

1

www.adlnet.org

Enabling the Digital Knowledge Environment of the Future

Corporate Training and Education Technology Standards

The 10th International Conference on Information Systems Analysis and Synthesis: ISAS 2004

and

International Conference on Cybernetics and Information Technologies, Systems and Applications: CITSA 2004 July 23. 2004

G.A. Redding Institute for Defense Analyses

© 2004 Advanced Distributed Learning. All Rights Reserved.

Standards = Organizational Imperative

3

www.adinet.org

E-Learning Objectives

1. WHAT are E-learning Standards?

 Identify key set of E-learning Standards, state their purpose, and determine scenarios & technology to which they apply.

2. WHY are they important?

- Communicate the advantages of using standard-compliant products to:
 - Customers
 - Colleagues
 - Decision makers

3. HOW do they work in theory and in practice?

- Articulate the main features and applications of:
 - Learning Object Metadata
 - AICC CMI Specifications
 - SCORM Runtime API
 - IMS Packaging

ADL Standards Focus

ADL is focusing on web-based *learning system* standards

Exchanging Data – Where?

- Encoding certifications & competencies
- ✓ Exchanging learner profile information

Advanced Distributed Learning

- Labeling content (metadata)
- ✓ Querying a catalog
- Portable content that runs on any LMS
- Communicating between an LMS and content
- Encoding assessment tests
- Communicating the results of assessment tests

Enabling the Digital Knowledge Environment of the Future

Simple CMS Model

www.adinet.org

Enabling the Digital Knowledge Environment of the Future

Learning Management System

www.adinet.org

Enabling the Digital Knowledge Environment of the Future

LMS Components

www.adinet.org

Enabling the Digital Knowledge Environment of the Future

Functional Alignments

^{© 2004} Advanced Distributed Learning. All Rights Reserved.

www.adinet.org

The Standards Process

Specifications & Standards

- Specifications are instructions
- If specifications are accepted and used, they become *de facto* standards
 - Most of us care most about *de facto* standards
- Formal standards bodies create formal standards.
 - Requires consensus
 - Process has withstood legal challenges
 - Formal standards have legal weight and stability
 - Formal standards have conformance statements

www.adinet.org

Enabling the Digital Knowledge Environment of the Future

Standards Development

atio

Deds?

ARIADNE

- Specification 1.
- Implementation & Testing 2.

isss

Aviation

Industry

ers: Vendors,

Committee

CBT

3. Improvement

AICC

- **Industry Support** 4.
- 5. Standardization

ns, Public Agen Advanced Learning ALIC nFrastructure Consortium

ЗÞ

Cademic This process has feedback as well as feed forward loops.

Not all work has followed this process

www.adinet.org

Enabling the Digital Knowledge Environment of the Future

Customer Perspective

- Can buy one LMS and use any content
 - Wider choice
 - Lower cost
 - Quicker adoption of new content providers and technologies
 - Consistent user experience and higher quality
- Not locked in
 - Can replace LMS and keep content
 - LMS can interoperate with other systems
- Enterprise solution
 - Interoperability enables enterprise-level consistency
 - Longer lifetime of platforms
 - More efficient use of maintenance investment

Education Perspective

- Allows choice among delivery systems
- Reusability & Modularity
 - Makes content easier to customize
 - Parallels current practice of picking & choosing content
 - Increases audience for good content
- E-learning standards enable adaptivity

Faster and easier adoption of new technologies

LMS – Vendor Perspective

- No more one-off integrations
- Can compete with other LMS vendors on features, not content
- Can apply resources to LMS features, not multiple interoperability links

Content Production

- Reduce cost of production

 programming is left up to LMS
- Ability to run on any LMS

 Creates larger potential market
- Reusability & Modularity
 - Creates larger potential market
 - Increases value of good content
 - Offers opportunities to add value by assembly and sequencing

The SCORM[®]...

Sharable Content Object - Reference Model

- Integration of industry specifications from many other organizations -AICC, IMS, IEEE, ARIADNE, etc.
- Provides a unified learning content model
- Defines a standardized web "run-time" environment
- The first step on the path to defining a true learning architecture A reference model that defines a web-based learning "content model"
- A set of interrelated specifications designed to meet DoD's high level "-ilities"
- A process to knit together disparate groups and interests
- A bridge from general emerging technologies to commercial implementations
- Establishes a process for certifying courses and content
- $_{17}$...an evolving document to collect all the "bits and pieces" in one place

The ADL SCORM

- Sharable Content Object Reference Model
- "Bookshelf" of specifications and standards
- Based on CMI
- Uses LOM and IMS content specs
- Wide adoption and large mind-share (e.g. RFP's)
- Being productized by all major LMS vendors
- Content-LMS communication via SCORM JavaScript API
- Requires very little coding on content side.
- Content & structure separate but in one package.

Enabling the Digital Knowledge Environment of the Future

SCORM

Meta-data XML Binding **Best Practice** From IMS **RUN-TIME ENVIRONMENT** Content to LMS API From AICC Content to

Course Structure Format -Derived from AICC

Meta-data dictionary From IEEE LMS data

model

From AICC

Other Specifications

- Learner profiles
- Competency definitions
- Agents/simulations
- Adaptive sequencing
- Architectural diagrams
- Platform profiles
- Glossaries
- Quality standards
- Rights managements
- Security
- System to system communication

The E-learning standards community is trying to follow the specification \rightarrow implementation \rightarrow standardization path in most of its work.

Active in 2001	Expected 2002	Future Directions
LOM Data Model		
LOM Bindings		
CMI – based Content		
Content Packaging & Sequencing		
Architectural Models; Glossary; "Meta-standards" Learner Information		
Identifiers; ad-hoc "Micro-standards"		

Working Title

Content Object Repository Discovery and Registration/Resolution Architecture

"CORDRA"

++++

A Three Part Model

- CONTEXT
- DISCOVERY
- IDENTIFICATION/RESOLUTION

www.adinet.org

The "Problem Space"

- There are many specifications related to repositories
- None individually address the entire problem of finding and then retrieving <u>exactly</u> the right instructional material
- Many issues are not technical they are "policy"
- The result: many incompatible repository systems of learning content that cannot be found, accessed or mined in an ADL environment
- ADL needs a framework for building learning repositories that meet its requirements
- Other communities also need similar frameworks

ADL's Approach

- Articulate the high level requirements, policies and business rules for instructional content repositories that constrain the architecture such that it can be implemented consistently.
- Identify and relate the most relevant technologies and specifications that can be applied to the architecture (connect the dots).
- Define a framework on which a number of services may be built (but without defining the implementation of such services).
- Provide a model that can scale.

Enabling Services

- We need lots of services...
 - Policy enforcement
 - Resolution/retrieval
 - Authentication
 - Processing community specific business rules
 - "Smart" search/discovery
 - … many others
- We need a framework that enables such services

Some of the People We're Working With

- CNRI (Corporation for National Research Initiatives)
- National Science Foundation
- U.S. Library of Congress
- DTIC (Defense Technical Information Center)/CENDI
- U.S. Military Services
- CDC (Center for Disease Control and Prevention)
- IRS (Internal Revenue Service)
- GPO (Government Printing Office)
- U.K. TSO (The Stationary Office)
- Medbiquitous (Professional medical education consortium)
- Many others...

Tentative Plans

VERY, VERY EARLY DAYS

- Gather and vet assumptions and requirements
- Study existing specifications (few if any new ones are required)
- Identify key policy issues and positions
- Identify business rules requirements
- Prototype the approach
- Develop guidelines for how the model might be adapted to other communities of practices

www.adlnet.org