

#### APEC Biofuels Task Force and Asia-Pacific Context for Biofuels Standards Work

ANSI Biofuels Standards Panel (ANSI-BSP) Inaugural Meeting

May 9, 2007 Westin Arlington Gateway — Arlington, VA

> Presented by Jeff Skeer Office of Policy and International Affairs, U.S. Department of Energy



# **APEC Biofuels Context**

- The 21 APEC economies account for roughly half the world's energy use and environmental emissions.
- Indonesia and Malaysia have major biodiesel potential with planned expansion of palm and jatropha.
- Substantial potential for both diesel and ethanol in countries like Thailand, and Vietnam.
- □ Lots of land in Australia and China as well.
- And of course the U.S. has overtaken Brazil as the world's leading producer of ethanol.



# **APEC Biofuels Task Force Was Set Up after APEC Energy Ministers in 2005:**

- "agreed that effective responses to high and increasingly volatile oil prices require a broad range of supply and demand-side measures...including vehicle fuel efficiency and alternative transport fuels"
- directed APEC's Energy Working Group to "develop practical measures to enhance cooperation supporting the development of alternative transport fuels, including the establishment of a Biofuels Task Force."



# **APEC Biofuels Task Force Has Developed Consensus Messages on**

- Biofuel Economics (cost of ethanol vs. petrol and biodiesel vs. diesel)
- Biofuel Trade Opportunities (created by production cost differentials
- Biofuel Infrastructure (cost and time to build biofuel filling station network)
- □ Fuel-Flexible Vehicles (practical path of uptake into the automobile market)
- Biofuel Resources (current and potential availability of biofuel feedstocks)



# **Biodiesel from Palm in Malaysia**

- □ In Malaysia, we have learned that biodiesel from palm oil can be produced for about US\$0.38 per liter:
  - 26 cents in feedstock cost,
  - 6 cents in capital plant cost, and
  - 6 cents for labor and O&M, with a
  - <0.5 cent credit for glycerine co-product.
- □ Competes with \$42/barrel crude.
- Some 16.3 billion liters or 13.9 million tons of diesel potential could displace 70% of 2002 petroleum demand or 27% of oil demand projected for 2030.



# **Biodiesel from Jatropha in Indonesia**

- □ Indonesia can produce biodiesel from jatropha for around US\$0.44 to US\$0.48 per liter:
  - 37 cents for feedstock
  - 8 cents for capital plant cost assuming 10% cost of capital,10-year plant life (or 4 cents assuming a 5% capital cost and 20-year plant life for mature plants)
  - -3 cents in labor and operating costs
  - No credits for byproducts
- □ Competes with crude at \$52 to \$58 per barrel
- Biodiesel from palm oil is cheaper, around 39-41 cents per liter, competitive with crude at \$44 to \$47 per barrel.



# **2007 APEC Project on Guidelines for Development of Biodiesel Standards**

- By establishing guidelines for development of
   biodiesel standards in the APEC region, the project
   aims to enhance the potential for biodiesel trade
   among APEC member economies.
- Project is being led by Thailand while Australia,
   Chinese Taipei, New Zealand and US co-sponsor.
- Project was developed through APEC Expert Group on New and Renewable Energy Technologies, in cooperation with the APEC Biofuels Task Force.



## **Introductory Points on Asian Biodiesel**

- The quality of biodiesel produced depends on the natural characteristics of feedstocks, which include a variety of animal fats and vegetable oils.
- EN 14214:2003 and ASTM D 6751:2003 are the standards currently used
- The feedstocks used in EU and US are different from those used in much of the APEC region, so standards need to take them into account.



### **Fatty acids in Thailand Biodiesel**

|                            | BDF from          |                      |                 |                 |               |                |                  |
|----------------------------|-------------------|----------------------|-----------------|-----------------|---------------|----------------|------------------|
| Fatty acid                 | Crude<br>palm oil | Crude<br>coconut oil | Jatropha<br>oil | Palm<br>stearin | Palm<br>olein | Soybean<br>oil | Sunflower<br>oil |
| Caproic acid, C8:0         | -                 | 7.42                 | -               | -               | -             | -              | -                |
| Capric acid, C10:0         | -                 | 5.78                 | -               | -               | -             | -              | -                |
| Lauric acid, C12:0         | 0.35              | 49.75                | -               | 0.25            | 0.37          | 0.1            | -                |
| Myristic acid, C14:0       | 0.92              | 18.75                | -               | 1.27            | 0.91          | 0.2            | 0.1              |
| Palmitic acid, C16:0       | 44.11             | 8.60                 | 14.85           | 59.19           | 38.53         | 10.7           | 6.0              |
| Stearic acid, C18:0        | 4.36              | 2.65                 | 7.43            | 4.43            | 0.08          | 3.9            | 4.0              |
| Arachidic acid, C20:0      | 0.09              | 0.18                 | 0.08            | 0.31            | 0.13          | Other<br>= 0.2 | Other<br>= 1.1   |
| Sum of Saturated FA        | 49.83             | 93.13                | 22.36           | 65.45           | 40.02         | 15.1           | 11.2             |
| Palmitoleic acid,<br>C16:1 | -                 | -                    | -               | 0.08            | -             | 0.3            | <1.0             |
| Oleic acid, C18:1          | 38.97             | 5.53                 | 47.65           | 28.61           | 58.13         | 22.8           | 16.5             |
| Linoleic acid, C18:2       | 11.21             | 1.26                 | 29.80           | 5.86            | 1.78          | 50.8           | 72.4             |
| Linolenic acid, C18:3      | -                 | 0.07                 | 0.19            | -               | 0.07          | Other<br>= 6.8 | Other<br>= 0.6   |
| Sum of Unsaturated FA      | 50.18             | 6.86                 | 77.64           | 34.55           | 59.98         | 80.7           | 90.5             |



#### **Biodiesel Standards in Thailand - FAME**

| Item | Fuel properties                                | Unit  | Standard limit |        |
|------|------------------------------------------------|-------|----------------|--------|
| 1.   | Methyl Ester                                   | % wt. | min            | 96.5   |
| 2.   | Density at 15° C                               | kg/m³ | min            | 860    |
|      |                                                |       | max            | 900    |
| 3.   | Viscosity at 40°C                              | CSt   | min            | 3.5    |
|      |                                                |       | max            | 5.0    |
| 4.   | Flash Point                                    | °C    | min            | 120    |
| 5.   | Sulphur                                        | % wt. | max            | 0.0010 |
| 6.   | Carbon Residue,<br>on 10% distillation residue | % wt. | min            | 0.30   |
| 7.   | Cetane Number                                  |       | min            | 51     |
| 8.   | Sulfated Ash                                   | % wt. | max            | 0.02   |
| 9.   | Water                                          | % wt. | max            | 0.050  |
| 10.  | Total Contaminate                              | % wt. | max            | 0.0024 |
| 11.  | Copper Strip Corrosion                         |       | max            | No. 1  |
| 12.  | Oxidation Stability at 110°C                   | hours | min            | 6      |



#### **Biodiesel Standards in Thailand - FAME**

| Item | Fuel properties             | Unit           | Standard limit         |        |
|------|-----------------------------|----------------|------------------------|--------|
| 13.  | Acid Value                  | mg KOH/g       | min                    | 0.50   |
| 14.  | Iodine Value                | g Iodine/100 g | min                    | 120    |
| 15.  | Linolenic Acid Methyl Ester | % wt.          | min                    | 12.0   |
| 16.  | Methanol                    | % wt.          | min                    | 0.20   |
| 17.  | Monoglyceride               | % wt.          | min                    | 0.80   |
| 18.  | Diglyceride                 | % wt.          | min                    | 0.20   |
| 19.  | Triglyceride                | % wt.          | min                    | 0.20   |
| 20.  | Free glycerin               | % wt.          | min                    | 0.02   |
| 21.  | Total glycerin              | % wt.          | min                    | 0.25   |
| 22.  | Group I metals (Na+K)       | mg/kg          | min                    | 5.0    |
|      | Group II metals (Ca+Mg)     | mg/kg          | min                    | 5.0    |
| 23.  | Phosphorus                  | % wt.          | min                    | 0.0010 |
| 24.  | Additive                    |                | Approved by DG of DOEB |        |



# **APEC Biofuel Standards – Work Plan**

| Phase 1: | Review the current biodiesel standards applied in both<br>APEC economies and non-APEC economies.<br>Review the potential feedstocks and evaluate how their<br>natural characteristics may affect the quality of<br>biodiesel.                                                                                                                                                                                                                                                               | 3 month |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Phase 2: | <ul> <li>Review the applicability of lessons learnt on the affect of biodiesel on the diesel engines and vehicles including their emissions.</li> <li>Review the opportunities, gaps, barriers and lessons learn from using biodiesel as fuels with engine and automobile manufacturers in order to adopt biodiesel specification and its blends.</li> <li>Investigate the additives and antioxidizers necessary for biodiesel.</li> <li>Organize the first workshop in Thailand</li> </ul> | 7 month |



# **APEC Biofuel Standards – Work Plan B**

| Phase 3: | Integrate and synthesize the information obtained from phase 1 and 2.                                                                                                                                                           | 10 months |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Phase 4: | Organize the second workshop in Chinese<br>Taipei with representatives from<br>energy sector among APEC<br>economies.<br>The recommendation and the lessons<br>learned from stakeholders will be<br>shared for future practice. | 13 months |



# **APEC Biofuel Standards – Work Plan C**

| Phase 5: | Integrate and synthesize the information for final report. | 17 months |
|----------|------------------------------------------------------------|-----------|
| Phase 6: | Develop the draft final report on the guidelines           | 20 months |



#### **Contact Information for Project Leader**

Ms. Peesamai Jenvanitpanjakul
Thailand Institute of Scientific and Technological Research (TISTR)
35 M 3, Klong 5, Klong Luang,
Patumthani 12120, Thailand
Phone: +66-2577-9198
Fax: +66-2577-9197
E-mail: peesamai@tistr.or.th, peesamai@gmail.com

