different dimensions). They have metallized terminations and are primarily intended to be mounted directly on to a circuit board.

BSR/EIA 60115-9-1-201x, Fixed Resistors for Use in Electronic Equipment - Part 9-1: Blank detail specification: Fixed surface mount resistor networks with individually measurable resistors - Assessment level EZ (identical national adoption of IEC 60115-9-1 (ed.1))
Stakeholders: Electrical, electronics, and telecommunications industry.
Project Need: International harmonization.
A blank detail specification is a supplementary document to the sectional specification and contains requirements for style, layout, and minimum content of detail specifications. Detail specifications not complying with these requirements may not be considered as being in accordance with IEC specifications nor shall they be so described.

BSR/EIA 60440-201x, Method of Measurement of Non-Linearity in Resistors (identical national adoption of IEC 60440 (ed.1))
Stakeholders: Electrical, electronics, and telecommunications industry.
Project Need: International harmonization.
Non-linearity testing is a method to evaluate the integrity of a resistive element. It may be applied as an effective inline screening method suitable to detect and eliminate potential infant mortality failures in passive components. The method is fairly rapid and convenient, and the associated equipment is relatively inexpensive. Typical effects causing non-linearity on resistors are, e.g., inhomogeneous spots within a resistive film, traces of film left in the spiraling grooves, or contact instability between a connecting lead or termination and the resistive element. This International Standard specifies a method of measurement and associated test conditions to assess the magnitude of non-linear distortion generated in a resistor. This method is applied if prescribed by a relevant component specification, or if agreed between a customer and a manufacturer.
IEEE (Institute of Electrical and Electronics Engineers)

Office: 445 Hoes Lane
Piscataway, NJ 08854-4141

Contact: David Ringle
Fax: (732) 875-0524
E-mail: d.ringle@ieee.org

Stakeholders: Developers, manufacturers and users of analog and digital telephones, handsets and headsets, and other devices used for speech communication.

Project Need: The purpose of this standard is to provide laboratory test methods for evaluating the electroacoustic performance of communication devices.

This standard provides techniques for objective measurement of electroacoustic devices used for speech communications, including communication devices also used for multimedia applications. Application is for devices that are primarily used closely coupled to the ear. Aspects of devices with speakerphone or speaker listening features are covered by IEEE Standard 1329, "Method for Measuring Transmission Performance of Speakerphones".

Stakeholders: Those utility (power) engineers that deal with the provisioning of communication circuits (or services) for electric utilities as well as those telecommunication engineers that deal with the provisioning of communication circuits (or services) into electric supply locations. Also, some equipment manufacturers may be interested in this project.

Project Need: This Standard presents general considerations for the electrical protection of telecommunication facilities serving electric supply locations. This standard contains material which is common to the 487-family of Standards (i.e., dot-series) including fundamental theory, basic electrical protection concepts and designs.

This standard presents general consideration for special high-voltage protection systems intended to protect telecommunication facilities serving electric supply locations. This standard contains material common to all of the 487-family including basic theory and fundamental electrical protection concepts and designs.

BSR/IEEE 802.3bq-20xx, Amendment: Physical Layer and Management Parameters for 40 Gb/s Operation, Type 40GBASE-T (supplement to ANSI/IEEE 802.3-2009)

Stakeholders: Stakeholders identified to date includes but are not limited to: users and producers of systems and components for servers, network storage, networking systems, and data centers.

Project Need: Specify a Physical Layer (PHY) for operation at 40 Gb/s on balanced twisted-pair copper cabling, using existing Media Access Control, and with extensions to the appropriate physical layer management parameters.

This standard defines Ethernet local area, access and metropolitan area networks. Ethernet is specified at selected speeds of operation; and uses a common media access control (MAC) specification and management information base (MIB). The Carrier Sense Multiple Access with Collision Detection (CSMA/CD) MAC protocol specifies shared medium (half-duplex) operation, as well as full-duplex operation.

BSR/IEEE 1453-20xx, Recommended Practice for the Analysis of Fluctuating Installations on Power Systems (revision of ANSI/IEEE 1453-2013)

Stakeholders: The stakeholders for this standard are electric utilities, manufacturers, and electric utility end-users.

Project Need: This document provides guidance to system operators, owners, and engineers that are responsible for providing electrical service to loads that cause voltage fluctuations. It provides guidance on the principles and methodology that can be used to determine requirements for connecting fluctuating loads to both radial and network systems.

This document provides background on the light flicker phenomenon that arises out of the fluctuations in power demands of variable loads. A flicker measurement method is presented using a meter that is completely described in IEC Standard 61000-4-15. The short-term (Pst) and long-term (Pit) flicker indices used for the analysis of flicker data are defined. Flicker limits for various voltage levels are presented. An assessment procedure for evaluating flicker compliance against emission limits is described. Methodologies to analyze background flicker to identify the flicker contribution of single loads are also presented.

BSR/IEEE 1711-201x, Standard for a Cryptographic Protocol for Cyber Security of Substation Serial Links (new standard)

Stakeholders: The stakeholders are the engineers at electric utilities and consultants/system integrators who are seeking interoperable solutions for the existing unsecured serial links, and manufacturers who may design interoperable products addressing these cyber security gaps. Electric, gas, and water providers as well as SCADA and security equipment vendors and SCADA equipment users.

Project Need: The elevated concern of cyber security throughout the power industry has created a need to protect communications to and from substations. This standard defines a cryptographic protocol known as Substation Serial Protection Protocol (SSPP) that can protect the integrity and optional confidentiality of asynchronous serial communications typically used by substation equipment.

This standard defines a cryptographic protocol to provide integrity, and optional confidentiality, for cyber security of substation serial links. It does not address specific applications or hardware implementations, and is independent of the underlying communications protocol.

Stakeholders: Designers, manufacturers, and end users of energy saving devices.

Project Need: The need of the project is to provide instructions for the measurement protocol of all the electrical quantities that are needed in determining the performance characteristics of Energy Saving Devices (ESD).

This standard describes methods to evaluate and test the electrical performance of Energy Saving Devices (ESD). It describes measurement methods that focus on monitoring the power absorbed or generated by the observed load or generator without the ESD connected and with the ESD energized. Detailed protocols describe step-by-step the testing circuits to be used, the type and accuracy of needed instrumentation, what particular measurements are to be taken and in what order.

BSR/IEEE 1890-201x, Standard for Error Correction Coding of Flash Memory Using Low-Density Parity Check Codes (new standard)

Stakeholders: Flash Device makers, Flash controller makers.

Project Need: Currently industry is attempting to use low-density parity-check codes. However, no standard exists for the definition of encoding matrix H similar to what exits for wireless and other communication applications. The proposed standard defines a set of low-density parity check code matrices that are suitable for flash memory.

The standard specifies the advanced error correction coding for flash memories.
Standards Action - November 15, 2013 - Page 17 of 62 Pages

BSR/IEEE 1891-201x, Standard Criteria for Application of Intelligent Digital Devices to Nuclear Power Generating Stations (new standard)

Stakeholders: Stakeholders for this standard are utilities, regulators, and vendors that provide digital-technology-based devices/components for use in nuclear power generating stations.

Project Need: This standard provides criteria and guidance for the use of intelligent digital devices/components in nuclear generating-station applications. This standard addresses the use of current devices/components that contain embedded microprocessors and microcontrollers for performance of the device/component function, self-monitoring, communications, diagnostics, trending, etc.

This standard addresses the use of digital technology in intelligent digital devices/components in nuclear power generating stations. The criteria contained in this standard and those standards referenced in this standard establish the minimum component-level design and process requirements for intelligent digital devices/components used in nuclear power plant applications, using a graded approach.

BSR/IEEE 1910.1-201x, Standard for Meshed Tree Bridging with Loop Free Forwarding (new standard)

Stakeholders: Communications system manufacturers and solution developers.

Project Need: The purpose of this standard is to specify the methods for establishing several tree-like structures on an existing topology. This standard specifies a meshed-tree bridging protocol for the purpose of forwarding unicast, multicast, and broadcast frames in a loop-free forwarding topology with zero convergence time on detection of link or switch failure. The meshed-tree scheme imposes low operational and control overhead by operating through local information dissemination without flooding or forwarding link details to all switches in the topology.

BSR/IEEE 2030.5-201x, Standard for Smart Energy Profile 2.0 Application Protocol (new standard)

Stakeholders: Electric utilities, metering manufacturers, consumers, silicon providers, government ministries and regulatory agencies, appliance manufacturers, automotive manufacturers, OEMs, service providers, and those related to providing elements and applications for Home Energy Management Systems (HEMS).

Project Need: This standard leverages and further enhances earlier HAN specifications (specifically, the ZigBee Alliance Smart Energy Profile, v1.0 and v1.1) for utilities and product manufacturers and to help ensure a consistent, robust, and successful customer experience.

The purpose of this document is to define the application protocol to enable utility management of the end-user energy environment, including things like demand response, load control, time-of-day pricing, management of distributed generation, electric vehicles, etc.

Stakeholders: Energy, utilities, vendors to those industries.

Project Need: The manner in which the control systems are being designed and operated in the energy sector is undergoing some of the most significant changes in history due to the evolution of technology and the increasing number of interconnections to other systems. With these changes however, come two significant challenges that the energy sector must face: (1) Cyber security is more important than ever before, and (2) Cyber security is more complicated than ever before.

This standard provides guidelines for interoperability of devices utilized within utility control systems that support critical cyber security functions. Interoperable Configuration Profiles (ICPs) to describe a specific instantiation of a particular security-related protocol are described. This description of the ICPs will make it easier for utilities to procure and implement secure systems, provide adequate cyber security controls no matter the vendor selected, provide backward compatibility, and minimize the effort of configuring and maintaining devices supporting cyber security functions over their lifetime.

BSR/IEEE 12207-20xx, Systems and software engineering - Software life cycle processes (revision of ANSI/IEEE 12207-2008)

Stakeholders: Software engineers, systems engineers, and the organizations that employ them or acquire products created by them.

Project Need: The purpose of this International Standard is to provide a defined set of processes to facilitate communication among acquirers, suppliers and other stakeholders in the life-cycle of a software product. This International Standard is written for acquirers of systems and software products and services and for suppliers, developers, operators, maintainers, managers, quality-assurance managers, and users of software products.

This International Standard establishes a common framework for software life-cycle processes, with well-defined terminology, that can be referenced by the software industry. It contains processes, activities, and tasks that are to be applied during the acquisition of a software product or service and during the supply, development, operation, maintenance, and disposal of software products. Software includes the software portion of firmware.

Stakeholders: Users, acquirers, and developers of software that must achieve designated critical properties.

Project Need: This International Standard defines assurance-related terms and establishes an organized set of concepts and relationships to establish a basis for shared understanding across user communities for assurance. It provides information to users of the other parts of this International Standard including the combined use of multiple parts.

BSR/IEEE 15288-20xx, Systems and software engineering - System life cycle processes (revision of ANSI/IEEE 15288-2008)

Stakeholders: Software engineers, systems engineers, and the organizations that employ them or acquire products produced by them.

Project Need: The purpose of this International Standard is to provide a defined set of processes to facilitate communication among acquirers, suppliers, and other stakeholders in the life-cycle of a system. This International Standard applies to organizations in their roles as both acquirers and suppliers.

This International Standard establishes a common framework for describing the life-cycle of systems created by humans. It defines a set of processes and associated terminology. These processes can be applied at any level in the hierarchy of a system’s structure. Selected sets of these processes can be applied throughout the life-cycle for managing and performing the stages of a system's life-cycle. This is accomplished through the involvement of all interested parties, with the ultimate goal of achieving customer satisfaction.

Stakeholders: Software engineers and their managers. Also acquirers and suppliers of custom-developed software.

Project Need: Users of ISO/IEC/IEEE 12207 have complained that the standard does not prescribe content of a software development plan. This standard will fill that gap.

This International Standard specifies the required processes to be implemented for the technical planning of a software development effort within an overall project or organizational structure, gives guidelines for applying the required processes, specifies the required information items to be produced through the implementation of the required processes, specifies the required contents of the required information items, and gives guidelines for the format and content of the required and related information items.

Stakeholders: Users of high-voltage circuit breakers, manufacturers and consultants.

Project Need: This document will be revised, in particular, to reflect new and updated test methods and procedures. This revision will also include the changes made in C37.04 and C37.017.

This standard applies to ac high-voltage circuit breakers with rated maximum voltage above 1000 V. It defines various tests that are made on ac high-voltage circuit breakers, except for generator circuit breakers, which are covered in IEEE Std 62271-37-013 (formerly C37.013). It specifies the tests and describes the accepted methods used to verify assigned ratings defined in C37.04.

BSR/IEEE C37.246-201x, Guide for Protection Systems of Transmission to Generation Interconnections (new standard)

Stakeholders: Power-system-industry professionals such as utility and consultant relay-protection engineers, designers, and regulators.

Project Need: This Guide provides guidance to those who are responsible for the protection of electrical interconnections between transmission systems and generation facilities greater than 10 MVA. It is not intended to supplant specific transmission or generator owner practices, procedures, requirements, or any contractual agreement between the transmission and generator owners.

This Guide documents accepted protection practices for transmission to generation interconnections. It is intended to cover the protection system applications at the interconnections between transmission systems and generation facilities greater than 10 MVA. This Guide does not cover distributed energy resources.

ITI (INCITS) (InterNational Committee for Information Technology Standards)

Office: 1101 K Street NW
Suite 610
Washington, DC 20005-3922

Contact: Barbara Bennett

Fax: (202) 638-4922

E-mail: comments@itic.org

Stakeholders: ICT industry.

Project Need: Adoption of this International Standard will be beneficial to the ICT industry.

ISO/IEC 17826:2012 specifies the interface to access cloud storage and to manage the data stored therein. It is applicable to developers who are implementing or using cloud storage.

Stakeholders: ICT industry.

Project Need: Adoption of this International Standard will be beneficial to the ICT industry.

ISO/IEC 17963:2013 describes a Web services protocol based on SOAP for use in management-specific domains. These domains include the management of entities such as PCs, servers, devices, Web services, and other applications manageable entities. Services can expose only a WS-Management interface or compose the WS-Management service interface with some of the many other Web service specifications.

Stakeholders: ICT industry.

Project Need: Adoption of this International Standard will be beneficial to the ICT industry.

ISO/IEC 29361:2008 defines the WS-I Basic Profile 1.1, consisting of a set of non-proprietary Web services specifications, along with clarifications, refinements, interpretations, and amplifications of those specifications that promote interoperability.

Stakeholders: ICT industry.

Project Need: Adoption of this International Standard will be beneficial to the ICT industry.

ISO/IEC 29362:2008 defines the WS-I Attachments Profile 1.0, consisting of a set of non-proprietary Web services specifications, along with clarifications and amendments to those specifications that are intended to promote interoperability. It complements the WS-I Basic Profile 1.1 (ISO/IEC 29361:2008) to add support for interoperable SOAP Messages with Attachments-based Web services.

Stakeholders: ICT industry.

Project Need: Adoption of this International Standard will be beneficial to the ICT industry.

ISO/IEC 29363:2008 defines the WS-I Simple SOAP Binding Profile 1.0, consisting of a set of non-proprietary Web services specifications, along with clarifications and amendments to those specifications that promote interoperability.

ITI (INCITS) (InterNational Committee for Information Technology Standards)

Office: 1101 K Street NW
Suite 610
Washington, DC 20005-3922

Contact: Rachel Porter

Fax: 202-638-4922

E-mail: comments@itic.org

INCITS 534-201x, Information technology - Serial Attached SCSI - 4 (SAS-4) (new standard)

Stakeholders: This proposed project is intended to provide a more consistent driver interface for SAS solutions.

Project Need: The proposed project involves a compatible evolution of the present Serial Attached SCSI standard.

Serial Attached SCSI - 4 is the next generation of Serial Attached SCSI, following SAS-3, SAS-2.1, SAS-2, SAS-1.1, and SAS. The following items should be considered for inclusion in Serial Attached SCSI - 4: (1) at least double the SAS-3 data rate; (2) maintain 6-Gbps and 12-Gbps SAS compatibility; (3) incorporate more efficient signal encoding; and (4) other capabilities that may fit within the scope of this project.

BSR/SPI B151.5-201X, Safety Requirements for Plastic Film and Sheet Winding Machinery (new standard)
Stakeholders: Suppliers, producers, users.
Project Need: Machinery remains quite hazardous; new technology available to risk assess/safeguard.

This standard will address the safety requirements during set-up, installation, production use and maintenance, and the safe design aspects and elements during the manufacture of plastic-sheet-and-film winding machinery.

BSR/SPI B151.11-201X, Safety Requirements for Granulators, Strand Pelletizers and Dicers Used for Size Reduction of Plastics (new standard)
Stakeholders: Supplier, producers, users.
Project Need: Machinery remains quite hazardous; new technology available to risk assess/safeguard.

This standard applies to all granulators, strand pelletizers, and dicers used for the size reduction of plastics. The equipment can be actuated either manually, mechanically, hydraulically, electrically, pneumatically or by any combination. This standard does not apply to shredders and pulverizers.

Stakeholders: End-users/consultant/architects/engineering involved in project of any type of environment that wants to implement an infrastructure that can support intelligent building applications. Manufacturers of intelligent building applications and structure cabling infrastructure.
Project Need: Provide updates for an existing standard.

This Standard specifies minimum requirements for intelligent building system cabling infrastructure including cabling topology, architecture, design and installation practices, test procedures, and components. The cabling infrastructure specified by this Standard is intended to support a wide range of systems, particularly those that utilize or can utilize IP-based infrastructure. Justification: Revision of the document to include additional information regarding cabling supporting intelligent building systems.
American National Standards Maintained Under Continuous Maintenance

The ANSI Essential Requirements: Due Process Requirements for American National Standards provides two options for the maintenance of American National Standards (ANS): periodic maintenance (see clause 4.7.1) and continuous maintenance (see clause 4.7.2). Continuous maintenance is defined as follows:

The standard shall be maintained by an accredited standards developer. A documented program for periodic publication of revisions shall be established by the standards developer. Processing of these revisions shall be in accordance with these procedures. The published standard shall include a clear statement of the intent to consider requests for change and information on the submittal of such requests. Procedures shall be established for timely, documented consensus action on each request for change and no portion of the standard shall be excluded from the revision process. In the event that no revisions are issued for a period of four years, action to reaffirm or withdraw the standard shall be taken in accordance with the procedures contained in the ANSI Essential Requirements.

The Executive Standards Council (ExSC) has determined that for standards maintained under the Continuous Maintenance option, separate PINS announcements are not required. The following ANSI Accredited Standards Developers have formally registered standards under the Continuous Maintenance option.

- AAMI (Association for the Advancement of Medical Instrumentation)
- AAMVA (American Association of Motor Vehicle Administrators)
- AGA (American Gas Association)
- AGSC (Auto Glass Safety Council)
- ASC X9 (Accredited Standards Committee X9, Incorporated)
- ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.)
- ASME (American Society of Mechanical Engineers)
- ASTM (ASTM International)
- GEIA (Greenguard Environmental Institute)
- HL7 (Health Level Seven)
- MHI (ASC MH10) (Material Handling Industry)
- NAHBRC (NAHB Research Center, Inc.)
- NBBPVI (National Board of Boiler and Pressure Vessel Inspectors)
- NCPDP (National Council for Prescription Drug Programs)
- NISO (National Information Standards Organization)
- NSF (NSF International)
- TIA (Telecommunications Industry Association)
- UL (Underwriters Laboratories, Inc.)

To obtain additional information with regard to these standards, including contact information at the ANSI Accredited Standards Developer, please visit ANSI Online at www.ansi.org/asd, select “Standards Activities,” click on “Public Review and Comment” and “American National Standards Maintained Under Continuous Maintenance.” This information is also available directly at www.ansi.org/publicreview.

Alternatively, you may contact the Procedures & Standards Administration department (PSA) at psa@ansi.org or via fax at 212-840-2298. If you request that information be provided via E-mail, please include your E-mail address; if you request that information be provided via fax, please include your fax number. Thank you.
ANSI-Accredited Standards Developers Contact Information

The addresses listed in this section are to be used in conjunction with standards listed in PINS, Call for Comment and Final Actions. This section is a list of developers who have submitted standards for this issue of Standards Action – it is not intended to be a list of all ANSI-Accredited Standards Developers. Please send all address corrections to Standards Action Editor at standact@ansi.org.

AA (ASC H35)
Aluminum Association
1525 Wilson Boulevard
Suite 600
Arlington, VA 22209
Phone: (703) 358-2990
Web: www.aluminum.org

AAMI
Association for the Advancement of Medical Instrumentation
4301 N Fairfax Drive
Suite 301
Arlington, VA 22203-1633
Phone: (703) 253-8268
Fax: (703) 276-0793
Web: www.aami.org

ACCA
Air Conditioning Contractors of America
2800 Shirlington Road
Suite 300
Arlington, VA 22206
Phone: (202) 251-3835
Fax: (703) 575-9147
Web: www.acca.org

AHRI
Air-Conditioning, Heating, and Refrigeration Institute
2111 Wilson Boulevard
Suite 500
Arlington, VA 22201
Phone: (703) 600-0327
Fax: (703) 562-1942
Web: www.ahrinet.org

ASABE
American Society of Agricultural and Biological Engineers
2950 Niles Road
St Joseph, MI 49085
Phone: (269) 932-7015
Fax: (269) 429-3852
Web: www.asabe.org

ASHRAE
American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.
1791 Tullie Circle, NE
Atlanta, GA 30329
Phone: (404) 636-8400
Fax: (404) 321-5478
Web: www.ashrae.org

ASIS
ASIS International
1625 Prince Street
Alexandria, VA 22314-2818
Phone: (703) 518-1439
Fax: (703) 518-1517
Web: www.asisonline.org

ASME
American Society of Mechanical Engineers
Two Park Avenue
New York, NY 10016
Phone: (212) 591-8521
Fax: (212) 591-8501
Web: www.asme.org

ASPE
American Society of Plumbing Engineers
6400 Shafer Court
Suite 350
Rosemont, IL 60018
Phone: (847) 296-0022
Fax: (847) 296-2963
Web: www.aspe.org

ASQ
American Society for Quality
600 N Plankinton Ave
Milwaukee, WI 53201
Phone: (414) 248-1946
Web: www.asq.org

ASTM
ASTM International
100 Barr Harbor Drive
West Conshohocken, PA 19428-2959
Phone: (610) 832-9744
Fax: (610) 834-3683
Web: www.astm.org

ATIS
Alliance for Telecommunications Industry Solutions
1200 G Street, NW
Suite 500
Washington, DC 20005
Phone: (202) 434-8841
Fax: (202) 347-7125
Web: www.atis.org

AWS
American Welding Society
8869 NW 36 St, #130
Miami, FL 33166
Phone: (305) 443-9353 x306
Fax: (305) 443-9351
Web: www.aws.org

CEA
Consumer Electronics Association
1919 South Eads Street
Arlington, VA 22202
Phone: (703) 907-7697
Fax: (703) 907-4197
Web: www.ce.org

CSA
CSA Group
8501 E. Pleasant Valley Road
Cleveland, OH 44131
Phone: (216) 524-4990
Fax: (216) 520-8979
Web: www.csa-america.org

DISA (ASC X12)
Data Interchange Standards Association
P.O. Box 1367
Middletown, MD 21769
Phone: (301) 685-6517
Web: www.disa.org

ECA
Electronic Components Association
2214 Rock Hill Road
Suite 170
Hendron, VA 20170-4212
Phone: (571) 323-0294
Fax: (571) 323-0245
Web: www.eciaonline.org

EOS/ESD
ESD Association
7900 Turin Rd., Bldg. 3
Rome, NY 13440
Phone: (315) 339-6937
Fax: (315) 339-6793
Web: www.esda.org

ICC
International Code Council
4051 West Flossmoor Road
Country Club Hills, IL 60478-5795
Phone: (708) 799-2300
Fax: (708) 799-0320
Web: www.iccsafe.org

IEEE
Institute of Electrical and Electronics Engineers
445 Hoes Lane
Piscataway, NJ 08854-4141
Phone: (732) 562-3806
Fax: (732) 875-0524
Web: www.ieee.org

ITI (INCITS)
International Committee for Information Technology Standards
1101 K Street NW
Suite 610
Washington, DC 20005-3922
Phone: (202) 626-5743
Fax: (202) 638-4922
Web: www.incits.org

NEMA (ASC C29)
National Electrical Manufacturers Association
1300 North 17th Street
Suite 1752
Rosslyn, VA 22209
Phone: (703) 841-3297
Fax: (703) 841-3397
Web: www.nema.org

NSF
National Science Foundation
789 N. Dixboro Road
Ann Arbor, MI 48105
Phone: (734) 827-5643
Fax: (734) 827-7880
Web: www.nsf.org

SCTE
Society of Cable Telecommunications Engineers
140 Philips Rd.
Exton, PA 19341
Phone: (610) 594-7308
Fax: (610) 363-7133
Web: www.scte.org

SPI
The Society of Plastics Industry, Inc.
POB 690905
Houston, TX 77269
Phone: (832) 446-6999
Web: www.plasticsindustry.org

TAPPI
Technical Association of the Pulp and Paper Industry
15 Technology Parkway South
Peachtree Corners, GA 30092
Phone: (770) 209-7276
Fax: (770) 446-6947
Web: www.tappi.org

TIA
Telecommunications Industry Association
1320 North Courthouse Road
Suite 200
Arlington, VA 22201
Phone: (703) 907-7497
Fax: (703) 907-7727
Web: www.tiaonline.org

UL
Underwriters Laboratories, Inc.
332 Pfingsten Road
Northbrook, IL 60062-2096
Phone: (847) 664-3038
Fax: (847) 664-3038
Web: www.ul.com
ISO & IEC Draft International Standards

This section lists proposed standards that the International Organization for Standardization (ISO) and the International Electrotechnical Commission (IEC) are considering for approval. The proposals have received substantial support within the technical committees or subcommittees that developed them and are now being circulated to ISO and IEC members for comment and vote. Standards Action readers interested in reviewing and commenting on these documents should order copies from ANSI.

Comments

Comments regarding ISO documents should be sent to Karen Hughes at ANSI's New York offices, those regarding IEC documents to Charles T. Zegers, also at ANSI New York offices. The final date for offering comments is listed after each draft.

ISO Standards

ACOUSTICS (TC 43)

HEALTH INFORMATICS (TC 215)

INDUSTRIAL TRUCKS (TC 110)

ISO/DIS 11525-2, Rough-terrain trucks - User requirements - Part 2: Slewing variable-reach trucks - 2/14/2014

ISO/IEC JTC 1, Information Technology

ISO/IEC 23008-1/PDAM 1, - 2/12/2014

IEC Standards

13/1557/CD, IEC 62056-8-6 Electricity Metering Data Exchange - The DLMS/COSEM Suite - Part 8-6: High speed PLC ISO/IEC 12139-1 profile for neighbourhood networks, 02/14/2014
14/764/CDV, IEC 60076-10 Ed.2: Power transformers - Part 10: Determination of sound levels, 02/14/2014
14/765/CD, IEC 60076-10-1 Ed.2: Power transformers - Part 10-1: Determination of sound levels - Application guide, 02/14/2014

Ordering Instructions

ISO and IEC Drafts can be made available by contacting ANSI's Customer Service department. Please e-mail your request for an ISO or IEC Draft to Customer Service at sales@ansi.org. When making your request, please provide the date of the Standards Action issue in which the draft document you are requesting appears.
48D/551/NP, IEC 60297-3-XXX/Ed1: Mechanical structures for electronic equipment - dimensions of mechanical structures of the 482,6 mm (19 in) series - Part xxx: Dimensions of chassis for embedded computing, 02/07/2014

57/1409/FDIS, IEC 61970-453: Energy management system application program interface (EMS-API) - Part 453: Diagram layout profile, 01/10/2014

69/256/CDV, IEC 61980-1/Ed.1: Electric vehicle wireless power transfer systems (WPT) Part 1: General requirements, 02/07/2014

69/266A/CD, IEC 61851-21-1/Ed. 1: Electric vehicle conductive charging systems - Part 21-1: Electric vehicle onboard charger EMC requirements for conductive connection to an a.c./d.c. supply, 12/20/2013

82/802/NP, Thermal cycling test for CPV modules to differentiate increased thermal fatigue durability, 02/07/2014

91/1136/CDV, IEC 60068-2-58 Ed.4: Environmental testing - Part 2 -58: Tests - Test Td: Test methods for solderability, resistance to dissolution of metallization and to soldering heat of surface mounting devices (SMD), 02/07/2014

91/1138A/CD, IEC/TR 62878-2-2 Ed.1: Device embedded substrate - Guidelines - Electrical testing, 01/10/2014

110/529/NP, Future IEC 62715-6-2 Ed.1: Flexible display devices - Part 6-2: environmental testing methods, 02/07/2014
Newly Published ISO Standards

Listed here are new and revised standards recently approved and promulgated by ISO - the International Organization for Standardization. Most are available at the ANSI Electronic Standards Store (ESS) at www.ansi.org. All paper copies are available from Standards resellers (http://webstore.ansi.org/faq.aspx#resellers).

<table>
<thead>
<tr>
<th>TC</th>
<th>Title</th>
<th>Document Number</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>Aircraft and Space Vehicles</td>
<td>ISO 12584:2013</td>
<td>$80.00</td>
</tr>
<tr>
<td>159</td>
<td>Ergonomics</td>
<td>ISO 11064-4:2013</td>
<td>$164.00</td>
</tr>
<tr>
<td>150</td>
<td>Implants for Surgery</td>
<td>ISO 7206-6:2013</td>
<td>$104.00</td>
</tr>
<tr>
<td>164</td>
<td>Mechanical Testing of Metals</td>
<td>ISO 8492:2013</td>
<td>$46.00</td>
</tr>
<tr>
<td>15</td>
<td>Steel</td>
<td>ISO 6929:2013</td>
<td>$164.00</td>
</tr>
<tr>
<td>61</td>
<td>Plastics</td>
<td>ISO 306:2013</td>
<td>$104.00</td>
</tr>
<tr>
<td>29</td>
<td>Small Tools</td>
<td>ISO 10649-1:2013</td>
<td>$60.00</td>
</tr>
<tr>
<td>190</td>
<td>Soil Quality</td>
<td>ISO 13876:2013</td>
<td>$142.00</td>
</tr>
<tr>
<td>180</td>
<td>Solar Energy</td>
<td>ISO 9806:2013</td>
<td>$250.00</td>
</tr>
<tr>
<td>38</td>
<td>Textiles</td>
<td>ISO 2076:2013</td>
<td>$135.00</td>
</tr>
<tr>
<td>159</td>
<td>Ergonomics</td>
<td>ISO 11064-4:2013</td>
<td>$164.00</td>
</tr>
<tr>
<td>150</td>
<td>Implants for Surgery</td>
<td>ISO 7206-6:2013</td>
<td>$104.00</td>
</tr>
<tr>
<td>164</td>
<td>Mechanical Testing of Metals</td>
<td>ISO 8492:2013</td>
<td>$46.00</td>
</tr>
<tr>
<td>15</td>
<td>Steel</td>
<td>ISO 6929:2013</td>
<td>$164.00</td>
</tr>
<tr>
<td>61</td>
<td>Plastics</td>
<td>ISO 306:2013</td>
<td>$104.00</td>
</tr>
<tr>
<td>29</td>
<td>Small Tools</td>
<td>ISO 10649-1:2013</td>
<td>$60.00</td>
</tr>
<tr>
<td>190</td>
<td>Soil Quality</td>
<td>ISO 13876:2013</td>
<td>$142.00</td>
</tr>
<tr>
<td>180</td>
<td>Solar Energy</td>
<td>ISO 9806:2013</td>
<td>$250.00</td>
</tr>
<tr>
<td>38</td>
<td>Textiles</td>
<td>ISO 2076:2013</td>
<td>$135.00</td>
</tr>
</tbody>
</table>
TRANSPORT INFORMATION AND CONTROL SYSTEMS (TC 204)
ISO 15628:2013, Intelligent transport systems - Dedicated short range communication (DSRC) - DSRC application layer, $181.00

WOOD-BASED PANELS (TC 89)
ISO 1954:2013, Plywood - Tolerances on dimensions, $46.00

ISO Technical Reports
BUILDING CONSTRUCTION (TC 59)
ISO/TR 21932:2013, Sustainability in buildings and civil engineering works - A review of terminology, $204.00

MATERIALS, EQUIPMENT AND OFFSHORE STRUCTURES FOR PETROLEUM AND NATURAL GAS INDUSTRIES (TC 67)
ISO/TR 12489:2013, Petroleum, petrochemical and natural gas industries - Reliability modelling and calculation of safety systems, FREE

NATURAL GAS (TC 193)
ISO/TR 16922:2013, Natural gas - Odorization, $80.00

ISO Technical Specifications
INDUSTRIAL AUTOMATION SYSTEMS AND INTEGRATION (TC 184)
ISO/TS 15926-6:2013, Industrial automation systems and integration - Integration of life-cycle data for process plants including oil and gas production facilities - Part 6: Methodology for the development and validation of reference data, $192.00

ISO/IEC JTC 1, Information Technology
ISO/IEC 18013-4/Cor1:2013, Information technology - Personal identification - ISO-compliant driving licence - Part 4: Test methods - Corrigendum, FREE
ISO/IEC 27036-3:2013, Information technology - Security techniques - Information security for supplier relationships - Part 3: Guidelines for information and communication technology supply chain security, $164.00
Registration of Organization Names in the United States

The Procedures for Registration of Organization Names in the United States of America (document ISSB 989) require that alphanumeric organization names be subject to a 90-day Public Review period prior to registration. For further information, please contact the Registration Coordinator at (212) 642-4946.

The following is a list of alphanumeric organization names that have been submitted to ANSI for registration. Alphanumeric names appearing for the first time are printed in bold type. Names with confidential contact information, as requested by the organization, list only public review dates.

PUBLIC REVIEW

<table>
<thead>
<tr>
<th>Name</th>
<th>Public Review: August 23 to November 21, 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>NFC Forum</td>
<td></td>
</tr>
<tr>
<td>Topcon Medical Systems</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Challenged alphanumeric names are underlined. The Procedures for Registration provide for a challenge process, which follows in brief. For complete details, see Section 6.4 of the Procedures.

A challenge is initiated when a letter from an interested entity is received by the Registration Coordinator. The letter shall identify the alphanumeric organization name being challenged and state the rationale supporting the challenge. A challenge fee shall accompany the letter. After receipt of the challenge, the alphanumeric organization name shall be marked as challenged in the Public Review list. The Registration Coordinator shall take no further action to register the challenged name until the challenge is resolved among the disputing parties.

Proposed Foreign Government Regulations

Call for Comment

U.S. manufacturers, exporters, regulatory agencies and standards developing organizations may be interested in proposed foreign technical regulations issued by Member countries of the World Trade Organization (WTO). In accordance with the WTO Agreement on Technical Barriers to Trade (TBT Agreement), Members are required to report proposed technical regulations that may significantly affect trade to the WTO Secretariat in Geneva, Switzerland. In turn, the Secretariat disseminates the information to all WTO Members. The purpose of this requirement is to provide global trading partners with an opportunity to review and comment on the regulations before they become final.

The National Center for Standards and Certification Information (NCSCI) at the National Institute of Standards and Technology (NIST), distributes these proposed foreign technical regulations to U.S. stakeholders via an online service, Notify U.S.. Notify U.S. is an e-mail and Web service that allows interested U.S. parties to register, obtain notifications, and read full texts of regulations from countries and for industry sectors of interest to them. To register for Notify U.S., please go to Internet URL: http://www.nist.gov/notifyus/ and click on “Subscribe”.

NCSCI is the WTO TBT Inquiry Point for the U.S. and receives all notifications and full texts of regulations to disseminate to U.S. Industry. For further information, please contact: NCSCI, NIST, 100 Bureau Drive, Gaithersburg, MD 20899-2160; Telephone: (301) 975-4040; Fax: (301) 926-1559; E-mail: ncsci@nist.gov or notifyus@nist.gov.
American National Standards

INCITS Executive Board

ANSI Accredited SDO and US TAG to ISO/IEC JTC 1, Information Technology

The InterNational Committee for Information Technology Standards (INCITS), an ANSI accredited SDO, is the forum for information technology developers, producers and users for the creation and maintenance of formal de jure IT standards. INCITS’ mission is to promote the effective use of Information and Communication Technology through standardization in a way that balances the interests of all stakeholders and increases the global competitiveness of the member organizations.

The INCITS Executive Board serves as the consensus body with its oversight of programs of its 40+ Technical Committees. Additionally, the INCITS Executive Board exercises international leadership in its role as the US Technical Advisory Group (TAG) to ISO/IEC JTC 1, Information Technology.

The INCITS Executive Board seeks to broaden its membership base and is recruiting new participants in the following membership categories:

- special interest (user, academic, consortia)
- non-business (government and major/minor SDOs)

Membership in the INCITS Executive Board is open to all directly and materially affected parties in accordance with INCITS membership rules. To find out more about participating on the INCITS Executive Board, please contact Jennifer Garner at 202-626-5737 or jgarner@itlic.org. Visit www.INCITS.org for more information regarding INCITS activities.

Calls for Members

Society of Cable Telecommunications

ANSI Accredited Standards Developer

SCTE, an ANSI-accredited SDO, is the primary organization for the creation and maintenance of standards for the cable telecommunications industry. SCTE’s standards mission is to develop standards that meet the needs of cable system operators, content providers, network and customer premises equipment manufacturers, and all others who have an interest in the industry through a fair, balanced and transparent process.

SCTE is currently seeking to broaden its membership base of its ANSI consensus bodies and is interested in new members in all membership categories to participate in new work in fiber-optic networks, advanced advertising, 3D television, and other important topics. Of particular interest is membership from the content (program and advertising) provider and user communities.

Membership in the SCTE Standards Program is open to all directly and materially affected parties as defined in SCTE’s membership rules and operating procedures. More information is available at www.scte.org or by e-mail from standards@scte.org.

PINS Correction

BSR/SCTE Test Project 1-201x, Test Project for PV Functionality

A PINS announcement was mistakenly listed in the October 18, 2013 Standards Action for BSR/SCTE Test Project 1-201x, Test Project for PV Functionality. SCTE did not intend to have this notice published.

ANSI Accredited Standards Developers

Approval of Reaccreditation

American Boat & Yacht Council (ABYC)

ANSI’s Executive Standards Council has approved the reaccreditation of the American Boat & Yacht Council (ABYC), an ANSI Organizational Member, under its recently revised ABYC Technical Board Rules for documenting consensus on ABYC-sponsored American National Standards, effective November 13, 2013. For additional information, please contact: Mr. Brian Goodwin, Technical Director, American Boat & Yacht Council, 613 Third Street, Suite 10, Annapolis, MD 21403; phone: 410.990.4460; e-mail: bgoodwin@abyccinc.org.

Withdrawal of ASD Accreditation

GS1 US

GS1 US has requested formal withdrawal of its accreditation as a developer of American National Standards – GS1 US currently maintains no American National Standards. This action is taken, effective November 4, 2013. For additional information, please contact: Mr. Ray Delnicki, Global Standards Manager, GS1 US, 1009 Lenox Drive, Lawrenceville, NJ 08648; phone: 609.620.4569; e-mail: rdelnicki@gs1us.org.

ANSI Accreditation Program for Third Party Product Certification Agencies

Scope Extension

DOT Quality Services, Inc.

Comment Deadline: December 16, 2013

Ms. Anna Petroski, President
DOT Quality Services, Inc.
742 N LaSalle Dr, Suite 400
Chicago, IL 60654
Phone: 312-285-5344
E-mail: a.petroski@dotqs.com
Web: www.dotqualityservices.com

On October 15, 2013, DOT Quality Services, Inc., an ANSI-Accredited Certification Body, requested a scope extension for ANSI accreditation to include the following:

- ASHTO/AWS D1.5 - Bridge Welding Code
- AWS D1.1 - Structural Welding Code—Steel
- AISC Certification Program for Steel Bridge Fabricators; Standard for Steel Bridges

Please send your comments by December 16, 2013 to Reinaldo Balbino Figueiredo, Senior Program Director, Product Certifier Accreditation, American National Standards Institute, 1899 L Street, NW, 11th Floor, Washington, DC 20036, Fax: 202-293-9287 or e-mail: a.petroski@dotqs.com.
International Electrotechnical Commission (IEC)

Draft Scope:
Standardization in the field of Energy Efficiency products, systems and solutions, to be used in existing and new electrical installations, for monitoring, measuring, controlling, managing and optimizing the overall efficient use of AC and DC electrical energy for household and similar.

The U.S. National Committee has registered as a Participating Member and intends to actively participate. Becoming a P Member means that a Technical Advisory Group (TAG) will have to be established. Anyone interested in joining the USNC TAG for IEC/SC 23K is invited to contact the IEC/TC 23 TAG Secretary at the e-mail provided below.

TAG Secretary – USNC TAG for IEC/TC 23:
Kenneth E. Gettman
Director, International Standards
National Electrical Manufacturers Association
1300 North 17th Street, Suite 900
Rosslyn, VA 22209
Phone: 703-841-3254
Fax: 703-841-3354
E-Mail: ken_gettman@nema.org

U.S. Technical Advisory Groups

U.S. TAG Ballot
ISO CD 14001, Environmental management systems – Requirements with guidance for use

Comment Deadline: December 6, 2013
The U.S. TAG Chair of ISO TC 207/SC 1 would like to request for a vote of approval/disapproval with comments (if any) for ballot - ISO CD2 14001, Environmental management systems - Requirements with guidance for use. Please direct any related questions and comments to Ms. Jennifer Admussen - standards@asq.org by Friday, December 6, 2013.

Meeting Notice

Association of Challenge Course Technology (ACCT) Consensus Group Meeting

The next meetings of the ACCT Consensus Group have been scheduled for the purpose of processing comments and draft standards for Proposed American National Standard BSR/ACCT 3-201X for the Challenge Course Industry.

Meeting Dates: December 12th & 19th, 2013
Time: 2:00 pm Eastern time.

The meeting is open to the public. Persons wishing to attend this meeting are required to pre-register by contacting Bill Weaver, ACCT Director of Operations, bill@acctinfo.org, 800-991-0286 extension 913.
Information Concerning Call for Participation

Harmonized Technical Subcommittee (TSC) for Liquefied Natural Gas (LNG) Vehicle Fuel Containers and Harmonized TSC for LNG Fuel Connection Devices

CSA Group, an ANSI-accredited standards development organization, is currently seeking industry experts (a minimum of 3 years industry experience) to participate on one or both technical committees that will write safety standards for the LNG market. The new committees are the Harmonized Technical Subcommittee (TSC) for Liquefied Natural Gas (LNG) Vehicle Fuel Containers and the Harmonized TSC for LNG Fuel Connection Devices.

The TSCs will be responsible for developing the performance and safety requirements within the Standard. Membership on a TSC is voluntary and open to all directly and materially affected parties as defined in CSA Group’s membership rules and operating procedures.

Why get involved?
- Networking and relationship building with peers and other experts
- The ability to influence the standards that impact the way you do business
- Contribution to the National Standards Systems and public safety

What is expected?
- Active participation and willingness to work on a committee electronically and in person;
- Participation in 20-24 meetings over the next 12 months;
- Ability to work in a multi-stakeholder environment; and
- Willingness to accept tasks and complete project work in a timely manner.

If you wish to become involved in this area of standardization, please contact Debbie Chesnik, Membership Manager at Debbie.chesnik@csagroup.org or at 1-877-235-9791 for an application.
Information Concerning

ANSI Accreditation Program for Greenhouse Gas Validation/Verification Bodies

Approval of Reaccreditation

KPMG Performance Registrar, Inc.

Comment Deadline: December 16, 2013

KPMG Performance Registrar Inc.
Chris Ridley-Thomas
777 Dunsmuir Street
Vancouver, BC V7Y 1K3
Tel: 604-691-3088
Email: cridleythomas@kpmg.ca

On November 4, 2013, the ANSI Greenhouse Gas Validation/Verification Accreditation Committee (GVAC) voted to approve reaccreditation for KPMG Performance Registrar Inc. for the following:

Standards:
ISO 14065: Greenhouse gases - Requirements for greenhouse gas validation and verification bodies for use in accreditation or other forms of recognition

Scopes:
Verification of assertions related to GHG emission reductions & removals at the organizational level
Group 1 – General
Group 2 – Manufacturing
Group 3 – Power Generation
Group 5 – Mining and Mineral Production
Group 7 – Chemical Production
Group 8 – Oil and gas extraction, production and refining including petrochemicals
Group 9 – Waste

Validation of assertions related to GHG emission reductions & removals at the organizational level
Group 1 – GHG emission reductions from fuel combustion
Group 2 – GHG emission reductions from industrial processes (non-combustion, chemical reaction, fugitive and other)
Verification of assertions related to GHG emission reductions & removals at the organizational level
Group 1 – GHG emission reductions from fuel combustion
Group 2 – GHG emission reductions from industrial processes (non-combustion, chemical reaction, fugitive and other)
Group 3 – Land Use and Forestry

Please send your comments by December 16, 2013 to Ann Bowles, Director, Environmental Accreditation Programs, American National Standards Institute, 1899 L Street, NW, 11th Floor, Washington, DC 20036, Fax: 202-293-9287 or e-mail: abowles@ansi.org.
Information Concerning

International Organization for Standardization (ISO)

ISO Proposal for a New Field of ISO Activity

Online Reputation

Comment Deadline: December 6, 2013

AFNOR (France) has submitted to ISO the attached proposal for a new field of ISO technical activity on the subject of Online Reputation with the following scope statement:

Standardization of methods, tools and best practices related to the online reputation of organizations, companies, services, products and/or persons through social media (social space on internet dedicated to interactions among individuals or communities of individuals). This includes standardization of efficient processes, practices and measures based upon data that can be captured through a search on social media including web pages and email (pushing).

Excluded:
- Privacy and data protection frameworks or security information standardization already covered by ISO/IEC/JTC 1/SC 27
- Management system standards already covered by ISO/TC 176/SC 3
- Fraud countermeasures and controls already covered by ISO/TC 247
- Brand evaluation already covered by ISO/TSP 240

Anyone wishing to review the new work item proposal can request a copy of the proposal by contacting ANSI's ISO Team via email: isot@ansi.org with submission of comments to Steve Cornish (scornish@ansi.org) by close of business on Friday, December 6th, 2013.
The following additions/changes were made to ESD DSTM12.1-2013 following the initial public review period and are being re-circulated for a 30-day public review.

TITLE

"ESD Association Draft Standard Test Method for the Protection of Electrostatic Discharge Susceptible Items - Seating - Resistanceive Measurement"

5.1 Apparatus Requirements

5.1.1 Resistance Measurement Apparatus (Meter)

The measurement apparatus, called the meter, whether it is a single meter or a collection of instruments, that are capable of the following:

For Product Qualification

The meter shall have DC voltage of 10 volts (± 5%) while under load for measurements less than 1.0×10^6 ohms and 100 volts (± 5%) while under load for measurements of 1.0×10^6 ohms and above.

The meter shall be capable of making measurements from 1.0×10^2 to 1.0×10^{11} ohms.

For Acceptance Testing

A meter meeting the requirements of the product qualification meter may be used for acceptance testing, or:

The meter shall have a DC open circuit voltage of 10 volts (± 5%) for measurements less than 1.0×10^6 ohms and 100 volts (± 5%) for measurements of 1.0×10^6 ohms and above.

The meter shall be capable of making measurements from 1.0×10^2 to 1.0×10^{11} ohms.

In case of disagreement, the meter used for product qualification will be used to resolve any disputes.

NOTE: Both test leads should be capable of being isolated from ground. AC line powered resistance measuring devices may give erroneous results due to undefined ground paths. Battery-powered equipment is recommended.

5.1.2 Resistance Measurement Electrode(s)

Cylindrical electrode, 2.27 kg ± 2.5% (5 pounds ± 2.5%) with a diameter of 63.5 mm ± 5% (2.5 inches ± 5%) having a contact of electrically conductive material with a Shore-A (IRHD) durometer hardness between 50 and 70. The resistance between two electrodes should be less than 1×10^3 ohms when measured on a metallic surface.

One bare metal plate, with suggested dimensions of 12.7 x 25.4 x 0.16 cm thick (5 x 10 x 0.062 inches thick), or of sufficient thickness to support the weight of the seating without becoming distorted.

NOTE: Electrodes that meet ASTM F-1503 and NFPA 99 also meet these characteristics.

NOTE: If aluminum foil covered electrode(s) are used, a correlation between the conductive rubber electrode and the aluminum foil covered electrode should be established for each material to be measured. Conductive rubber electrodes are used for material evaluation and qualification.

NOTE: Over time, conductive rubber materials used as the contact surface of the probes can warp. This could cause measurements to change. At this time there is no standardized method to verify if this has occurred but the user should be aware of this phenomenon.

NOTE: These electrodes conform to ANSI/ESD S4.1 except the electrodes shall be insulated from the operator by a resistance greater than 1.0×10^{10} ohms when measured at 100 volts. This may be accomplished by either an insulating sleeve over the electrode or body or by the operator using an insulative gloves or material on both hands. The operator should exercise caution when making measurements to avoid alternate resistance paths to ground.

1 National Fire Protection Association (NFPA), 1 Batterymarch Park, P.O. Box 9101, Quincy, MA 02269-9101
5.2.5 Measurements

Connect the measuring apparatus to the specimen as follows:

a. Place the seating on the specimen support surface such that all groundable points make contact with the specimen support surface. (Label all ground points A through F as needed.)

b. Place the metal plate such that it is in contact with groundable point A (casters, glides, or drag chain).

c. Connect the meter leads to each of the electrodes (Figure 1).

 NOTE: In lieu of electrode E2, the meter may be connected directly to the bare metal plate using a clip lead.

d. Set the meter test voltage to 10 volts. Place electrode-E1 at position 1 on the seat (Figure 2). Hold the electrode so that it is perpendicular to the surface being measured and with sufficient force to obtain a stable reading.

e. Apply the test voltage and record the resistance after the measurement has stabilized or after 15 seconds has elapsed. If the indicated resistance is less than 1×10^6 ohms, record the data as shown in the suggested data sheet in Figure 3 and go to step g.

 f. When the measured resistance is greater than or equal to 1.0×10^6 ohms, repeat the measurement using a test voltage of 100 volts. Record the data as shown in the suggested data sheet.

 g. Repeat the measuring sequence on the seat for electrode positions 2 through 5 using the selected groundable point (Figure 2).

 h. Test the remaining applicable seating components using the positions shown in Figure 2.

 i. Return the electrode to position 1 on the seat and repeat this measurement from position 1 to all remaining groundable points.

 j. Repeat the measurement sequence for specimens 2 and 3.
The full First Public Review Draft and related documents were released for review and comment on October 25, 2013. For these items, please go to: www.icc safe.org/A117

Providing Public Comment.

Comments on this addendum - will be accepted through December 16, 2013. Closing date for comments for the balance of the First Public Review Draft issued October 25, 2013 remains December 9, 2013. Comments must be provided on the ICC Standards Public Comment Form.

If you have questions, please direct them to Kermit Robinson, krobinson@iccsafe.org
8-1– 12

Revise as follows:

802.1 General. Wheelchair spaces and wheel chair space locations in assembly areas with spectator seating shall comply with Section 802. Team and player seating shall comply with Sections 802.2 through 802.6 802.7.

802.8.2 Identification. Each designated aisle seat shall be identified by the International Symbol of Accessibility a sign or marker.

802.10.4.1 Spaces with Seating on Risers. Where tiered seating is provided, wheelchair space locations shall be integrated into the tiered seating area on a riser or a cross-aisle.

802.10.4.2 Distance from the Screen. Wheelchair space locations shall be located in accordance with one of the following:

1. Within the rear 60 percent of the seats provided; or

2. Located within the area of an auditorium in which the vertical viewing angles, as measured to the top of the screen, are from the 40th to the 100th percentile of vertical viewing angles for all seats as ranked from the seats in the first row (1st percentile) to seats in the back row (100th percentile).
Background to Item 8-1–12

Proposed Change as Submitted

Proponent: Ed Roether, representing the ADA/A117 Harmonization Task Group

Revise as follows:

802.1 General. Wheelchair spaces and wheelchair space locations in assembly areas with spectator seating shall comply with Section 802. Team and player seating shall comply with Sections 802.2 through 802.6 802.7.

802.8.2 Identification. Each designated aisle seat shall be identified by the International Symbol of Accessibility a sign or marker.

802.10.4.1 Spaces with Seating on Risers. Where tiered seating is provided, wheelchair space locations shall be integrated into the tiered seating area on a riser or a cross-aisle.

802.10.4.2 Distance from the Screen. Wheelchair space locations shall be located in accordance with one of the following:

1. Within the rear 60 percent of the seats provided; or

2. Located within the area of an auditorium in which the vertical viewing angles, as measured to the top of the screen, are from the 40th to the 100th percentile of vertical viewing angles for all seats as ranked from the seats in the first row (1st percentile) to seats in the back row (100th percentile).

Reason: The ADA/A117 Harmonization Task Group (HTG) was created as a task group of the A117.1 Committee to compare the 2010 ADA with the 2009 A117.1 Standard. The HTG has recommend a series of changes through a set of change proposals. The HTG is recommending changes, for the most part, address where the ADA was viewed as more stringent than the A117. Where the A117 contained provisions not addressed in the ADA, these were not considered a conflict needing action to amend the A117. In addition there are a number of places where the ADA and A117.1 are different as a result of specific actions, by the A117.1 Committee during the development of the 2009 edition, to remain or create a difference where, in the judgment of the committee the ADA was deficient.

Reason for **802.1:** Provides consistency with ADA regulation of team and player seating.

Reason for **802.8.2:** ADA allows more flexibility for identification of designated aisle seats. In this case the task group felt that the flexibility should be included in the A117.

Reason for **802.10.4.1:** ADA provisions provide clear allowance for located the wheelchair space locations on risers and cross aisles. A117.1 is not as specific.

Reason for **802.10.4.2:** ADA provides two options for determining distance to the screen. A117.1 currently only has one of these two.

Committee Action

Approved

Committee Reason: The Committee had considerable debate surrounding the use of the International Symbol of Accessibility. The ADA 2010 no longer requires it to be used on aisle seats. Placement of symbol on the seats has confused some that they are transfer seats for people using wheelchairs and therefore need to be on accessible route. In most situations where seats are ticketed and presold,
Not for publication. This draft text is for circulation for approval by the Joint Committee on Drinking Water Treatment Units and has not been published or otherwise officially promulgated. All rights reserved. This document may be reproduced for informational purposes only.

[Note – the changes are seen below using strikeout for removal of old text and gray highlights to show the suggested text. ONLY the highlighted text is within the scope of this ballot.]

NSF/ANSI Standard for Drinking Water Treatment Units – Health effects

6 Minimum performance requirements

6.13 Filter media

All filter media that may be subject to plugging shall be supported to withstand a maximum pressure drop of 280 kPa (40 psig) or the pressure drop achieved when the system is plugged to reduce the flow rate by 75% for a period of 15 min, without visible evidence of media migration and when effluent turbidity level equal to or greater than the influent turbidity level. The test shall be performed using the general test water in 7.3.2.3.4.1 and test dust conforming to 7.3.2.3.4.2.

Reason: Filter media test removed from NSF/ANSI 42 and 53 in 2011. This paragraph was inadvertently left in NSF/ANSI 53.

7 Elective performance claims – test methods

7.3 Mechanical filtration reduction claims

7.3.3 Turbidity reduction challenge

7.3.3.1.2 Turbidity reduction while performing test dust reduction test for cyst reduction

The system shall reduce the influent challenge level of > 10 NTU to not more than 0.5 NTU when tested in accordance with 7.3.3. This level of turbidity reduction shall be maintained at all sampling points during testing.

Reason: This is no longer relevant because the test dust option for cyst reduction was previously removed in 1999. This was inadvertently left in NSF/ANSI 53.
NSF/ANSI Standard
for Drinking Water System Components – Health Effects

1 Purpose, scope, and normative references

1.2 Scope

1.2.1 This Standard is intended to cover specific materials or products that come into contact with:
drinking water, drinking water treatment chemicals, or both. The focus of the Standard is evaluation of
contaminants or impurities imparted indirectly to drinking water. The products and materials covered
include, but are not limited to, process media (e.g., carbon, sand), protective materials (e.g., coatings,
linings, liners), joining and sealing materials (e.g., solvent cements, welding materials, gaskets), pipes
and related products (e.g., pipes, tanks, fittings), mechanical devices used in
treatment/transmission/distribution systems (e.g., valves, chlorinators, separation membranes, point-of-
entry drinking water treatment systems), and mechanical plumbing devices (e.g., faucets, endpoint
control valves).

1.2.2 Stand alone Point-of-use drinking water treatment devices are not covered by the scope of this
Standard. Mechanical plumbing devices listed in 9.1 and incorporating a drinking water treatment
component are covered by the scope of the standard and shall be evaluated in accordance with 9.3.4.

1.2.3 Fire hydrants are not covered by the scope of this Standard.

9 Mechanical plumbing devices

9.1 Coverage

This section covers mechanical plumbing devices, components, and materials that are typically installed
within the last liter of the distribution system (endpoint devices) and are intended to dispense water for
human ingestion. In-line devices are excluded from this section. Stand alone Point-of-use and point-of-
entry drinking water treatment devices are excluded. Mechanical plumbing devices listed in 9.1 and incorporating
a drinking water treatment component are covered by the scope of the standard and shall be evaluated in
accordance with 9.3.4.
9.3 Device, component, or material requirements

9.3.4 Evaluation of devices containing a drinking water treatment component.

Mechanical plumbing devices listed in 9.1 and incorporating a drinking water treatment component shall conform to the requirements of this standard if either:

- the entire mechanical plumbing device meets the requirements of this standard, or
- drinking water treatment component has been evaluated for material safety to the appropriate NSF/ANSI drinking water treatment device standard and the remainder of the mechanical plumbing device meets the requirements of this standard.

10 Instructions and information

When product literature, instructions, or information for a mechanical plumbing device listed in 9.1 and incorporating a drinking water treatment component or a point-of-entry drinking water treatment unit system shows conformance with the materials safety requirements of this Standard as attested by a certification agency, and when the POE treatment system is not likewise certified by that same agency for drinking water contaminant reduction performances, such literature, instructions, and information shall state in comparable proximity and with comparable prominence either:

- the name of the entity that has tested and substantiated the claimed contaminant reduction performances for that water treatment product; or
- that the product is not certified for contaminant reduction performance by the certification agency. The following is an example of an accepted option.

Certifier's Mark

Point-of-Entry System Tested and Certified by [Name of Certifier] under NSF/ANSI 61 for Materials Safety Requirements Only. Not Certified for Microbiological or Contaminant Reductions or Structural Integrity by [Name of Certifier]

Reason: Revised per 2012 DWA-SC Joint Committee Meeting decision (November 29, 2012) to include point-of-use DWTU components that are in section 9 products under the scope of NSF/ANSI 61.
BSR/UL 153, Standard for Safety for Portable Electric Luminaires

1. Revise Class 2 Circuit definition to include "LVLE" circuit per UL 8750

2.7 CLASS 2 CIRCUIT - A circuit supplied by an isolating source whose electrical output complies with the requirements of the Standard for Class 2 Power Units, UL 1310, the LPS (limited power source) parameters of the Standard for Information Technology Equipment, UL 60950-1, the LVLE (low voltage limited energy) parameters of the Standard for Light Emitting Diode (LED) Equipment for Use in Lighting Products, UL 8750, or the Limited Power Source Test of the Standard for Household and Commercial Batteries, UL 2054.
8. Revisions for Table 6.1.6.1.2

Table 6.1.6.1.2 Deleted

<table>
<thead>
<tr>
<th>Wire diameters (over insulation)</th>
<th>(mm²)</th>
<th>inches</th>
<th>(mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>(2.1)</td>
<td>0.131</td>
<td>(3.33)</td>
</tr>
<tr>
<td>12</td>
<td>(3.3)</td>
<td>0.148</td>
<td>(3.76)</td>
</tr>
<tr>
<td>10</td>
<td>(5.3)</td>
<td>0.168</td>
<td>(4.27)</td>
</tr>
<tr>
<td>8</td>
<td>(8.4)</td>
<td>0.245</td>
<td>(6.22)</td>
</tr>
<tr>
<td>6</td>
<td>(13.3)</td>
<td>0.323</td>
<td>(8.20)</td>
</tr>
<tr>
<td>4</td>
<td>(21.2)</td>
<td>0.372</td>
<td>(9.45)</td>
</tr>
<tr>
<td>3</td>
<td>(26.7)</td>
<td>0.401</td>
<td>(10.19)</td>
</tr>
<tr>
<td>2</td>
<td>(33.6)</td>
<td>0.433</td>
<td>(11.00)</td>
</tr>
<tr>
<td>1</td>
<td>(42.4)</td>
<td>0.508</td>
<td>(12.90)</td>
</tr>
<tr>
<td>1/0</td>
<td>(53.5)</td>
<td>0.549</td>
<td>(13.49)</td>
</tr>
<tr>
<td>2/0</td>
<td>(67.4)</td>
<td>0.595</td>
<td>(15.11)</td>
</tr>
<tr>
<td>3/0</td>
<td>(85.0)</td>
<td>0.647</td>
<td>(16.43)</td>
</tr>
<tr>
<td>4/0</td>
<td>(107.2)</td>
<td>0.705</td>
<td>(17.91)</td>
</tr>
<tr>
<td>kcmil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>(127)</td>
<td>0.788</td>
<td>(20.12)</td>
</tr>
<tr>
<td>300</td>
<td>(152)</td>
<td>0.843</td>
<td>(21.41)</td>
</tr>
<tr>
<td>350</td>
<td>(177)</td>
<td>0.895</td>
<td>(22.73)</td>
</tr>
<tr>
<td>400</td>
<td>(203)</td>
<td>0.942</td>
<td>(23.93)</td>
</tr>
<tr>
<td>500</td>
<td>(253)</td>
<td>1.029</td>
<td>(26.14)</td>
</tr>
<tr>
<td>Voltage (V)</td>
<td>Spacing (mm)</td>
<td>Parameters (mm)</td>
<td>Spacing (mm)</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>600</td>
<td>(304)</td>
<td>1.143</td>
<td>(29.03)</td>
</tr>
<tr>
<td>750</td>
<td>(380)</td>
<td>1.249</td>
<td>(31.72)</td>
</tr>
<tr>
<td>800</td>
<td>(405)</td>
<td>1.282</td>
<td>(32.56)</td>
</tr>
<tr>
<td>900</td>
<td>(456)</td>
<td>1.345</td>
<td>(34.16)</td>
</tr>
<tr>
<td>1000</td>
<td>(507)</td>
<td>1.404</td>
<td>(35.66)</td>
</tr>
<tr>
<td>1250</td>
<td>(633)</td>
<td>1.577</td>
<td>(40.06)</td>
</tr>
<tr>
<td>1500</td>
<td>(760)</td>
<td>1.702</td>
<td>(43.13)</td>
</tr>
<tr>
<td>1750</td>
<td>(887)</td>
<td>1.817</td>
<td>(45.15)</td>
</tr>
<tr>
<td>2000</td>
<td>(1010)</td>
<td>1.922</td>
<td>(48.82)</td>
</tr>
</tbody>
</table>

9. Addition of Requirements for Class 2 Spacings

6.1.6.3 Class 2 circuits

6.1.6.3.1 Minimum electrical spacings for Class 2 circuits that comply with Table 6.1.6.3.2 shall be as described in 6.1.6.3.1.1 - 6.1.6.3.1.4.

10. Addition of EMC Requirements in Supplements SF and SG

SUPPLEMENT SF - ADDITIONAL TESTS FOR CIRCUIT BREAKERS WITH ELECTRONIC OVERCURRENT PROTECTION

1.7 This standard contains supplements covering the requirements for molded-case circuit breakers for:

a) Marine Use;
b) Naval Use;
c) Uninterruptible Power Supply Use;
d) Classified Circuit Breakers; and
e) Software in Programmable Components;
f) Additional Tests for Circuit Breakers with Electronic Overcurrent Protection; and
g) Electromagnetic Compatibility (EMC) - Requirements and Test Methods for Circuit Breakers
7.1.1.22 6.1.5.17 Circuit breaker trip units employing electronic circuit components shall be subjected to the applicable EMC requirements of Supplements SF and SG.

SF1 Scope

These requirements apply to circuit breakers intended to be installed on a.c. circuits and providing overcurrent protection by electronic means (see 6.7), incorporated in the circuit breaker and independent of the line voltage or any auxiliary supply.

The tests verify the performance of the circuit breaker under the environmental conditions stated in this Supplement.

Specific tests for electronic means intended for functions other than overcurrent protection, such as arc fault (see UL 1699) and/or ground fault (see 6.4 and 6.5), are not covered by this Supplement. However, the tests of this Supplement are to be performed to ensure that these electronic means do not impair the performance of the overcurrent protective functions.

For the purposes of this Supplement, the term "EUT" is defined as "equipment under test".

For the purposes of this Supplement, "power terminal(s)" covers the main circuit, auxiliary power supply terminals(s) and any auxiliary connected to the main circuit.

13. Clarification of Test Procedure for Series-Connected Circuit Breakers

7.13.3.2.1 If the required current cannot be delivered at the reduced voltage rating when testing a single pole branch breaker, it shall be permitted to use two breakers in the branch position with the voltage doubled. If this option is used, the second branch breaker shall be installed next to the branch breaker in series with a main or feeder breaker as shown in the left side drawing in Figure 7.13.3.1. The load terminals of the two branch breakers shall be shorted and the line side of the second branch shall be connected directly to the N source terminal and shall not be connected through a main or feeder breaker. The maximum conductor length, A + B + shorting conductor = 1.2 m (4 ft) Max, shall be maintained. The line neutral terminal shall be connected to the system neutral for any cases where such a connection is required to provide power to an electronics assembly. See 7.5.3.4.

7.13.3.9 The line neutral terminal shall be connected to the system neutral for any cases where such a connection is required to provide power to an electronics assembly. See 7.5.3.4.
Figure 7.13.3.1

Connections for tests

TEST TERMINALS

A

B

1.2 m (4 ft) MAX

TEST TERMINALS

A

B

1.2 m (4 ft) MAX

A + B = 1.2 m (4 ft) MAX
BSR/UL 498A, Standard for Current Taps and Adapters

1. Clarification of Requirements Regarding Mating and Interchangeability

6.2 A device shall be rated in amperes and volts. Where the blade configuration of the device is one of the standard configurations in accordance with Wiring Devices - Dimensional Specifications, ANSI/NEMA WD6, or with the Standard for Wiring Device Configurations, UL 1681, the device shall be given only the rating shown in the configuration. Otherwise, the device shall be given one or more of the ratings in Table 6.1. See 6.1 and 6.3.

Exception No. 1: Devices where the male configuration amperage rating is greater than the female configuration amperage rating or devices having a lower current rating than that shown in the configuration meet the intent of the requirement when provided with supplementary overcurrent protection or fuses protection. See Exception No. 3 of 15.4.4.

Exception No. 2: Devices rated AC Only meet the intent of the requirement when marked in accordance with 7.3.1.

Exception No. 3: Devices where the male configuration amperage rating is less than the female configuration amperage rating than that shown in the configuration, meet the intent of the requirement if marked in accordance with 7.4.2. See Exception No. 4 of 15.4.4.

7.6.1 An adapter having a grounding tab, lug, or similar device described in 16.1 - 16.3 16.4 shall be marked with the word "CAUTION," and the following or equivalent statement, "Risk of Electric Shock. Must connect green (or "GR") tab under cover plate screw." This marking shall be marked on each adapter where visible during installation.

15.3.5 Except as permitted in 7.6, 8.3, and 16.1 - 16.4, a device with a nongrounding-type male configuration shall not provide an outlet having a grounding-type female configuration.

15.4 Mating and interchangeability

15.4.4 Devices that have different electrical ratings shall not be interchangeable with one another.

Exception No. 1: A 20-A outlet device is not prohibited from accommodating a 15-A attachment plug for a single and identical voltage rating only.

Exception No. 2: A special-purpose configuration that will not mate with a standard general-use configuration is not prohibited from having multiple current and voltage ratings when the device is intended for installation in facilities where it will be serviced only by qualified personnel, and where the configuration will be used on circuits with one of the device's rated currents, voltages, and frequencies throughout the facility.

Exception No. 3: Devices where the male configuration amperage rating is greater than the female configuration amperage rating and that are provided with overcurrent protection or fuses protection and that have a lower current rating, as described in the Exception No. 1 to 6.2, are not prohibited from mating with corresponding devices with the having a standard current rating and the identical voltage rating.
Exception No. 4: Devices where the male configuration amperage rating is less than the female configuration amperage rating and that are marked in accordance with 7.4.2 are not prohibited from mating with corresponding devices having a standard current rating and the identical voltage rating.

Exception No. 5: Grounding-type devices where the female configuration has fewer ungrounded contacts than the male configuration and that has a single-phase female configuration voltage rating tapped without the use of an internal transformer from the three-phase or Edison (125/250 V) male configuration voltage rating are not prohibited from mating with corresponding devices having a standard current rating. See 15.3.5. See Exception No. 3 or No. 4 where also applicable.

16.5 A device whose purpose is to adapt a dryer receptacle having a 14-30R configuration to mate with a grounding-type attachment plug having a 5-15P configuration shall comply with all of the following:

a) Conductively connect the blade that is marked G in the 14-30 configuration drawing in Wiring Devices - Dimensional Specifications, ANSI/NEMA WD6, to the outlet contact that is marked G in the 5-15 configuration drawing in ANSI/NEMA WD6;

b) Conductively connect the blade that is marked W in the 14-30 configuration drawing in ANSI/NEMA WD6, to the outlet contact that is marked W in the 5-15 configuration drawing in ANSI/NEMA WD6;

c) Provide fuse protection rated at no greater than 15 amperes to the ungrounded outlet contact in the 5-15 configuration drawing in ANSI/NEMA WD6; and

d) Be provided with installation instructions in accordance with 8.6.1.

16.6 A device whose purpose is to adapt a range receptacle having a 14-50R configuration to mate with a grounding-type attachment plug having a 5-15P configuration shall comply with all of the following:

a) Conductively connect the blade that is marked G in the 14-50 configuration drawing in Wiring Devices - Dimensional Specifications, ANSI/NEMA WD6, to the outlet contact that is marked G in the 5-15 configuration drawing in ANSI/NEMA WD6;

b) Conductively connect the blade that is marked W in the 14-50 configuration drawing in ANSI/NEMA WD6, to the outlet contact that is marked W in the 5-15 configuration drawing in ANSI/NEMA WD6;

c) Provide fuse protection rated at no greater than 15 amperes to the ungrounded outlet contact in the 5-15 configuration drawing in ANSI/NEMA WD6; and

d) Be provided with installation instructions in accordance with 8.6.1.
8.6 Adapters for dryer and range outlets

8.6.1 A device whose purpose is to adapt either a dryer receptacle having a 14-30R configuration or a range receptacle having a 14-50R configuration to mate with a grounding-type attachment plug having a 5-15P configuration shall be additionally provided with installation instructions or the smallest unit container of the device shall be marked that include the words, "CAUTION - Risk of fire or electric shock. Do not use with appliances that block access to the outlet for disconnection."
BSR/UL 763, Standard for Motor-Operated Commercial Food Preparing Machines

1. Filtered Ventilation Openings

PROPOSAL

18A Air Filters

18A.1 A machine incorporating an air filter over ventilation openings shall be evaluated to determine the effects of a partially or completely blocked air filter. See 33.1.9 and 49A.1.

18A.2 Air filters shall not be located within the electrical enclosure of the machine and shall be located such that propagation of flame from one area to another or bridging between a possible source of ignition and other ignitable parts is unlikely.

18A.3 An air filter intended to be replaced or cleaned by the user shall be readily visible and replaceable without making accessible live parts or mechanical parts that may cause injury to persons. The machine shall be provided with instructions as specified in 59.1 for replacement or cleaning of the filter.

18A.4 An air filter not intended to be replaced or cleaned by the user need not be readily visible or accessible and the instructions of 59.1 need not be provided if the machine complies with the Normal Temperature Test with the filter completely (100%) blocked.

33.1.9 In accordance with 18A.1, a machine incorporating an air filter over ventilation openings shall be tested under maximum normal load with a clean filter in place. The test shall be repeated with the air filter blocked 50 percent. For the blocked condition, the 50 percent blockage is stated as a percentage of the total effective area of the filtered opening and shall be representative of the most severe and likely condition based upon the ventilation design. The filter shall be of the type recommended by the manufacturer and installed in accordance with the instructions.

Exception: In accordance with 18A.4 and 49A.1, the test may be conducted with a clean filter and with the air filter completely (100%) blocked.

49A Abnormal Filter Blockage Test

49A.1 A machine incorporating an air filter over ventilation openings shall be tested as described in 49A.2-49A.5, and as a result of the testing, there shall be no:

a) Emission of flame or molten metal;

b) Glowing or flaming of the tissue paper covered supporting surface or the cheesecloth covering the machine;

c) Opening of the 3 A fuse between accessible metal parts and ground;
d) Dielectric breakdown;

e) Exposure of live parts; or

f) Exposure of a mechanical parts that could cause injury to persons.

Exception: The Abnormal Filter Blockage Test need not be conducted if the machine complies with the Normal Temperature Test with the filter completely (100%) blocked.

49A.2 A machine shall be operated as described in 49A.4 under each of the following conditions, in turn:

a) Blocked 75%; and

b) Blocked 100%.

49A.3 Each blockage is stated as a percentage of the total effective area of the filtered opening and shall be representative of the most severe and likely condition based upon the ventilation design.

49A.4 The machine shall be installed and operated as described in 33.1 - 33.21, as applicable. The machine shall be:

a) Connected to a supply circuit as described in 30.1;

b) Placed on a white tissue paper covered softwood surface;

c) Draped with a double layer of cheesecloth over the whole machine with the cloth within 1/8 inch (3.2 mm) of the openings (if any) in the enclosure; and

d) Grounded by means of a 3 A non-time-delay plug fuse connected between exposed metal parts and earth ground.

49A.5 Following operation as specified in 49A.4, the machine shall comply with Accessibility of Live Parts, Section 10, and Protection Against Injury to Persons, Sections 19, 20 and 21; and be subjected to the Dielectric Voltage-Withstand Test, Section 34.

59 Instructions

59.1 In accordance with 18A.3, a machine provided with an air filter intended to be replaced or cleaned shall include instructions indicating how to:

a) Determine when the filter needs replacement or cleaning;

b) Obtain a proper replacement filter; and

c) Replace or clean the filter.
Exception: The instructions need not be provided if the machine complies with the Normal Temperature Test with the filter completely (100%) blocked.

2. Leakage Current Limit for Stationary Ice/Beverage Dispensers with EMI Suppression Filtering

PROPOSAL

35.1 When tested in accordance with 35.3 - 35.8, the leakage current of a cord- and plug-connected ice dispenser or counter-top, portable machine weighing 40 lbs or less, rated for a nominal 120- or 240-volt single-phase supply shall not exceed 0.5 mA.

Exception: Those conductive parts of a stationary ice dispenser that comply with all of the specifications in items (a) through (d) below shall have a leakage current from simultaneously accessible parts to the grounded supply conductor no greater than 3.5 mA. The leakage current between simultaneously accessible parts shall not exceed 0.5 mA.

 a) The product is provided with electromagnetic interference (EMI) suppression filtering;

 b) The product is equipped with a grounding-type supply cord and plug;

 c) The product is not intended for outdoor installation; and

 d) There is a low probability that high leakage conductive parts will be contacted during normal use.

1) The front of an ice dispenser is considered likely to be contacted in normal use. However, the recessed area where ice or beverages are dispensed (backsplash surround) is considered to have a low probability of contact during normal use.

2) The sides of an ice dispenser are considered likely to be contacted in normal use, unless installation instructions are provided for installing in a manner that the sides are protected from unintentional contact, such as in a recessed area.

3) The cover of a manually-filled ice hopper is considered likely to be contacted in normal use when refilling the ice hopper.
BSR/UL 778, Standard for Motor-Operated Water Pumps

PROPOSAL

49.4 Except as noted in 49.4.1, the required markings of a submersible pump may be provided in the form of a flag-type tag with an adhesive back. The tag is to be wrapped around and adhered to the cord, and the ends of the tag are to adhere to each other and project as a flag. The tag shall be tear-resistant and permanently affixed to the cord set. The leading edge of the tag shall be located within 18 inches (46 cm) of the point where the cord enters the body of the attachment plug. The marking itself shall be indelible.

49.4.1 The markings of items (a) and (c) of 53.1 shall be on the body of the pump in accordance with 49.1 - 49.3. They are not prohibited from additionally being on a flag-type tag in accordance with 49.4.
BSR/UL 817, Standard for Safety for Cord Sets and Power-Supply Cords

1. Revised Requirements for Outdoor-Use Cord Sets to Permit Joints and a Maximum of Six Outlets

RATIONALE

Responses to comments have been posted within the UL 817 Proposal Review Work Area dated July 26, 2013.

PROPOSAL

Table 30.1

Smallest acceptable conductor size with respect to fittings used on outdoor-use cord sets and outdoor-use power-supply cords

<table>
<thead>
<tr>
<th>Amperage rating of fittings</th>
<th>Number of cord conductors</th>
<th>Number of current-carrying conductors in cord</th>
<th>Grounding required</th>
<th>Maximum number of outlets in cord connector when provided</th>
<th>Smallest acceptable conductor size (AWG)</th>
<th>Over 50 ft (Over 15.2 Meters)</th>
<th>Ampacity rating of cord (Amperes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>No</td>
<td>1</td>
<td>-</td>
<td>18</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>3 or 4</td>
<td>2</td>
<td>Yes</td>
<td>1</td>
<td>-</td>
<td>18</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>Yes</td>
<td>1</td>
<td>-</td>
<td>18</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>No</td>
<td>1</td>
<td>18</td>
<td>16</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>3 or 4</td>
<td>2</td>
<td>Yes</td>
<td>1</td>
<td>18</td>
<td>16</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>Yes</td>
<td>1</td>
<td>18</td>
<td>16</td>
<td>7</td>
<td>(10)</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>No</td>
<td>1</td>
<td>16</td>
<td>14</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>3 or 4</td>
<td>2</td>
<td>Yes</td>
<td>3</td>
<td>16</td>
<td>14</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>Yes</td>
<td>1</td>
<td>16</td>
<td>14</td>
<td>10 (13)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>No</td>
<td>1</td>
<td>14</td>
<td>12</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>3 or 4</td>
<td>2</td>
<td>Yes</td>
<td>1</td>
<td>14</td>
<td>12</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Voltage (V)</td>
<td>Conductors</td>
<td>Grounding</td>
<td>Circuit Conductors</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>-----------</td>
<td>-------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>3 or 4</td>
<td>Yes</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>3 or 4</td>
<td>Yes</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>3 or 4</td>
<td>Yes</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>600</td>
<td>3 or 4</td>
<td>Yes</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Voltage (V)</th>
<th>Conductors</th>
<th>Grounding</th>
<th>Circuit Conductors</th>
</tr>
</thead>
<tbody>
<tr>
<td>700</td>
<td>3 or 4</td>
<td>Yes</td>
<td>1</td>
</tr>
<tr>
<td>800</td>
<td>3 or 4</td>
<td>Yes</td>
<td>1</td>
</tr>
<tr>
<td>900</td>
<td>3 or 4</td>
<td>Yes</td>
<td>1</td>
</tr>
<tr>
<td>1000</td>
<td>3 or 4</td>
<td>Yes</td>
<td>1</td>
</tr>
</tbody>
</table>

- For the purpose of this table, a conductor that is used to carry the unbalanced current from the other conductors is not counted as a circuit conductor.

- Lengths specified are for outdoor-use cord sets only.

- The ampacity rating for over 50 ft (15.2 m).

- The maximum length of a cord set with 3-6 outlets in the cord connector(s) shall be 100 ft (30.5 m). The overall length of a cord set with a joint shall be determined from the sum of the lengths of the main cord (from plug to joint) plus the longest length of flexible cord after the joint to the cord connector.

- See the applicable Section for the specific requirements for each type of outdoor-use cord set.

32A.6 The overall length of a cord set with a joint shall be determined from the sum of the lengths of the main cord (from plug to joint) plus the longest length of flexible cord from the joint to the cord connector.
BSR/UL 1686, Standard for Pin and Sleeve Configurations

1. Addition of 4 O'Clock Dimensional Configuration with a Rated Voltage Not Exceeding 50 V
Figure C2.39

Plug or inlet

32/30 Ampere, 3-wire not exceeding 50 V

RATING CONFIGURATIONS
FRONT VIEW - PLUG OR INLET

3 P
32 / 30, NOT EXCEEDING 50 VOLTS
4 O’CLOCK
Figure C2.40

Receptacle or connector

32/30 Ampere, 3-wire not exceeding 50 V

RATING CONFIGURATIONS
FRONT VIEW - RECEPTACLE OR CONNECTOR

3 P
32 / 30, NOT EXCEEDING 50 VOLTS
4 O’CLOCK
BSR/UL 2442, Standard for Wall- and Ceiling- Mounts and Accessories

1. Revision of Requirements to Address Field Cutting and Drilling of Video Mounting Systems

PROPOSAL

49.1 A mounting system and its accessories intended to be user or installer assembled shall comply with the following:

a) The assembly shall be accomplished by the user or installer with ordinary tools including those provided with the mounting system;

b) An assembly or part intended to be cut to length, drilled or fitted by the installer may be provided if means are furnished for joining any altered part to a companion part or assembly. The field altered part shall comply with the following:

 1) Mounting holes for connection to the building structure shall be factory produced.

 2) Electrical enclosures shall not be subjected to field cutting or drilling.

 3) An assembly where insulated conductors or cords are routed or pass through after the cutting or drilling operation is performed shall be provided with a method of preventing contact of the insulated conductor or cord with a field cut edge or drilled hole. A field installed bushing is acceptable if provided with the assembly. The bushing shall comply with Section 41 and not require a special tool to install unless provided with the assembly.

 4) When drilling is specified the size of the drill bit and the instructions shall clearly describe the location or locations to be drilled.

 5) Cut and drilled edges shall not be exposed to the user after the operation has been performed unless they comply with Section 45.

 6) The field cut or drilled mounting system when altered as specified in the instructions shall comply with the requirements of this Standard.

 c) All parts such as screws, bolts, and similar parts that are required to complete the assembly of the mounting system shall be provided;

 d) Installation and assembly instructions shall be provided as detailed in Instructions, General, Section 72; and

 e) The manufacturer shall provide fasteners and mounting hardware for each of the mounting surfaces. The fasteners and mounting hardware need not be provided if the installation instructions supplied by the manufacturer give complete details of the hardware to be used (At a minimum, screws or bolts are to be identified by the size or diameter, length, thread size, material hardness [when
harder than grade 2 (class 4.6)], and quantity; concrete or masonry anchors are to identify the manufacturer’s name, size, and model number).

72.7 The instructions shall include particular details concerning:

a) The parts required and the step-by-step process for installing the mounting system, including methods of their support, and the securing of the component parts to each other and the mounting system to the building or intended support structure. Masonry anchors, drywall anchors, screws, bolts, lag bolts, or other fastening means required to secure parts are to be specified by type, size [diameter, length, thread, and the like], grade or tensile strength unless supplied by the mounting system manufacturer. Masonry and drywall anchors not supplied with the mount shall be further specified by manufacturer and model number. Component part descriptions shall be illustrated and described in written form, including accurate identification of major parts such as the apparatus support members, building support interface members and any other critical securing components.

b) The methods and precautions required to mount the system to the building or support structure and the parts required, including the framing of openings if required. Any required clearances shall be specified and illustrated.

c) The materials or parts to be employed to secure the apparatus to the mounting system.

d) The framing of openings in ceilings and floors and walls if required to comply with these requirements.

e) The methods and parts to be employed for maintaining ventilation and air circulation if required.

f) A field cut or drilled assembly shall comply with 49.1 b) and the instructions shall be illustrated and contain language that specifically identify the locations and limitations that are suitable for cutting and drilling.
Standards Action Publishing Schedule for 2014, Volume No. 45

*The “Submit End” deadline applies to forms received by Monday, 5:00 PM ET.

<table>
<thead>
<tr>
<th>Issue</th>
<th>Dates for Submitting Data to PSA</th>
<th>Standards Action Dates & Public Review Comment Deadline</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>Submit Start</td>
<td>Submit End 5PM</td>
</tr>
</tbody>
</table>
Standards Action Publishing Schedule for 2014, Volume No. 45

*The “Submit End” deadline applies to forms received by Monday, 5:00 PM ET.

<table>
<thead>
<tr>
<th>Issue No.</th>
<th>Dates for Submitting Data to PSA</th>
<th>Standards Action Dates & Public Review Comment Deadline</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Submit Start</td>
<td>*Submit End 5PM</td>
</tr>
</tbody>
</table>

2015 Standards Action Schedule - Volume No. 46

<table>
<thead>
<tr>
<th>Issue</th>
<th>Dates for Submitting Data to PSA</th>
<th>Standards Action Dates & Public Review Comment Deadline</th>
</tr>
</thead>
</table>