Nanotechnology Standards - The New Frontier

Alan Rae
VP Market & Business Devt. NanoDynamics Inc

Director of Research, iNEMI Inc.
ANSI-ISO TC229 Committee
ieee Nano Standards Roadmap Committee
JISSO North America Council
IPC (board labeling, optoelectronics)

- Standards for new technologies
- Standards organizations
- New technology concerns
- The standards challenge
- The nanotechnology challenge
- What we can standardize
- ISO TC229
- Nano standards value to NanoDynamics

 Are a real boon to encouraging developing markets e.g. ieee 802.11 b,g,h,n...

But...

- Can encourage commoditization where IP, brand, features and attributes aren't important
 - Wireless router vs cell phone
 - Resistance from those who fear commoditization
- Can lag technology development
 - International cycle up to 6 years
 - Can be perceived as a non-tariff barrier e.g new wi-fi standards discussed in China 2005
- Only have value where value is perceived by users

- In most countries there are national groups like BSI
- There are international groups such as ISO and IEC and CEN who try to reach consensus often on a standard derived from one country's efforts
- But in the USA there are different types of organization
 - Not for profit patent organizations e.g. IPC use volunteers to develop patents often fed by consortia like iNEMI and sell patents at minimal cost
 - For profit organizations invest in developing patents and derive income from their sale e.g. Telcordia, ASTM, UL....
 - This can create some interesting discussionst

f Nanotechnolo

- "Patents aren't appropriate to a rapidly evolving technology"
 - Counter develop common areas that affect everyone e.g. optical connector cleanliness or model patents e.g. standards on single wall carbon nanotubes
- "We can't get companies together because of IP issues"
 - Counter iNEMI medical component reliability group
- "We can't get international consensus"
 - Counter carve the market e.g. optoelectronics
 - USA datacom
 - Europe autocom
 - Japan consumer games etc.
- "There's nothing out there"
 - Counter spread your net wide e.g. NASA had some great internal standards on optoelectronics and there were terrific (untranslated) standards in Japan

- How do I make sure you are selling what I'm buying?
 - Nomenclature
 - Packages v modules v SIP
 - Tests e.g. MSL vary depending on what they are called!
- How do I know the tests you use in your industry are relevant to mine
 - JISSO concept semiconductor vs package vs assembly
 - Test method standardization
- How do I know these products are safe to use and won't leave me with an environmental legacy
 - ROHS, WEEE, REACH, TSCA....

Power of Nanotechnolo

- All of the above issues plus
 - Nanotechnologies are a range of tools that can be applied to a whole range of industries
 - From foodstuffs to medicines to textiles to semiconductors
 - They may be transient used in production of an item that itself is not nano
 - Cosmetics vs fuel cell
 - Many are customized for a particular application
 - Carbon nanotubes are becoming a commodity but don't work without functionalizing. Functionalized nanotubes won't necessarily become commoditized until patents run out.

Power of Nanotechnolo

What we can standardize

- Nomenclature
- Metrology (a big issue in nano)
- HS&E procedures

But not

- Product performance (covered by existing standards except for completely new applications)
- This is the approach followed by ISO TC229, Nanotechnologies

Nomenclature

- Headed up by Canada
- Input from ASTM, BSI
- Metrology
 - Headed up by Japan
- HS&E
 - Headed up by USA
 - Working with the NIOSH roadmap
 - http://www.cdc.gov/niosh/topics/nanotech/pdfs/NIOS
 H_Nanotech_Strategic_Plan.pdf
 - Official liaison with ASTM, IEC and other bodies

The value of standards to NanoDynamics

- Nomenclature
 - Having a common language worldwide
- Metrology
 - SEM is a dreadful QA tool!
- HS&E
 - Appropriate guidelines from production to recycling

Power of Nanotechnolo,