Impact of Regulatory Standards on Innovations in the HVACR Industry

Presented by
Henry Hwong
Director, Product Sections
Air Conditioning & Refrigeration Institute
Introduction to ARI

- National trade association formed in 1953 and headquartered in Arlington, Virginia
- Represents more than 90% of North American produced air conditioning and commercial refrigeration equipment manufacturers
- Over 200 members in 26 product sections
Impact of Regulatory Standards on Innovations in the HVACR Industry

- Agenda
 - What is Innovation?
 - Regulatory Environment in the HVACR Industry
 - Case Study One
 - Seasonal Energy Efficiency Ratio
 - Case Study Two
 - State Efficiency Standards
 - Conclusions
What is Innovation?
What is Innovation?
What is Innovation?

- CNN’s list of top 10 innovations since 1980
 1. The Internet
 2. Cell phone
 3. Personal computers
 4. Fiber optics
 5. E-mail
 6. Commercialized GPS
 7. Portable computers
 8. Memory storage discs
 9. Consumer level digital camera
 10. Radio frequency ID tags
Standardization or Innovation; Which comes first?

- Does standardization drive innovation or visa versa?
Innovation Priorities; Which comes first?

- Energy costs
- Market demands
- Costs of goods
- Environmental Concerns
- Regulatory Standards
- Competition
Regulatory Environment in the HVACR Industry

- Long history of federal, state, voluntary, and mandatory energy efficiency standards in the U.S.
- Majority of US HVACR products are covered under one of the following energy efficiency standards:
 - National Appliance Energy Conservation Act (NAECA)
 - ASHRAE 90.1
 - State Regulations
Case Study One: National Appliance Energy Conservation Act (NAECA)
Case Study One: National Appliance Energy Conservation Act (NAECA)

- NAECA is a standard that established a national minimum efficiency of 10 SEER (Seasonal Energy Efficiency Ratio).
- SEER is the recognized energy efficiency descriptor for residential air conditioners and heat pumps.
- NAECA also mandated the US Department of Energy (DOE) to increase federal minimum efficiency through rulemaking.
- Highly publicized debate amongst all stakeholders between 12 and 13 SEER.
Case Study One: National Appliance Energy Conservation Act (NAECA)
Case Study One: National Appliance Energy Conservation Act (NAECA)

- The 12/13 SEER debate (Manufacturers’ perspective)
 - Standard needs to be “technologically feasible and economically justifiable”
 - Reduced choices
 - Long payback for majority of the country
 - 75% of consumers will not benefit
Case Study One: National Appliance Energy Conservation Act (NAECA)

- Effective Jan 23, 2006 -- New minimum energy efficiency standards
 - 13 SEER → 30% increase over current levels

- Impacts on innovation
 - Millions of dollars spent on retooling
 - Countless hours spent on redesigning production line, design to mass produce what was a premium line
 - Design equipment to fit in existing footprint
 - Significant compliance efforts
 - Consumed all available resources to comply with new standard
Case Study Two: State Efficiency Standards

- NAECA and EPACT established federal minimum efficiency levels and regulations for most residential and commercial air conditioning and refrigeration equipment.
- Key element of federal regulations is the concept of “preemption”.
- Non-federally covered products are not preempted.
- Preemption is key to avoid a patchwork of state standards.
- States have historically regulated non-covered products.
- Preemption are increasingly being challenged by states.
Case Study Two: State Efficiency Standards

- California
 - Sixth largest economy in the world
 - Sixteen climate zones
 - Uses over 270,000 gigawatt-hours of electricity/year
 - Regulatory authorities are delegated to the California Energy Commission (CEC)
 - Title 24 covers buildings
 - Title 20 covers appliances
Case Study Two: State Efficiency Standards

- Peak Demand
 - Concerns are in peak demand, not necessarily energy efficiency
 - Peak demand growing at 2.4 percent per year
 - Equivalent to 3 new 500-megawatt power plants
 - Results in rolling blackouts
 - Energy Efficiency Ratio (EER) is a better descriptor of peak energy usage than SEER
Case Study Two: State Efficiency Standards

EER

SEER
Case Study Two: State Efficiency Standards

- Legal battle ensued between California and manufacturers
- US Supreme Court’s eventual denial to hear the case gave states permission to request data not requested in the federal regulations
- Opened the door for states to promulgate its own regulations
Case Study Two: State Efficiency Standards

Impact on Innovation
- Optimization for SEER or EER?
- Design-by-state
- Design-by-climate
- Limitations of components
- Diluted resources
Conclusions

- Standards and Regulations dictate much of HVACR product development and innovations
- Some have foster innovations in the past while others have stymied innovation
- Similar circumstances two decades ago with environmental concerns
- Standards and regulations will drive innovation for years to come