Incorporating Standards into Capstone Design Courses

Standards and Conformity Assessment in Design

The value of incorporating standards into engineering education programs based on the role of standards in product design

Teresa J. Cendrowska, ASTM International

Farleigh Dickinson University, Teaneck, NJ
15 April 2005
Objective

To highlight the value of standards in collegiate education and capstone design. Standards can be utilized to:

- Augment the learning experience
- Increase student knowledge of available design and marketing tools and practices
- Facilitate the classroom-to-workplace transition
- Provide experience in aligning real-world applications and market issues.
OVERALL

A heightened focus on standards (their development, content and application, the benefits of their use, and their market application) will position students and curricula more competitively.
Concerns

Concerns surrounding a lack of standards use in the classroom

- Inability to appropriately select and apply standards without basic knowledge
- Loss of time and direction “reinventing” what may already be standardized.
- Missed opportunity to apply standards to engineering design, product development, marketing, and acceptance.
- Failure to strategically approach and apply standards by US-based industries.
Session Outline

Augment the learning experience with standards in the classroom

- As a basis for design and evaluation
- Incorporated into the laboratory exercises

Enhance the curriculum by demonstrating the classroom-to-workplace transition

- As a foundation for understanding market issues, design approvals, and promotion

Basic, Strategic Standards Issues

- NTTAA
- US National Standards Strategy

ASTM International efforts for Standards Education

- Student Membership, committee-sponsored events, press releases
Standards in the Classroom for Design and Evaluation

1.11 GRADES OF REINFORCING STEEL

Reinforcing bars may consist of billet steel, axle steel, or rail steel. Most bars are made from new or billet steel, but very occasionally they are rolled from old train rails or locomotive axles. These latter steels, having been cold-worked for many years, are not as ductile as the new billet steels.

There are several types of reinforcing bars designated by the ASTM, which are listed at the end of this paragraph. In this listing, Grade 40 means the steel has a specified yield point of 40,000 psi; Grade 50 means 50,000 psi; and so on.

1. ASTM A615, billet steel, Grades 40 and 60.
2. ASTM A615, billet steel, Grade 75 for #11, #14, and #18 bars.
3. ASTM A616, rail steel, Gr 60.
4. ASTM A617, axle steel, Gr 60.
5. ASTM A706, low-alloy steels.

Designers in almost all parts of the country use reinforcing bars listed by the Conrail Manufacturing Rail Steel Brands and Others.

Almost all reinforcing bars contain all of the material used to make steel as from old car bodies. Bars are used for certain uses where weight, strength, and ductility to this specific local supplier.

Standard Specification for Deformed and Plain Carbon Steel Bars for Concrete Reinforcement

This standard is issued under the fixed designation A 615/A 615M. The number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. The letter designation is not part of the number.

<table>
<thead>
<tr>
<th>Nominal Weight [Nominal Mass]</th>
<th>Nominal Dimensions</th>
<th>Deformation Requirements, in [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bar Diameter [Nominal Mass, lb/ft]</td>
<td>Cross-Sectional Area, in² [mm²]</td>
<td>Perimeter, in [mm]</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>3</td>
<td>0.357 [0.556]</td>
<td>0.175 [0.3]</td>
</tr>
<tr>
<td>4</td>
<td>0.668 [1.004]</td>
<td>0.530 [13.1]</td>
</tr>
<tr>
<td>5</td>
<td>1.003 [1.522]</td>
<td>0.625 [15.9]</td>
</tr>
<tr>
<td>6</td>
<td>1.552 [2.219]</td>
<td>0.750 [19.1]</td>
</tr>
<tr>
<td>7</td>
<td>2.044 [3.022]</td>
<td>0.875 [22.2]</td>
</tr>
<tr>
<td>8</td>
<td>2.670 [3.93]</td>
<td>1.000 [25.4]</td>
</tr>
</tbody>
</table>
Standards in the Classroom for Laboratory Exercises

ASTM D-698; AASHTO T-99

<table>
<thead>
<tr>
<th>Description</th>
<th>Method A</th>
<th>Method B</th>
<th>Method C</th>
<th>Method D</th>
<th>Method A</th>
<th>Method B</th>
<th>Method C</th>
<th>Method D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mold: Volume</td>
<td>1/30</td>
<td>1/13.33</td>
<td>1/30</td>
<td>1/13.33</td>
<td>1/30</td>
<td>1/13.33</td>
<td>1/30</td>
<td>1/13.33</td>
</tr>
<tr>
<td>ft³</td>
<td>943.9</td>
<td>2124.3</td>
<td>943.9</td>
<td>2124.3</td>
<td>943.9</td>
<td>2124.3</td>
<td>943.9</td>
<td>2124.3</td>
</tr>
<tr>
<td>cm³</td>
<td>1992</td>
<td>4722.75</td>
<td>1992</td>
<td>4722.75</td>
<td>1992</td>
<td>4722.75</td>
<td>1992</td>
<td>4722.75</td>
</tr>
<tr>
<td>Height</td>
<td>4.58</td>
<td>4.58</td>
<td>4.58</td>
<td>4.58</td>
<td>4.58</td>
<td>4.58</td>
<td>4.58</td>
<td>4.58</td>
</tr>
<tr>
<td>in.</td>
<td>116.33</td>
<td>116.33</td>
<td>116.33</td>
<td>116.33</td>
<td>116.33</td>
<td>116.33</td>
<td>116.33</td>
<td>116.33</td>
</tr>
<tr>
<td>mm</td>
<td>116.33</td>
<td>116.33</td>
<td>116.33</td>
<td>116.33</td>
<td>116.33</td>
<td>116.33</td>
<td>116.33</td>
<td>116.33</td>
</tr>
<tr>
<td>Diameter</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>in.</td>
<td>101.6</td>
<td>152.4</td>
<td>101.6</td>
<td>152.4</td>
<td>101.6</td>
<td>152.4</td>
<td>101.6</td>
<td>152.4</td>
</tr>
<tr>
<td>mm</td>
<td>206.1</td>
<td>384.2</td>
<td>206.1</td>
<td>384.2</td>
<td>206.1</td>
<td>384.2</td>
<td>206.1</td>
<td>384.2</td>
</tr>
<tr>
<td>Weight (mass) of hammer</td>
<td>5.5</td>
<td>2.5</td>
<td>5.5</td>
<td>2.5</td>
<td>5.5</td>
<td>2.5</td>
<td>5.5</td>
<td>2.5</td>
</tr>
<tr>
<td>lb</td>
<td>2.48</td>
<td>1.13</td>
<td>2.48</td>
<td>1.13</td>
<td>2.48</td>
<td>1.13</td>
<td>2.48</td>
<td>1.13</td>
</tr>
<tr>
<td>kg</td>
<td>11.1</td>
<td>5.2</td>
<td>11.1</td>
<td>5.2</td>
<td>11.1</td>
<td>5.2</td>
<td>11.1</td>
<td>5.2</td>
</tr>
<tr>
<td>Height of drop of hammer</td>
<td>12</td>
<td></td>
<td>12</td>
<td></td>
<td>12</td>
<td></td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>in.</td>
<td>304.8</td>
<td></td>
<td>304.8</td>
<td></td>
<td>304.8</td>
<td></td>
<td>304.8</td>
<td></td>
</tr>
<tr>
<td>mm</td>
<td>304.8</td>
<td></td>
<td>304.8</td>
<td></td>
<td>304.8</td>
<td></td>
<td>304.8</td>
<td></td>
</tr>
<tr>
<td>Number of layers of soil</td>
<td>3</td>
<td></td>
<td>3</td>
<td></td>
<td>3</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>mm</td>
<td>76.2</td>
<td></td>
<td>76.2</td>
<td></td>
<td>76.2</td>
<td></td>
<td>76.2</td>
<td></td>
</tr>
<tr>
<td>Number of blows per layers</td>
<td>25</td>
<td></td>
<td>25</td>
<td></td>
<td>25</td>
<td></td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Tested on soil fraction passing sieve</td>
<td>No. 4</td>
<td></td>
<td>No. 4</td>
<td></td>
<td>No. 4</td>
<td></td>
<td>No. 4</td>
<td></td>
</tr>
</tbody>
</table>

1. Scope

1.1 These test methods covers laboratory compaction methods used to determine the relationship between water content and dry unit weight of soils (compaction curve) compacted in a 4 or 6-in. (101.6 or 152.4-mm) diameter mold with a 5.5-lbf (24.4-N) rammer dropped from a height of 12 in. (305 mm) producing a compactive effort of 12,400 ft-lbf/ft³ (600 kN-m/m³).

1.3.14 **Blows per layer**—25.

1.3.15 **Use**—May be used if 20% or less by mass of the material is retained on the No. 4 (4.75-mm) sieve.

1.3.16 **Other Use**—If this method is not specified, materials that meet these gradation requirements may be tested using Methods B or C.

1.3.2 **Method B:**

1.3.2.1 **Mold**—4-in. (101.6-mm) diameter.

1.3.2.2 **Material**—Passing ¾-in. (9.5-mm) sieve.
Standards in the Classroom for Laboratory Exercises

Preparation of Soil Sampling Protocols: Sampling Techniques and Strategies

The American Society for Testing and Materials (ASTM) has developed a number of methods that have direct application to soil sampling. These methods often need to be modified slightly to meet the needs of the environmental scientist that requires samples for chemical analyses since the ASTM methods are designed primarily for engineering tests. The techniques that are utilized should be closely coordinated with the laboratory in order to meet the specific requirements of the analytical methods used.
GUIDANCE FOR THE PREPARATION OF PREMARKET NOTIFICATIONS (510(k)s) FOR CEMENTED, SEMI-CONSTRAINED TOTAL KNEE PROSTHESES

H. Materials
Provide the voluntary standards to which the materials used in each component of the device conform. Most of the materials used in legally marketed or predicate knee prostheses conform to an American Society for Testing and Materials (ASTM) … standard for implant usage. If not, then data must be provided demonstrating the material's biocompatibility. In addition, information about the processes and effects of any additional manufacturing techniques…must be provided.

Range of Motion and Constraint Data on the expected range of motion for the device should include all modes of rotation …

ASTM Standard F-1223 provides a standard test method for evaluating constraint… it may be used for comparison purposes to commercially available total knee prostheses. Alternatively, constraint may be measured using a worst case analysis of the anterior, posterior, medial, lateral and rotational tibiofemoral shearing forces…
From Classroom to Workplace
Marketing & Promotion

Applications Support

Our team of Applications Engineers has years of experience in providing solutions for customers' applications... whether performing standard tests on everyday materials and products or diverse applications such as testing valve loads on medical inhalers, push or pull strength of lipstick holders and peel strength tests on card laminates.

Our applications and materials testing knowledge is freely available. Whether you are working in quality control, R&D, production, laboratory or an educational environment, we are happy to advise on your individual application needs.

Solutions Whatever Your Business

Our vast applications database covers a wide range of industries including rubber, plastics, metals, medical, packaging, paper, boards, composites, metals, food applications, electronic components, automotive components, textiles, wire, foams and many others. Whatever your business, we are here to help.

We can ensure your testing fully complies with ASTM, ISO, DIN, BS, EN or other international standards. We are also familiar with testing to industry standards such as FINAT and to working with your own specialist company standards.

Solutions to International, National, Industry Standards and FDA 21 CFR Part 11

AMETEK®

LLOYD INSTRUMENTS
A Subsidiary of AMETEK, Inc.

Applications Support

Service Intro
Application Support
FAQ’s
Technical Enquiry
Service & Calibration

Choose one

Choose one
...Federal agencies and departments shall use technical standards that are developed or adopted by voluntary consensus standards bodies, using such technical standards as a means to carry out policy objectives or activities determined by the agencies and departments.

...Federal agencies and departments shall consult [and “participate”] with voluntary, private sector, consensus standards bodies...
Education needed regarding regional trade disadvantages

- The European Union is aggressively and successfully promoting its technology and practices to other nations around the world through its own standards processes and through its national representation in the international standards activities

- The exclusion of technology supporting U.S. needs from international standards can be a significant detriment to U.S. competitiveness. The U.S. will lose market share as competitors work hard to shape standards to support their own technologies and methods.

Educational component in US National Standards Strategy
Educational programs
- By committee (student paper competitions, scholarships/grants)
- Society Wide: Student Membership

Standardization News (SN) articles
- Publicity regarding standards in education
- Awareness to members, users, and general public

Student membership
- Easy and inexpensive access
- Opportunities and incentives to continue after graduation; grow the next generation of participants and users
Conclusions

- The business environment needs a workforce that is prepared to understand and apply standards.
- Greater exposure to standardization enables students to be competitively positioned and to provide added value to the workplace.
- Standards education strengthen a curriculum’s market relevance by marrying technical design to real market issues.
- Opportunities exist for incorporating standards into curricula.
Thoughts on Conclusions

- Stronger effort needed to incorporate standards into curriculums
 - Capstone projects provide an optimal insertion point
 - Students will be prepared for the technical and market issues surrounding standards in a dynamic, global marketplace
 - Position US-based collegiate curriculums more competitively
 - Not limited to engineering or science based curricula
 - Continued cooperation among SDO’s to provide extracurricular activities

- Coordinated effort to develop pre-packaged modules for educational use
Thank you

Questions?

ASTM International
Standards Worldwide
Contact Information

Teresa Cendrowska
tcendrow@astm.org
+610-832-9718